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Abstract 

Background:  Hepatocellular carcinoma (HCC) as a common tumor has a poor prognosis. Recently, a combination 
of atezolizumab and bevacizumab has been recommended as the preferred regimen for advanced HCC. However, 
the overall response rate of this therapy is low. There is an urgent need to identify sensitive individuals for this precise 
therapy among HCC patients.

Methods:  The Wilcox test was used to screen the differentially expressed immune-related genes by combining the 
TCGA cohort and the Immunology Database. Univariate and multivariate Cox regression analysis were used to screen 
the immune gene pairs concerning prognosis. A predictive model was constructed using LASSO Cox regression 
analysis, and correlation analysis was conducted between the signature and clinical characteristics. ICGC cohort and 
GSE14520 were applied for external validations of the predictive risk model. The relationship between immune cell 
infiltration, TMB, MSI, therapeutic sensitivity of immune checkpoint inhibitors, targeted drugs, and the risk model were 
assessed by bioinformatics analysis in HCC patients.

Results:  A risk predictive model consisting of 3 immune-related gene pairs was constructed and the risk score was 
proved as an independent prognostic factor for HCC patients combining the TCGA cohort. This predictive model 
exhibited a positive correlation with tumor size (p < 0.01) and tumor stage (TNM) (p < 0.001) in the chi-square test. 
The predictive power was verified by external validations (ICGC and GSE14520). The risk score clearly correlated with 
immune cell infiltration, MSI, immune checkpoints, and markers of angiogenesis.

Conclusions:  Our research established a risk predictive model based on 3 immune-related gene pairs and explored 
its relationship with immune characteristics, which might help to assess the prognosis and treatment sensitivity to 
immune and targeted therapy of HCC patients.

Keywords:  Hepatocellular carcinoma, Prognosis, Risk predictive model, Immunotherapy, Anti-angiogenesis targeted 
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Introduction
Hepatocellular carcinoma (HCC), as the third lead-
ing cause of cancer-related mortality worldwide [1], has 
a poor prognosis with an average 5-year survival rate 
of 19.6% according to the National Cancer Institute’s 
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Surveillance, Epidemiology, and End Results (SEER) data-
base [2]. Although liver resection and liver transplanta-
tion keep the median overall survival at more than 6 years 
for early-stage patients [3], high recurrence rates could 
reach 40–70% within 5 years [4, 5]. Systemic therapy 
with the drugs of atezolizumab (anti-PD-L1) and bevaci-
zumab (anti-VEGFA), as a standard first-line therapy for 
advanced HCC according to the clinical practice guide-
line [6], showed a median overall survival (OS) time that 
was double that of sorafenib and significantly improved 
the 12-month OS in the clinical trial IMbrave150 [7]. 
However, the overall response rates (ORR) of the com-
bination therapy and monotherapy of atezolizumab were 
20% and 17%, respectively [8]. The majority of HCC 
patients are insensitive to these therapies.

Several factors, such as tumor mutational burden 
(TMB), microsatellite instability (MSI), play an impor-
tant role in tumor prognosis. MSI and TMB could help 
to screen patients who may benefit from immune check-
point inhibitor (ICI) therapy [9, 10]. However, their status 
in HCC has not been well defined [11, 12]. It is urgent 
to find a better biomarker to identify patients who might 
benefit from targeted and ICI therapies.

Our study constructed a risk predictive model com-
posed of 3 immune-related gene (IRG) pairs for predict-
ing prognosis, characterizing immune cell infiltration, 
evaluating the relationship with TMB and MSI, and 
assessing the therapeutic sensitivity of ICIs and small 
molecular targeted drugs in HCC patients.

Materials and methods
Training and validating data collection
The training group that included 365 patients with RNA 
sequencing data, clinical information, and simple nucleo-
tide variations were obtained from The Cancer Genome 
Atlas (TCGA-LIHC, https://​www.​cancer.​gov/​tcga). RNA 
sequencing data and clinical information for external 
validations that included 231 patients from the Inter-
national Cancer Genome Consortium (ICGC, LIRI-JP, 
https://​dcc.​icgc.​org) and 242 patients from GEO data-
base (GSE14520, https://​www.​ncbi.​nlm.​nih.​gov/​geo).

Identifying the differential expression IRGs
A comprehensive list of IRGs was obtained from the 
Immunology Database and Analysis Portal database 
(https://​immpo​rt.​niaid.​nih.​gov/​home) [13]. Then, IRGs 
in the training group were screened out by making an 
intersection with the Immunology Database. The R pack-
age “edgeR” was used to screen differentially expressed 
IRGs between tumor and normal tissues with the filter 
criteria (false discovery rate (FDR) < 0.05 and absolute 
log2 foldchange (|logFC|) > 2). Results are shown by 

heatmap and volcano plot using the “pheatmap” package 
and “limma” package.

Screening IRG pairs and constructing a risk predictive 
model
By comparing the expression levels between the two 
IRGs in gene pairs, we define all gene pairs as either 1 or 
0. The filter criterion is that 1 or 0 accounts for no more 
than 80% of all samples; otherwise, these gene pairs will 
be eliminated.

We screened the immune gene pairs using univariate 
Cox regression analysis related to prognosis (p < 0.001). 
These IRG pairs were included in the construction of a 
risk model using the least absolute shrinkage and selec-
tion operator (LASSO) Cox regression. The multivari-
ate Cox regression analysis (p < 0.05) was performed to 
shrink the size of IRG pairs with a non-zero regression 
coefficient (β). Then the IRG Pairs were used to construct 
a risk score model to assess the sensitivity of ICIs and tar-
geted therapy. The patients were divided into groups with 
high and low risk by optimal cutoff. Until the expres-
sions of PD-L1 and VEGFA between high and low risk 
score groups showed a statistically significant difference, 
respectively (p < 0.01), the final IRG pairs were identified 
and a risk predictive model was established. The time-
dependent ROC curves of the risk score were generated 
for estimating the model’s predictive power using the 
“survivalROC” package.

Accessing the model’s predictive power
We conducted a Kaplan-Meier (KM) analysis to reflect 
the OS of both groups using the “survival” package in 
R. The ROC curves combined with clinical characteris-
tics, which showed the risk model’s predicting power 
for prognosis, were demonstrated using the “survival 
ROC” package. In addition, we analyzed the correlation 
between the risk score and several clinical characteristics, 
including age, gender, tumor stage [tumor–node–metas-
tasis (TNM)], pathological grade, cirrhosis, HBV infec-
tion, and recurrence status.

External validations
ICGC cohort and GSE14520 were used for the exter-
nal validations. The Independence validation of the 
risk score of the model was examined through uni-
variate and multivariate Cox regression analyses using 
ICGC and GSE14520. Patients were classified into 
high and low-risk groups combined with the optimal 
cutoff value. KM survival analyses and time-depend-
ent ROC curves were produced based on the ICGC 
and GSE14520. We also performed correlation analy-
ses between the risk score and clinical information, 
including age, gender, tumor stage, pathological grade, 

https://www.cancer.gov/tcga
https://dcc.icgc.org
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https://immport.niaid.nih.gov/home


Page 3 of 12Qian et al. World Journal of Surgical Oncology          (2022) 20:252 	

cirrhosis, HBV infection, and recurrence status, to test 
the predictive power of this model.

Identifying MSI and TMB characteristics
The MSI and TMB of every sample were obtained by 
using simple nuclear variations data in TCGA-LIHC. 
The optimal cutoffs of the MSI and TMB were inves-
tigated associated with survival outcomes. The cut-
off values of the MSI and TMB were used to divide 
patients into high and low groups, respectively. Com-
bined with the risk score, KM survival analyses were 
created to reflect the OS of the subgroup. The per-
centage of patients with different MSI or TMB in the 
high and low-risk groups was shown by bar plot. The 
correlation analyses between the risk score and MSI or 
TMB were explored.

Assessment of immune infiltration, immunotherapy, 
and target therapeutic sensitivity
To evaluate the immune infiltration in different 
risk groups, the CIBERSORT algorithm was used to 
transform the expression profile into 22 immune cell 
infiltrations [14]. The Wilcoxon rank-sum test was 
performed to compare the difference between the two 
groups concerning the immune infiltrate abundance. 
To assess the sensitivity of ICI therapy and target ther-
apy, different expressions of ICIs and markers associ-
ated with angiogenesis were compared between the 
two groups.

Results
Screening differentially expressed IRGs and IRG pairs
One hundred fifty-nine differential expression IRGs 
were obtained. They included 27 downregulated and 132 
upregulated genes (Fig.  1A, B). After pairing 159 IRGs, 
5754 IRG pairs were included for univariate Cox regres-
sion analysis related to the OS. One hundred fifty-three 
prognostic IRG pairs were obtained, and in which 117 
IRG pairs were prognostic risk factors (hazard ratio > 1) 
and others were prognostic protective factors (hazard 
ratio < 1). After using the LASSO Cox regression and 
multivariate Cox regression analysis were performed 
with 153 IRG pairs, 3 IRG pairs were identified, and both 
expressions of PD-L1 and VEGFA between high and low 
risk score groups showed significant difference.

Risk predictive model construction for IRG pairs
The identified 3 IRG pairs were used to construct a 
LASSO Cox regression prognostic model (Fig.  2A–D). 
The patient’s risk score was calculated using the follow-
ing formula: (COLEC10|MMP12 × − 0.755046442) + 
(PAEP|VEGFD × 0.443541094) + (PDCD1|CSPG5 × 
− 0.810587342). Three hundred sixty-five patients were 
classified into the high and low risk score groups with the 
optimal cutoff (1.433) of the risk score (Fig. 2E). The areas 
under the curve (AUC) of the risk score for predicting OS 
at 1, 2, and 3 years were 0.716, 0.734, and 0.711, respec-
tively (Fig. 2F). The KM survival analysis showed the OS 
was clearly lower in the high-risk group (Fig. 3A). Based 
on the risk predictive model, the risk score is a better 
marker than age, gender, tumor stage, and pathological 

Fig. 1  Differentially expressed immune genes of HCC tissues and normal tissues. A Heatmap of 100 top-ranked immune genes of tumor tissues 
and normal tissues. B Volcano plot of differentially expressed immune genes. Blue, downregulated; red, upregulated; Note: Collectin subfamily 
member 10, COLEC10; human matrix metallopeptidase 12, MMP12; progesterone associated endometrial protein, PAEP; chondroitin sulfate 
proteoglycan 5, CSPG5; programmed cell death 1, PDCD1; vascular endothelial growth factor D, VEGFD
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Fig. 2  Construction of the risk predictive model using the differentially expressed IRG pairs. Univariate Cox regression analysis (A) and multivariate 
analysis (B) to determine the risk effects of IRG pairs in the TCGA dataset. C, D The establishment of the prognostic model based on LASSO 
penalized Cox analysis. E The optimal cutoff (1.433) of the risk model was used to classify patients into low- and high-risk groups. F Time-dependent 
ROC analysis for predicting the overall survival of patients in the TCGA cohort using the risk score



Page 5 of 12Qian et al. World Journal of Surgical Oncology          (2022) 20:252 	

grade (Fig. 3B). Based on the univariate and multivariate 
Cox regression analyses, the risk score could be treated 
as an independent factor for predicting the prognosis, 
and its predictive power is better than that of tumor 
stage (Fig. 3C, D). In more detailed analyses with clinical 
information, tumors with larger size or in more advanced 
stages were found at higher risk scores (Table  1). These 
results showed that the risk score is effective to stratify 
the prognosis of patients.

External validations of the risk predictive model
On external validations of ICGC and GSE14520, the 
risk predictive model showed good quality of applica-
bility and stability to predict the prognosis of HCC. The 
AUC curves of the risk model for predicting OS in the 
ICGC cohort at 1, 2, and 3 years were 0.683, 0.641, and 
0.654, respectively (Fig.  4A). While, in GSE14520 the 
AUC curves of the risk model for predicting the OS at 1, 
2, and 3 years were 0.542, 0.577, and 0.567, respectively 

(Fig.  4C). Both the KM survival analyses presented a 
clearly lower OS in the high-risk group (Fig. 4B, D). The 
number of deaths increased with the increasing risk score 
(Fig.  4E), and the high-risk group had a poor prognosis 
(Fig.  4F). Moreover, tumors with a larger size or higher 
grade corresponded to a higher risk score in the ICGC 
cohort (Table 2). However, the cirrhosis, HBV infection, 
and recurrence status in GSE14520 cohort did not reach 
significant difference in correlation analysis with risk 
score (Table 2).

The relationship with MSI and TMB
Combining MSI and TMB increased the predictive 
accuracy of the risk score even more than using either 
of them individually. In this study, associated with sur-
vival outcomes, we found that when the optimal cutoff 
of MSI (0.3295) and TMB (2.9474) were applied to divide 
the patients into high and low groups of MSI and TMB 
respectively, the difference in OS among the subgroups 

Fig. 3  The risk model’s predictive power in the TCGA cohort. A, B Kaplan-Meier survival analysis and ROC analysis based on clinical characteristics 
for predicting the overall survival of patients using the risk score. Univariate Cox regression analysis (C) and multivariate analysis (D) to identify 
independent prognostic factors for overall survival based on clinical characteristics and risk score
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was the greatest (Fig. 5A, B). The hazard of the high MSI 
+ high risk score group had the worst survival compared 
with the other groups (Fig.  5A). Patients with MSI-H 
were accounting for 29% of the high-risk group, which 

was higher than the 21% found for the low-risk group 
(Fig. 5C). Differential analysis between the MSI-L group 
and MSI-H group presented that the risk score was posi-
tively related to MSI (Fig. 5D). Although combined with 
TMB, KM survival analysis showed a significant differ-
ence among subgroups (Fig. 5B), and the high-risk score 
group also had a higher percentage of TMB-H than the 
low-risk score group (Fig.  5E), the correlation analysis 
between TMB and risk score did not reach a significant 
difference (Fig. 5F).

Assessment of immune infiltration, sensitivity of ICIs, 
and targeted therapy
The immune infiltration analysis showed that 5 immune 
cells’ infiltration levels had a significant difference 
between the high and low-risk groups. The infiltration 
proportion of plasma cells, naive and memory B cells, and 
resting memory CD4+ T cells presented clearly higher in 
the low-risk group, while resting NK cells in the low-risk 
group had relatively high infiltration levels (Fig. 6A). This 
result presented that the tumor immune microenviron-
ment is strongly associated with the risk score.

The immune checkpoints including PD-L1 and CTLA4 
in the high-risk group had a clearly higher expression 
than that in the low-risk group (Fig.  6B). Analyses of 
the ligands and receptors associated with angiogenesis, 
VEGFA, VEGFB, and placental growth factor (PlGF) 
showed higher expression in the high-risk group 
(Fig.  6C). Although the main receptor VEGFR2 expres-
sion presented lower in the high-risk group, the expres-
sion of the regulator PlGF and its receptor neuropilin 1 
(NRP-1) showed higher in the high-risk group. However, 
VEGFR1 showed no significant difference between both 
risk groups (Fig. 6D). This indicates that the risk model 
could help to identify patients who may have a positive 
response to ICIs and anti-angiogenesis target therapy.

Discussion
HCC comprises 75–85% of liver cancers and has a poor 
prognosis [1]. Some studies have shown multiple genes 
present good predictive potential in assessing HCC prog-
nosis [15–18]. Recently, the importance of ICI therapy in 
HCC patients has been proven. A combination of atezoli-
zumab and bevacizumab has been shown to be signifi-
cantly better than sorafenib for the treatment of advanced 
HCC [7]. However, the ORR remains unsatisfactory. Our 
study constructed a risk assessment model using 3 IRG 
pairs to explore the relationship with immune character-
istics with a strong predictive ability. This might help to 
identify potential patients who are sensitive to this com-
bination of immune and targeted therapy.

Since the use of gene pairs only compares the expres-
sion levels of two genes in the same sequencing batch, 

Table 1  The chi-square test of the relation between risk score 
and clinical features in TCGA cohort

The cases with “Gx,” “Tx,” “Nx,” “Mx,” stage “x,” cirrhosis status “unknown,” and 
recurrence status “unknown” were excluded from the chi-square test

Clinical features TCGA, n = 365

High risk Low risk P

Survival status < 0.001

  Survived 45 194

  Died 51 75

  Age 0.89

  ≥ 60 years 52 148

  < 60 years 44 121

Sex 0.23

  Male 60 186

  Female 36 83

Histological grade 0.06

  G1–2 53 177

  G3–4 42 88

  Gx 1 4

Stage < 0.001

  I–II 55 199

  III–IV 35 52

x 6 18

T classification < 0.01

  T1–2 61 210

  T3–4 35 56

  Tx 0 3

N classification 0.30

  N0 66 182

  N1 2 2

  Nx 28 85

M classification 0.12

  M0 69 194

  M1 2 1

  Mx 25 74

Cirrhosis status 0.74

  No cirrhosis 16 61

  Cirrhosis 30 102

  Unknown 50 106

Recurrence status 0.38

  No recurrence 35 117

  Recurrence 43 114

  Unknown 18 38

Hepatitis status 0.81

  Hepatitis B 21 67

  Hepatitis C 11 32

  No hepatitis 64 170
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and not their specific expression values, this approach is 
different from traditional prediction models. The advan-
tage is that the model can be verified between different 
batches of sequencing data without having to consider 

the error caused by batch correction. After constructing 
the model, we first tested the model’s ability to predict 
early survival. The results showed that the 2-year predic-
tive value was the highest (AUC = 0.734), and that it was 

Fig. 4  External validation of the risk predictive model in the ICGC and GSE14520. A, B The time-dependent ROC analysis and Kaplan-Meier 
survival analysis for predicting the overall survival of patients using the risk score in the ICGC cohort. C, D The time-dependent ROC analysis and 
Kaplan-Meier survival analysis for predicting the overall survival of patients using the risk score in the GSE14520. E Distribution of the risk score. F 
Survival status of patients
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significantly higher than that of clinical characteristics 
such as tumor stage and pathological grade. Therefore, 
we calculated the optimal cutoff value for 2-year sur-
vival prediction. After dividing all patients into high and 
low-risk groups with the optimal cutoff value, the evalu-
ation results of clinical characteristics presented that the 
patients in the high-risk group had worse OS rate, larger 
tumor size, and higher tumor stage. To evaluate the prac-
ticability of this prediction model, we selected the ICGC 
and GSE14520 cohort for external validations because 
they had large sample size and complete corresponding 
clinical data. As we expected, similar prediction effects 
were obtained for both ICGC and GSE14520, which 
showed that our model was reliable.

When screening the mRNAs for constructing the 
model, we extracted immune-related mRNAs from the 
immune database. These mRNAs are involved in encod-
ing cytokines and their receptors, immune checkpoints, 
and other protein molecules involved in cellular immu-
nity. The different expression of these immune-related 

proteins in HCC patients will change the level of immune 
cell infiltration in the tumor microenvironment, lead-
ing to differences in the effectiveness of immunotherapy 
between different individuals. The six immune-related 
mRNAs involved in the model construction have been 
reported to participate in the immune regulation and 
progress of malignant tumors. Collectin subfamily mem-
ber 10 (COLEC10) encodes for collectin liver 1 (CL-L1) 
[19]. Recent studies reported that the low expression 
level of COLEC10 may predict poor OS in patients with 
HCC [20], and knock-down expression level of COLEC10 
can promote liver tumor cells’ proliferation, migration 
and invasion in vitro [21]. COLEC10 is a protective factor 
in the model, and patients with higher expression levels 
of COLEC10 than MMP12 can have a better prognosis 
and first-line treatment options. Human matrix metal-
lopeptidase 12 (MMP12) was first identified in human 
alveolar macrophages [22]. A high expression level of 
MMP12 in HCC can promote tumor FOXP3+ regulatory 
T cell infiltration and contribute to a poor prognosis [23]. 

Table 2  The chi-square test of the relation between risk score and clinical features in ICGC and GSE14520 cohort

The cases with “Gx” and stage “x” were excluded from the chi-square test

Clinical features ICGC, n = 231 GSE14520, n = 242

High risk Low risk P High risk Low risk P

Survival status 0.04 0.04

  Survived 43 146 12 134

  Died 16 26 16 80

Age 0.63 0.17

  ≥ 60 years 49 138 3 47

  < 60 years 10 34 25 167

Sex 0.84 0.12

  Male 44 126 27 184

  Female 15 46 1 30

Stage < 0.001 0.08

  I–II 25 116 18 156

  III–IV 34 56 10 41

  x 0 0 0 17

Histological grade < 0.01

  G1–2 30 128

  G3–4 21 33

  Gx 8 11

Cirrhosis status 0.37

  No cirrhosis 1 18

  Cirrhosis 27 196

Recurrence status 0.19

  No recurrence 9 97

  Recurrence 19 117

Hepatitis status 0.23

  Hepatitis B 27 191

  No hepatitis 1 23
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Lymphatic spread is an important clinical determinant 
for the prognosis of HCC [24]. Tumors with high VEGFD 
expression showed increased microvessel density and 
an abundance of lymphatic vessels around and within 
the tumor [24]. Based on our analysis, a high expression 
of VEGFD is associated with a poor prognosis for HCC 
patients, which indicates that targeting VEGFD may be 
an alternative therapy for HCC. Progesterone-associated 
endometrial protein (PAEP), known as glycodelin, is a 
secreted immunosuppressive glycoprotein. One study 
showed that it can be a biomarker with an immune-
modulatory function because of its high association with 
OS, recurrence and metastasis rate in non-small cell 
lung cancer [25]. For chondroitin sulfate proteoglycan 
5 (CSPG5), one study mentions it could be served as a 
prognostic factor for breast cancer based on immunohis-
tochemical analysis [26]. Programmed cell death 1 (PD-1) 
has been proven to be a target in HCC in clinical trials. 
Nivolumab exhibits a high affinity and specific targeting 

to an epitope of PD-1 [27]. The risk assessment model in 
our study includes PD-1, which allows the model to more 
accurately identify patients who are sensitive to immuno-
therapy and evaluate patients’ immune cell infiltration.

MSI and TMB were treated as biomarkers to assess the 
efficacy of immunotherapy in human malignancies [28]. 
Patients with MSI-H or TMB-H were linked to poorer 
OS, but they had higher ORR than those with MSI-L or 
TMB-L with ICI therapy [29]. However, the subset of 
patients with high MSI or TMB has not been well char-
acterized in HCC patients [30]. In this study, we associ-
ated with survival outcomes, found the optimal cutoff of 
MSI and TMB, and achieved the greatest difference in 
the prognosis of subgroups. More interestingly, our risk 
score was positively associated with MSI, and negatively 
with TMB. This may indicate that MSI has a greater pre-
dictive power than TMB in HCC based on our model.

The expression of immune checkpoints, including 
PD-1, PD-L1, and CTLA-4, has been associated with 

Fig. 5  Relationship with MSI and TMB. A, B Kaplan-Meier survival analysis using the risk score combined with MSI or TMB. C, D Correlation analysis 
between the risk score and MSI or MTB
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tumor aggressiveness and poor prognosis [31, 32]. A high 
expression of PD-L1 has been correlated with the rate 
of response to PD-L1/PD-1 targeting therapies in most 
clinical trials [33], which indicated that PD-L1 can help 
to identify the type of patients that will benefit from ICI 
therapy. The risk score of our model is strongly associated 
with the expression of PD-L1 and CTLA-4. It seems that 
the high-risk group may have a better ORR compared to 
the low-risk group.

VEGFA plays a dominant role in regulating angiogene-
sis and disease, and high expression of VEGF is observed 
in the majority of human tumors and positively corre-
lated with aggressiveness, metastasis, recurrence, and 
prognosis [34]. It can bind to both VEGFR1 and VEGFR2, 
while VEGFR2 is the main signaling receptor for VEGFA 

[35]. Moreover, heparin-binding VEGFA and PlGF 
can bind to NRP-1 to increase their binding affinity to 
VEGFR2 [36]. In this study, we found the high-risk group 
presented a higher expression of VEGFA. Although the 
VEGFR2 expression was lower in the high-risk group, the 
regulators PlGF and NRP-1 were expressed higher in the 
high-risk group which can compensate for the binding 
affinity to VEGFR2. This indicates that our risk model has 
a high association with VEGFA and it may help to assess 
the sensitivity of anti-angiogenesis target therapy.

Compared with other published models which only 
accessed the HCC prognosis [37–41], our risk score 
model was focused on both the prognosis and the sensi-
tivity to the latest first-line therapy of HCC patients. And 
it showed a significant difference in both the prognosis 

Fig. 6  Assessment of immune infiltration, sensitivity of ICIs and target therapy. A Abundance of 22 different immune cells inferred by CIBERSORT for 
different risk groups. B Different expression of immune checkpoints (PD-L1 and CTLA-4) for different risk groups. C, D Different expression of VEGFA, 
VEGFB, PlGF, VEGFR1, VEGFR2, and NRP1 within low and high-risk groups. *p < 0.05; **p < 0.01; ***p < 0.001; ns: no significant
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and expressions of PD-L1 and VEGFA between high and 
low risk score groups. It only based on 3 IRG Pairs and 
attained a similar AUC value as the other prognostic 
model with 10 immune-related genes [42] and showed 
good quality of applicability and stability in both ICGC 
and GSE14520. Furthermore, it is worth pointing out that 
the predicting power of our model is better than that of 
other reported models using 6 genes [43] or 11 immune-
related genes [44] (Supplementary Table 1).

This study has several limitations. First, the AUC of OS 
was not higher than that of other published models [37–
41]. When screening the immune gene pairs to construct 
the model that satisfies both prognosis and significant 
different expressions of PD-L1 and VEGFA between high 
and low risk score groups, only these 3 immune-related 
gene pairs were selected. Generally speaking, a model 
with more genes and gene pairs will attain a higher AUC 
of OS. Second, our model did not include some earlier 
reported HCC prognosis genes [15–18]. Our prediction 
model only included 3 immune-related gene pairs with 6 
genes to assess both the prognosis and treatment sensi-
tivity to immune and targeted therapy of HCC patients, 
and it was hard to include all genes reported. Actually, 
it contained 4 genes which were associated with the 
prognosis of HCC [20, 23, 24, 27] and 2 genes which 
have been proved to be related to the prognosis of other 
tumors [25, 26]. Third, we only used public datasets to 
construct the model and external validation, the practi-
cality should be identified and the detailed relationship 
should be confirmed by further experiments.

Conclusions
Here, we constructed a risk assessment model using 3 
immune-related gene pairs that is helpful for assessing 
the survival, immune characteristics, and therapeutic 
sensitivity of HCC patients.
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