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Abstract 

Background:  Transforming growth factor (TGF)-β signaling functions importantly in regulating tumor microenviron‑
ment (TME). This study developed a prognostic gene signature based on TGF-β signaling-related genes for predicting 
clinical outcome of patients with lung adenocarcinoma (LUAD).

Methods:  TGF-β signaling-related genes came from The Molecular Signature Database (MSigDB). LUAD prognosis-
related genes were screened from all the genes involved in TGF-β signaling using least absolute shrinkage and 
selection operator (LASSO) Cox regression analysis and then used to establish a risk score model for LUAD. ESTIMATE 
and CIBERSORT analyzed infiltration of immune cells in TME. Immunotherapy response was analyzed by the TIDE 
algorithm.

Results:  A LUAD prognostic 5-gene signature was developed based on 54 TGF-β signaling-related genes. Progno‑
sis of high-risk patients was significantly worse than low-risk patients. Both internal validation and external dataset 
validation confirmed a high precision of the risk model in predicting the clinical outcomes of LUAD patients. Multivari‑
ate Cox analysis demonstrated the model independence in OS prediction of LUAD. The risk model was significantly 
related to the infiltration of 9 kinds of immune cells, matrix, and immune components in TME. Low-risk patients 
tended to respond more actively to anti-PD-1 treatment, while high-risk patients were more sensitive to chemother‑
apy and targeted therapy.

Conclusions:  The 5-gene signature based on TGF-β signaling-related genes showed potential for LUAD 
management.

Keywords:  TGF-β signaling, Lung adenocarcinoma, Risk model, Prognosis, Tumor microenvironment, 
Immunotherapy
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Background
Lung cancer is the second most commonly diagnosed 
cancer and a leading cause of cancer death in 2020, 
accounting for approximately 11.4 and 18.0% of all 
cancer cases and cancer of the year [1]. Lung adeno-
carcinoma refers to a type of lung cancer resulted from 
epithelial cells of glands or adenoid structures and is 
the most frequently diagnosed subtype in patients who 
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do not have a smoking habit [2]. Though LUAD treat-
ment has been greatly improved, its 5-year survival rate 
is approximately 15% [3]. Some studies have shown that 
biomarker-driven treatment can improve the survival 
rate of patients with advanced and metastatic LUAD 
[5–7]. Earlier, Zhang et  al. [8] found that the high 
expression of CCT6A is related to the poor prognosis of 
non-small cell lung cancer (LUSC). Li et al. [9] reported 
that moesin can be used as a prognostic marker of lung 
adenocarcinoma, and it improves patients’ progno-
sis by enhancing immune lymphocyte infiltration. Cai 
et  al. [10] identified TCN1 as a prognostic and diag-
nostic biomarker for lung adenocarcinoma by using a 
variety of bioinformatics methods. Similarly, Wu et al. 
[11] identified DPYSL2 as a diagnostic and prognos-
tic potential in LUAD and an immunotherapeutic tar-
get based on a variety of public databases and verified 
that it is effective to screen biomarkers of single gene 
of lung adenocarcinoma by using public database data. 
In addition, a multi-gene joint model has also achieved 
great success. Jia et al. [12] used m6A-related gene set 
to determine 3-gene signature using various bioinfor-
matics methods to evaluate the prognosis and immune 
response of LUSC. Xu et al. [13] applied protein inter-
action network mining to identify seven key genes in 
LUAD and validated that the high expression of these 
genes is related to adverse prognosis and may improve 
the response to immunotherapy. Peng et  al. [14] inte-
grated gene expression and mutation characteristics 
and developed a 14-gene prognostic model to evaluate 
tumor progression in LUAD. Although there have been 
a large number of biomarkers, they are rarely used in 
clinic practice, which suggests that effective biomark-
ers need to be further verified to better guide the treat-
ment of LUAD.

The transforming growth factor (TGF)-β signal-
ing pathway plays a dual role in tumorigenesis. In 
early cancer cells, the TGF-β signaling pathway could 
inhibit tumor growth and promote cell cycle arrest and 
apoptosis. However, its activation in advanced cancer 
stimulates tumorigenesis, facilitating cancer cell escape 
from immune surveillance and inducing metastasis and 
chemical resistance [15]. TGF-β signaling inhibition is 
an emerging strategy in cancer therapy, several small 
and large molecule compounds have been developed to 
inhibit TGF-β signaling [16]. For example, TGF-β anti-
bodies, antisense oligonucleotides, and small molecules 
inhibitors of TGF-β receptor-1 (TGF-βR1) have shown 
great potential in inhibiting TGF-β signaling [17, 18]. 
Recent development of the TGF-β signaling path-
way with related gene expression prognostic tools and 
response biomarkers may provide alternative means 
to select patients suitable for receiving the anti-TGF-β 

intervention [19]. However, at present, the develop-
ment of effective TGF-β signaling inhibitors faces many 
clinical challenges, especially deciding the timing of 
treatment and selecting effective biomarkers for patient 
selection [20].

In the precision oncology era, new predictive tools 
have been developed to study tumor progression at a 
molecular level, providing new possibilities for the 
development of diagnosis, prognosis, and targeted 
therapy for cancer management [21]. In this study, 54 
TGF-β signaling-related genes were identified, and a 
prognostic model based on TGF-β signaling-related 
genes was established and verified in 6 independ-
ent meta-cohorts. This study established a prognostic 
model and applied it to analyze the immune cell infil-
tration and response of LUAD patients with different 
risks to immunotherapy, chemotherapy, and targeted 
therapy. In clinical practice, the prognostic model will 
help to distinguish LUAD patients who could benefit 
from receiving TGF-β signaling inhibition treatment.

Methods
Acquisition of public data and processing
RNA-seq and corresponding clinical data of LUAD sam-
ples, including age, gender, T stage, N stage, M stage, 
AJCC stage, OS, and smoking history, were downloaded 
from TCGA (https://​tcga-​data.​nci.​nih.​gov/​tcga/). Tran-
scriptome profiling data of LUAD patients in independ-
ent Meta-Cohorts (GSE31210, GSE30219, GSE50081, 
GSE13213, GSE19188, GSE41271) were downloaded 
from Gene Expression Omnibus (GEO) database. 
Patients’ clinical data are listed in Table 1. Supplementary 
Fig. 1 shows the workflow of this study.

Identification of TGF‑β signaling‑related genes
The TGF-β signaling-related data set was retrieved from 
MSigDB (https://​www.​gsea-​msigdb.​org/​gsea/​msigdb/​index.​
jsp) [22], and 54 TGF-β signaling-related genes were identi-
fied and collated.

Prognostic gene signature construction
Univariate Cox analysis was employed to identify genes 
affecting OS of patients with LUAD from 54 TGF-β 
signaling-related genes. After that, the prognostic 
genes were further identified by LASSO and multi-
variate Cox regression to establish a prediction model. 
Patients in TCGA and GEO were grouped into low-risk 
and high-risk groups according to the risk score. The 
survival status plot, risk heatmap, and Kaplan–Meier 
curve were employed to compare the survival differ-
ence between the two groups. The receiver operating 

https://tcga-data.nci.nih.gov/tcga/
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characteristic curve (ROC) was used to evaluate the 
accuracy and specificity of the model.

Independent prognostic value analysis
Univariate Cox analysis was applied to analyze the 
prediction of the risk model and clinical parameters 
such as age, gender, T stage, N stage, M stage, and 

AJCC stage. To determine whether the risk model was 
affected by other clinical factors, multivariate Cox 
regression survival analysis was employed.

GO and KEGG analyses for risk score‑related genes
Genes showing a significant negative correlation with 
risk score were identified by cut-off criteria of Pearson | 

Table 1  Clinical characteristics of patients in training and validation sets

Annotation: Lifelong non-smoker (less than 100 cigarettes smoked in lifetime) = 1; current smoker (includes daily smokers and non-daily smokers or occasional 
smokers) = 2; current reformed smoker for > 15 years (greater than 15 years) = 3; current reformed smoker for ≤ 15 years (less than or equal to 15 years) = 4; current 
reformed smoker, duration not specified = 5; smoking history not documented = 7

Clinical features TCGA-LUAD GSE31210 GSE30219 GSE50081 GSE13213 GSE19188 GSE41271

OS
  0 318 191 40 76 68 16 112

  1 182 35 43 51 49 24 70

T stage
  T1 167 69 43

  T2 267 12 82

  T3 45 2 2

  T4 18

  TX 3

N stage
  N0 324 80 94

  N1 94 3 33

  N2 69

  N3 2

  NX 11

M stage
  M0 332 83 127

  M1 24

  MX 144

Stage
  I 268 168 92 79 101

  II 119 58 35 13 28

  III 80 25 49

  IV 25 4

  X 8

Gender
  Male 230 121 65 60 25 92

  Female 270 105 18 57 15 90

Age
   ≤ 65 237 176 60 40 78

   > 65 253 50 23 87 39

  NA 10

Smoking
  1 71

  2 119

  3 129

  4 163

  5 4

  7 14
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R |> 0.4 and P < 0.05 and then analyzed with GO [23] and 
KEGG [24] using the R package “clusterProfiler” [25].

Comparison of immune‑related characteristics 
between high‑ and low‑risk score
ESTIMATE was used to calculate immune score and 
stromal score to determine the ratio of immune com-
ponents to matrix components in TME. In addition, 
the infiltration score of immune cells in TME of the 
high-risk group and low-risk group was calculated by 
CIBERSORT [26].

Prediction of immune/chemotherapy response
Immunotherapy and chemotherapy responses of LUAD 
cases were assessed by the Genomics of Drug Sensitivity 
in Cancer (GDSC) [27]. The Tumor Immune Dysfunction 
and Exclusion (TIDE) algorithm was employed to assess 
the response of each LUAD sample to immunotherapy. 
Unsupervised subclass mapping method SubMap [28] 
was used to evaluate the correspondence or similarity 
between risk groups in the TCGA dataset and patients 
receiving immunotherapy in the GSE78220 dataset. The 
diversity of chemosensitivity between high- and low-risk 
scores was analyzed by the Wilcoxon test.

Statistical analysis
Statistical analyses were performed in R software (version 
3.6.3). Chi-squared tests and Fischer’s exact tests were 
conducted for comparing inter-group discrete variables. 
Continuous variables within the two groups were com-
pared using the Wilcoxon test. A comparison of more 
than two groups of continuous variables was performed 
using the Kruskal–Wallis test. Bilateral P < 0.05 was seen 
as statistically significant.

Results
Establishment of a prognostic gene signature with TGF‑β 
signaling‑related genes for LUAD patients
The univariate Cox regression OS analysis showed that 
13 TGF-β signaling-related genes were closely associ-
ated with the OS of LUAD patients (Supplementary 
Table S1). Eight genes were screened by LASSO and 
multivariate Cox regression and used to develop risk 
score signature (Fig.  1A, B). To reduce unnecessary 
component genes in the model, the stepAIC method 
was used to optimize the model. The risk score formula 
of LUAD patients was obtained: risk score = 0.126*PM
EPA1 + 0.294*TGIF1 + 0.184*FURIN + 0.162*BCAR3 
+ 0.187*KLF10. The TCGA samples were arranged in 
ascending order according to the value of the risk score. 
We analyzed the survival times of samples in the high- 
and low-risk groups and found that the mean survival 

probability for patients with high-risk scores was lower 
than that for those with low-risk scores. The expres-
sion profiles of the five genes were shown in a heatmap, 
which revealed that the expression of the five genes was 
upregulated with the increase of risk score (Fig. 1C). In 
addition, we also compared the expression differences 
of these five genes in cancer and adjacent tumors. It 
can be observed that except BCAR3, PMEPA1, TGIF1, 
FURIN, and KLF10 were significantly overexpressed in 
tumor samples (Supplementary Fig. 2A). Survival anal-
ysis showed that the samples with a high expression 
of these genes had a poor prognosis (Supplementary 
Fig. 2B-F).

Validation of the risk score signature
Survival analysis on the training set (TCGA-LUAD 
cohort) and external validation sets (GSE31210, 
GSE30219, GSE50081, GSE13213, GSE19188, and 
GSE41271 cohort) revealed that higher risk scores were 
closely linked to worse prognosis (Fig. 2A–G). The AUCs 
of the risk model for predicting 1-, 3-, and 5-year OS 
were 0.71, 0.67, and 0.62 in the training set, respectively 
(Fig.  2H). The AUCs of ROC curves in the validation 
sets were 0.76, 0.79, 0.8, 0.74, 0.66, and 0.71 for predict-
ing 1-year OS, respectively. The AUCs of the ROC curves 
for 5-year OS in the validation sets were 0.61, 0.69, 0.66, 
0.66, 0.59, and 0.62, respectively (Fig.  2I–N). Subse-
quently, univariate Cox analysis further confirmed the 
correlation between each cohort and LUAD prognosis 
(Fig. 2O). Overall, the results indicated the effectiveness 
of the prediction model.

Association between the risk score and clinical 
characteristics
We explored the risk scores in different subgroups 
stratified by age, gender, T stage, N stage, M stage, 
AJCC stage, and smoking history, respectively, and 
found that risk scores were not significantly linked to 
age, gender, M stage, or smoking, but were significantly 
related to T stage, N stage, and AJCC stage. Moreover, 
patients with advanced LUAD had noticeably higher 
risk scores than those with early LUAD (Fig.  3A). To 
better assess the prognostic ability of the risk model, 
we conducted a stratified OS analysis based on clinical 
risk factors. The model performed well in stratifying 
age > 65 and ≤ 65, male and female, T1–T2 and T3–4, 
N0 and N1–N3, M0, and AJCC stages I–II and III–IV 
(Fig.  3B). Furthermore, univariate and multivariate 
Cox regression analyses revealed that the N stage and 
the current model were independent predictors for 
LUAD prognosis (Fig. 4A, B). Taken together, the risk 
model established in this study had a high precision 
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in predicting the OS of LUAD patients with different 
clinical characteristics.

Identification and functional annotation of risk 
score‑related genes
A total of 299 genes with a significant negative correla-
tion with risk score were identified by Pearson correla-
tion analysis (Supplementary Table S2), and the heatmap 
of their expression is shown in Fig. 5A. To detect signal 
pathways of risk score-related genes, GO and KEGG 
enrichment analysis was carried out. In biological pro-
cess (BP), enriched pathways such as endodermal cell 
differentiation, endoderm formation, and endoderm 

development were closely related to tissue development. 
The results showed that cellular component (CC) and 
molecular function (MF) of the risk score-related genes 
were involved in cancer cell migration (Fig. 5B). Moreo-
ver, KEGG enrichment analysis demonstrated that 299 
genes were closely associated with ECM − receptor inter-
action, small cell lung cancer, and leukocyte transen-
dothelial migration and so on (Fig. 5C).

Immune cell infiltration and inflammation between high‑ 
and low‑risk score
To determine the difference of TME status between 
the high-risk group and low-risk group, ESTIMATE 

Fig. 1  Establishment of a prognostic gene signature for LUAD patients based on TGF-β signaling-related genes. A LASSO Cox regression was 
applied to screen the optimal parameter with cross-validation. B The coefficients for each gene during the training process. C The risk score of each 
LUAD patient in TCGA was ranked in ascending order, survival status, and heat map of 5 TGF-β signaling-related gene expression profiles
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analysis was carried out. The stromal score of the high-
risk group was higher than that of the low-risk group 
(Fig.  6A). The low-risk score group showed a higher 
immune score (Fig.  6B), and there was no prominent 
diversity in ESTIMATE score between the two groups 
(Fig.  6C). Furthermore, in TME, 9 out of 22 immune 

cells, including memory B cells, regulatory T cells, 
gamma delta T cells, resting memory CD4 T cells, acti-
vated memory CD4 T cells, monocytes, macrophages 
M0, resting dendritic cells, and activated dendritic cells, 
showed significantly different infiltration ratios between 
high- and low-risk groups. Among these 9 kinds of 

Fig. 2  Verification of the effectiveness of the prediction model. Kaplan–Meier survival curve of different cohorts, including training set (A), 
GSE31210 (B), GSE30219 (C), GSE50081 (D), GSE13213 (E), GSE19188 (F), and GSE41271 (G) cohorts. Kaplan–Meier curve between high- and low-risk 
groups in TCGA-LUAD (H), GSE31210 (I), GSE30219 (J), GSE50081 (K), GSE13213 (L), GSE19188 (M), and GSE41271 (N) cohorts. O Univariate Cox 
analysis was employed to evaluate the correlation between risk score and prognosis of LUAD in each cohort
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Fig. 3  Correlation between the risk score and clinical characteristics. A Relationship between risk score and age, gender, T stage, N stage, M stage, 
AJCC stage, and smoking history. B OS Kaplan–Meier curves for LUAD samples stratified by age, gender, T stage, N stage, M stage, and AJCC stage
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cells, resting memory CD4 T cells and macrophages M0 
accounted for the high proportion of TME in both high-
risk and low-risk groups (Fig. 6D). The infiltration score 
of activated memory CD4 T cells, macrophages M0, 
and activated dendritic cells was significantly higher in 
the high-risk group, but that of memory B cells, regula-
tory T cells, gamma delta T cells, resting memory CD4 
T cells, and monocytes and resting dendritic cells was 
significantly lower in the high-risk group than the low-
risk group (Fig.  6E). To investigate the characteristics 
of tumor inflammation associated with risk score, we 
used 7 metagenes, including 104 genes linked to differ-
ent types of inflammation and immune responses [29]. 
The heatmap presented the relationship between these 
genes and the risk score (Fig.  6F). The expression data 
of these metagenes were converted into enrichment 
scores by GSVA, and correlograms were generated 
based on comparisons between the risk score and the 7 
metagenes. The results showed that risk score was nega-
tively associated with MHC II, LCK, IgG, and HCK, 
which also scored higher in the low-risk score group 
(Fig. 6G, H).

Prediction of response to immunotherapy, chemotherapy, 
and targeted therapy based on the risk model
We also explored the risk score in predicting the outcome 
of patients receiving immunotherapy, chemotherapy, and 
targeted therapy. Firstly, the TIDE algorithm was used 
to estimate the response of each risk group to immuno-
therapy. The low-risk group showed lower TIDE score 
and T cell exclusion score and higher T cell dysfunction 
score when compared with the high-risk group, suggest-
ing that the immunotherapy response of low-risk patients 
may be more active (Fig. 7A–C). Submap analysis results 
indicated that the low-risk in melanoma patients from 
GSE78220 had a greater tendency to respond to anti-
PD-1 treatment (Fig.  7D). At present, targeted therapy 
and chemotherapy are still the main treatment options 
for treating LUAD [30]; we therefore evaluated the sensi-
tivity of the two risk groups to chemotherapeutic agents 
(cisplatin and paclitaxel) and targeted agents (erlotinib, 
sorafenib, and crizotinib). A comparison of the estimated 
IC50 values of each sample demonstrated that patients 
in the high-risk group were more sensitive to cisplatin, 
paclitaxel, erlotinib, sorafenib, and crizotinib (Fig. 7E–I). 

Fig. 4  Recognition of independent prognostic factors. A Univariate Cox regression analysis on patients’ OS in the TCGA-LUAD cohort. B 
Multivariable Cox regression to analyze the correlation between risk score and clinical characteristics
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Fig. 5  Identification and functional annotation of risk score-related genes. A Heat map showed the expression of risk score-related genes. B The 
bubble chart showed the result of the GO analysis of risk score-related genes. C KEGG enrichment analysis of ARGs. Top 10 significant KEGG signal 
pathways of risk score-related genes



Page 10 of 14Yu et al. World Journal of Surgical Oncology          (2022) 20:183 

Hence, the risk score model can be used to predict the 
response of patients with LUAD to immunotherapy, 
chemotherapy, and targeted therapy.

Discussion
The treatment of LUAD patients is mainly based on 
clinical indicators such as the TNM stage. However, 
increasing available treatment options also makes it dif-
ficult to decide on treatment plans [31]. In recent years, 
bioinformatics analysis using microarray technology 
has been proven to be an important tool in facilitating 
clinical decision-making [32]. Up to now, establishing 
and verifying predictive models allows studies to apply 
transcriptomic data and bioinformatics to improve the 
diagnosis, treatment, and prognosis of cancer [33–35]. 
It is reported that TGF-β signal transduction disorder 
is common in tumors and that inhibition of TGF-β sig-
nal is considered to be a prerequisite and a main way 
to improve the efficacy of immunotherapy, including in 
tumors with non-TGF-β-responsive cancer cells [36]. 
Accordingly, a comprehensive understanding of the 
expression profile of TGF-β signaling-related genes in 
LUAD may improve the diagnosis, treatment, and prog-
nosis of patients.

In view of the biological effects of TGF-β signaling 
in cancer, we selected TGF-β signaling-related genes 
expressed in LUAD and developed a prognostic score 
model on the basis of 5 TGF-β signaling-related genes. 
LUAD patients with high-risk scores had shorter OS 
times than patients with low-risk scores. The same 
result was also found in the external data, reflect-
ing the precision of the risk model in distinguishing 
LUAD with different prognoses. In addition, stratified 
analysis and multivariate Cox analysis confirmed that 
the risk score model also had a strong and independ-
ent predictive capacity when LUAD patients were re-
grouped according to different clinicopathological 
characteristics.

It should be noted that most of the genes in the 
risk model have been identified to be associated with 
TGF-β signaling and are involved in regulating can-
cer progression. PMEPA1 is a direct target gene for 
TGF-β signaling and controls the duration and inten-
sity of TGF-β/Smad signal transduction via a nega-
tive feedback loop [37]. It is reported that TMEPAI is 

high-expressed in many types of cancers except pros-
tate cancer and is concerned with a poor prognosis 
[38]. PMEPA1 promotes EMT-mediated metastasis 
by activating TGF-β non-classical signal cascades in 
colorectal cancer [39]. The TMEPAI expression in 
lung cancer is positively correlated with mesenchymal 
phenotype and migration potential [40]. We found 
that TMEPAI was a risk gene in LUAD, which was 
consistent with the previous conclusion. It has been 
revealed that TGIF1 is abnormally high-expressed in 
LUAD tissues, and this is closely related to a high pro-
liferative activity of tumor tissues and poor prognosis 
of patients with LUAD [41]. FURIN has been shown 
to be high-expressed in various cancer types, includ-
ing in lung cancer; moreover, the mRNA and protein 
levels of FURIN are associated with the invasiveness 
of lung cancer cell lines [42]. Furthermore, FURIN 
expression is a potential marker of lung cancer and 
therapeutic target [43, 44]. As a protective factor for 
multiple myeloma, high-expressed BCAR3 indicates a 
favorable prognosis [45]. However, in primary breast 
tumors, a relatively low level of BCAR3 expression is 
associated with poor distant metastasis-free survival 
and recurrence-free survival [46]. Similarly, our anal-
ysis showed that BCAR3 was a risk factor for LUAD. 
Previous studies of Vivek Kumar Mishra found that 
in non-small cell lung cancer, KLF10 suppresses 
TGF-β-induced EMT via a negative feedback mecha-
nism [47]. The above evidence suggested that all the 
five TGF-β signaling-related genes were associated 
with malignant processes of many kinds of cancers, 
including LUAD.

According to a previous report, TGF-β signaling regu-
lates inflammatory/immune cell infiltration in TME 
[48]. We found differences in TME status among LUAD 
patients with different risks not only in immune and 
matrix scores, but also in immune cell infiltration, which 
could further affect patients’ response to immune check-
point blocking therapy. Recent studies have indicated that 
TME regulates tumor response to immunotherapy [49]. 
We therefore predicted the response of LUAD patients 
with different risks to immunotherapy and observed that 
low-risk patients had a higher tendency to respond to 
anti-PD-1 treatment and were more sensitive to chemo-
therapy and targeted therapy.

(See figure on next page.)
Fig. 6  Immune cell infiltration and inflammation between high- and low-risk scores. A–C Stromal score, immune score, and ESTIMATE score 
between the high-risk score group and low-risk score group. D Boxplot showed the infiltration ratio of 9 immune cells in high- and low-risk groups. 
E Boxplot of infiltration scores of 9 kinds of immune cells in high- and low-risk groups. F Heat map displayed the relationship between risk score and 
7 metagenes. G Correlation matrix of risk score and the seven metagenes. H Boxplot of the correlation between risk score and 7 metagenes
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Fig. 6  (See legend on previous page.)
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Conclusions
This study developed a 5-gene signature on the basis of 
TGF-β signaling-related genes for predicting the prog-
nosis of LUAD. It was proven that the risk scoring model 
had a strong and independent prediction ability. The 
current risk model can characterize the TME and can be 

used to predict the response of LUAD patients to immu-
notherapy, chemotherapy, and targeted therapy. A larger 
sample size is needed to further study the risk prediction 
model to validate its use in the clinical management of 
LUAD.

Fig. 7  Predictive value of risk score for immunotherapy, chemotherapy, and targeted therapies. A Violin plots visualized the TIDE score between 
high- and low-risk groups. B Differences in T cell exclusion among patients with different risks. C Violin plots of the T cell dysfunction value for 
high- and low-risk groups. D Subclass mapping analyzed the response to anti-PD-1 treatment between high- and low-risk groups. Violin plots 
exhibited the diversity in estimated IC50 values of cisplatin (E), paclitaxel (F), erlotinib (G), sorafenib (H), and crizotinib (I) between high- and low-risk 
groups
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