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Abstract 

Background:  Liver cancer is one of the most common malignant tumors in the world. T cell-mediated antitumor 
immune response is the basis of liver cancer immunotherapy.

Objective:  To screen and analyze the RNAs associated with activated memory CD4 T cells and CD8 T cells in liver 
cancer.

Methods:  ESTIMATE was used to calculate the stromal and immune scores of tumor samples, which were down-
loaded from The Cancer Genome Atlas (TCGA). The differentially expressed genes (DEGs) in high and low stromal and 
immune scores were screened, followed by functional enrichment of overlapped DEGs. We then conducted a survival 
analysis to identify immune-related prognostic indicators and constructed protein-protein interaction (PPI) networks 
and ceRNA networks. Finally, chemical small-molecule–target interaction pairs associated with liver cancer were 
screened.

Results:  A total of 55,955 stromal-related DEGs and 1811 immune-related DEGs were obtained. The 1238 overlapped 
DEGs were enriched in 1457 biological process terms and 74 KEGG pathways. In addition, a total of 120 activated 
memory CD4 T cell-related genes and 309 CD8 T cell-related genes were identified. The survival analysis revealed that 
upregulated expression of T cell-related genes including EOMES, CST7, and CD5L indicated the favorable prognosis 
of liver cancer. EOMES was regulated by has-miR-23b-3p and has-miR-23b-3p was regulated by lncRNA AC104820.2 
in the ceRNA network of activated memory CD4 T cell-related genes. In addition, EOMES was regulated by has-miR-
23a-3p and has-miR-23a-3p was regulated by lncRNA AC000476.1 in the ceRNA network of CD8 T cells.

Conclusion:  T cell-related RNAs EOMES, CST7, CD5L, has-miR-23b-3p, and has-miR-23a-3p may be associated with 
the prognosis of liver cancer. And the molecular characteristics of these T cell-related genes were plotted.

Highlights 

A total of 309 CD8 T cell-related genes and 120 activated memory CD4 T cell-related genes were screened in liver 
cancer tumor samples.
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Introduction
Liver cancer is one of the ordinary malignant tumors, 
with high morbidity and mortality [1, 2]. Although the 
incidence of liver cancer has decreased, there are still 
approximately 840,000 new cases worldwide every year 
[3]. Surgical resection and liver transplantation are cur-
rently recognized as effective methods for the treatment 
of liver cancer; however, the 5-year survival rate is only 
approximately 50%, and the 5-year recurrence rate can 
reach 60~70% [4]. Epigenetic-related molecules (such as 
SNRPC) [5], non-coding RNA (such as hsa-mir-221) [6], 
and immune-related molecules (such as DCK) [7] could 
be used as potential biomarkers for diagnosis, treatment, 
and prognosis monitoring in liver cancer. Therefore, it 
is critically necessary to further explore the molecular 
pathogenesis of this disease by screening for new molec-
ular biomarkers that could enhance early diagnosis and 
improve current therapies for liver cancer.

According to the competing endogenous RNA (ceRNA) 
hypothesis, different RNA transcripts participate in path-
ological processes, primarily by competing for the bind-
ing sites of shared miRNAs. Li et al. have suggested that 
long noncoding RNA LINC01139 promotes the progres-
sion of liver cancer by upregulating MYBL2 via com-
petitively binding to members of the miR-30 family [8]. 
In addition, tumor infiltration of immune cells is closely 
related to the prognosis of tumors and the determina-
tion of immunotherapeutic targets [9]. Tumor immune 
escape is an important characteristic of tumor formation 
and is related to the decline of the T cell response-ability 
[10]. T cells are key mediators of tumor destruction and 
are critical to the specificity of tumor antigen expression 
[11]. Moreover, numerous studies have shown that the T 
cell-mediated antitumor immune response is the basis 
of tumor immunotherapy, which is associated with a 
favorable prognosis [12]. Parriott et al. found that T cells 
expressing the chimeric-PD1-Dap10-CD3zeta receptor 
can reduce the tumor burden in a variety of mouse solid 
cancer syngeneic models [13]. CD8+ T lymphocytes are 
essential factors affecting the efficacy of immunotherapy. 
Donghua et  al. identified CD8+ T cell co-expression 
genes (C1QC, CD3D, GZMA, and PSMB9 ) that pro-
moted infiltration of CD8+ T cells in liver cancer [14]. 
Immunotherapy is widely used to treat advanced cancer. 

However, immunotherapy has many limitations, such 
as low success rate, many complications, and rapid pro-
gression. Studies have shown that the low success rate of 
immunotherapy is related to less T lymphocyte infiltra-
tion. Analysis of infiltrating T cell related molecules may 
be helpful for immunotherapy.

However, there are few reports on the immune-related 
prognostic indicators of liver cancer. In this study, we 
aimed to analyze T cells related to tumor immunity and 
investigate RNAs associated with T cells in liver cancer 
to identify useful molecular markers related to the prog-
nosis of liver cancer. In the tumor microenvironment, 
immune cells and stromal cells are two main types of 
non-tumor components. They are of great significance 
for the diagnosis and prognosis evaluation. The immune 
and stroma scores which was based on the ESTIMATE 
algorithm are the quantification of the immune and 
stroma components in the tumor microenvironment. The 
differential genes were divided into upregulated group 
and downregulated group according to the intermediate 
value of quantitative scores. In order to find more rep-
resentative genes, common stroma and immune genes 
were screened in the upregulated group and downregu-
lated group, respectively. Then, we analyzed the molec-
ular mechanisms associated with T cells in liver cancer 
based on the representative genes.

Materials and methods
Data sources and data preprocessing
The RNA expression RNAseq sequencing data (Counts) 
and clinical data (phenotype) of LIHC (Version: 07-19-
2019) were downloaded from the TCGA database [15] 
(https://​xenab​rowser.​net/). Fragments Per Kilobase of 
exon model per Million mapped fragments (FPKM) was 
used to standardize the original data. The FPKM of a gene 
in sample was equal to the ratio of the total exon frag-
ments to the reading falling in the genome (map reading 
(Millions)) and the length of the gene (exon length (KB)). 
FPKM = Total exon fragments/(Mapped reads×Exon 
length). The RNA expression RNAseq sequencing data 
(FPKM) was also downloaded from the TCGA data-
base. A total of 58,387*369 Counts and FPKM represen-
tation matrices were obtained. The detection platform 

Forty-four chemical small-molecule–target interaction pairs associated with activated memory CD4 T cells and 276 
pairs associated with CD8 T cells were screened.

Upregulated expression of T cell-related genes including EOMES, CST7, and CD5L indicated the favorable prognosis of 
liver cancer.

Keywords:  Liver cancer, Differentially expressed analysis, Immune-related genes, T cells, Survival analysis, CeRNA 
network

https://xenabrowser.net/


Page 3 of 15Yan et al. World Journal of Surgical Oncology            (2022) 20:2 	

of sequencing data was the Illumina HiSeq 2 000 RNA 
Sequencing platform.

The RNA-Seq was annotated based on the annotation 
file of the Gencode database [16] (https://​www.​genco​
degen​es.​org/). Then, genes with “protein_coding” anno-
tations were extracted as mRNA. Meanwhile, RNAs 
with “TEC,” “known_ncrna,” “macro_lncRNA,” “bidi-
rectional_promoter_lncrna,” and “lncRNA” annotations 
were extracted as lncRNA, and other genes were defined 
as “undefined.” Then, the sequencing data log2 (count+1) 
values of Counts were restored to the count value. Reads 
and the sequencing data log2 (count+1) values of FPKM 
were restored to the fpkm value. In the expression profile 
analysis of the Ensembl_ID, the mapping probe was used 
to calculate the gene expression value (obtained from 
the annotation files of the chip platform and microar-
ray dataset) to Symbol_ID. The average value was taken 
as the level of Ensembl_ID expression when multiple 
probes matched one Symbol_ID. Lastly, 369 tumor sam-
ples, 60,483 ENSEMBLE IDs, and 58,387 RNA symbols 
were obtained in Table 1. The clinical information related 
to prognosis in TCGA was also collected in Table 1, con-
taining overall survival (OS) and OS status, and the life-
time was converted from days to months (days/30).

Immune score calculation
The stromal and immune scores of all tumor samples 
were calculated with the Estimation of STromal and 
Immune cells in MAlignant Tumor tissues using Expres-
sion data (ESTIMATE algorithm in R [17].

Differential expression analysis
The tumor samples were split into high- and low-
score groups based on the median value of stromal and 
immune scores of all tumor samples. The typical Bayes-
ian modified t test in limma package [18] (Version 
3.40.6) was applied to analyze differentially expressed 
RNA (DERNA) between high and low immune-score 
groups with a cutoff of |logFC| > 1 and P < 0.05. Lastly, 
the ggscatter function of the ggpubr package [19] in the R 
language (Version: 0.2.2) was used to draw a volcano plot 
of the DERNAs. The DEGs of stromal and immune-score 
groups were selected as the DEGs related to the immune 
microenvironment.

Enrichment analysis
Based on up- and downregulated DEGs, the cluster-
Profiler package [20] in R was used to perform Gene 
Ontology (GO) [21] and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [22] pathway enrichment analy-
sis with a cutoff of P < 0.05 and count ≥ 2.

Screening of T cell‑related genes
RNA-Seq expression profile data were used to target 
DEGs, and the abundance matrix of the immune cells 
of the samples was evaluated using the CIBERSORT 
deconvolution algorithm [23] to analyze the abundance 
of infiltration of 22 immune cells in tumor samples. 
The LM22 dataset provided by the Cibersort website 
was used as the RNA expression signature template 
following the analysis of the abundance of infiltration 
of immune cells, and parameters were set as perm = 
50 and QN = N. The landscape of the immune cells 
was then plotted using the ggplot2 package in R. The 
Pearson correlation coefficient between the expres-
sion value of the DEGs and the abundance of immune 
infiltration in activated memory CD4 T cells and CD8 
T cells was calculated, and the activated memory CD4 
T and CD8 T cell-related genes were corrected for BH 
with a threshold value of |r| > 0.3 and P < 0.05. Moreo-
ver, KEGG pathway analysis on T cell-related genes was 
carried out based on the carcinoma- and hepatocellu-
lar-related pathways in the Comparative Toxicogenom-
ics Database (CTD) [24] (http://​ctdba​se.​org/).

Survival analysis
Based on the median expression in T cell-related genes, 
samples were divided into high- and low-expression 
groups. The survival analysis was then carried out using 
a Kaplan-Meier plot. Finally, a log-rank statistical test 
was conducted with a significance threshold of P < 0.05.

PPI network analysis
The STRING database [25] was used to analyze the pro-
tein-protein interactions encoded by T cells. The PPI 
score was set as 0.7 (high-confidence value). Afterward, 
the PPI network of T cell-related genes was constructed 
using Cytoscape software [26].

Prediction of miRNA‑target interaction pairs
The miRNAs of the T cell-related genes were predicted 
using miRWalk 3.0 [27]. Then, the miRNA-target inter-
action pairs in the TargetScan [28], MiRDB [29], and 
MirTarBase [30] databases were also obtained using a 
threshold of score > 0.95. In addition, the HMDD V3.2 
database [31] was used to further validate and screen 

Table 1  The basic statistical information of tumor samples in the 
TCGA-LIHC dataset

TCGA-LIHC

Tumor 369

ENSEMBLE ID 60,483

RNA symbol 58,387

https://www.gencodegenes.org/
https://www.gencodegenes.org/
http://ctdbase.org/
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Fig. 1  Differentially expressed genes (DEGs) between the high and low stromal and immune score groups. Based on the median value of stromal 
and immune scores of all tumor samples, the tumor samples were divided into high- and low-score groups. The standard Bayesian modified t test 
in the limma package was applied to analyze differentially expressed RNAs (DERNA) between high and low immune-score groups with a cutoff 
of |logFC| > 1 and P < 0.05. According to the stromal score, there were 55,955 DEGs (2279 upregulated and 153 downregulated) were selected 
between high and low stromal-score groups. Meanwhile, 1811 DEGs (including 1744 upregulated and 67 downregulated) were selected according 
to the high and low immune-score groups. In addition, there were 1211 upregulated overlapped DEGs and 27 downregulated overlapped DEGs 
were selected in the stromal score and immune score groups. In the enrichment analysis of 1238 overlapped DEGs, the GO analysis showed that 
the 1238 DEGs were mainly enriched in 1457 GO-BPs and 74 KEGG pathways. A The DEGs between high and low stromal-score groups. B The DEGs 
between high and low immune-score groups. C The upregulated DEGs in the stromal score and immune score groups. D: The downregulated DEGs 
in the stromal score and immune score groups. E The GO analysis of all overlapped DEGs. F The KEGG pathways analysis of all overlapped DEGs. Red 
nodes represent upregulated DEGs and blue nodes represent downregulated DEGs. The size of the ball represents the number of genes enriched in 
each term. The color of the ball represents the value of the P value. DEGs: differentially expressed genes; GO, Gene Ontology; BP, biological process; 
KEGG, Kyoto Encyclopedia of Genes and Genomes
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the predicted miRNA with the keywords “Carcinoma, 
Hepatocellular”.

Construction of the ceRNA network
The lncRNAs-miRNAs relationship between T cell-
related genes was predicted using the DIANA-LncBase 
database [32]. Finally, the T cell-related gene lncRNA-
miRNA-mRNA network was constructed using 
Cytoscape software.

Chemical small‑molecule–target network analysis
To search for liver cancer-related genes and chemicals, 
the Comparative Toxicogenomics Database (http://​ctd.​
mdibl.​org/) was searched using “Carcinoma, Hepato-
cellular” as keywords. Genes that were both associated 
with liver cancer and belonged to the T cell-related genes 
ceRNA network were used to screen chemical-target 
pairs. The T cell-related genes chemical small-molecule–
target network was obtained utilizing the Cytoscape 
software.

Results
The DEGs between the high and low stromal and immune 
score groups
The aim was to screen immune-related differential 
genes in liver cancer. In total, 10,221 genes from the 

TCGA-LIHC dataset were matched by the ESTIMATE 
algorithm, and the number of unmatched genes was 191. 
There were 1811 DEGs (of which 1744 and 67 were up- 
and downregulated, respectively) were selected accord-
ing to the high and low immune score groups (Fig.  1A 
and Supplementary file 1). Meanwhile, a total of 55,955 
DEGs (of which 2279 and 153 were up- and downregu-
lated, respectively) were selected between high and low 
stromal score groups (Fig. 1B and Supplementary file 2). 
In addition, 1211 overlapped upregulated DEGs and 27 
overlapped downregulated DEGs were selected in the 
stromal score and immune score groups (Fig.  1C, D). 
The names of DEGs are shown in Supplementary file 3. 
In the enrichment analysis of 1238 overlapped DEGs, the 
GO analysis showed that the 1238 DEGs were mainly 
enriched in 1457 GO-biological processes (BPs; e.g., reg-
ulation of lymphocyte activation, leukocyte migration, 
and lymphocyte differentiation) and 74 KEGG pathways 
[e.g., cell-adhesion molecules (CAMs)] (Fig. 1E, F).

Identification of T cell‑related genes
T cells played an important role in liver cancer occur-
rence and development. The aim was to further ana-
lyze T cell-related genes in liver cancer. The abundance 
of immune-cell infiltration in tumor samples was esti-
mated and the immune-cell landscape was shown in 

Fig. 2  The landscape of the immune cells. To analyze the abundance of infiltration of the immune cells in the samples, RNA-Seq expression profile 
data were used to target DEGs, and the abundance matrix of the immune cells was evaluated through the CIBERSORT deconvolution algorithm. 
Finally, the abundance of infiltration of immune cells (including naïve B cells, memory B cells, CD8 T cells, activated memory CD4T cells, M0 
macrophages, M1 macrophages, M2 macrophages, activated dendritic cells, and neutrophils) was determined

http://ctd.mdibl.org/
http://ctd.mdibl.org/
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Fig.  2. Meanwhile, according to the Pearson correlation 
coefficient, a total of 120 activated memory CD4 T cell-
related genes (Supplementary file 4) and 309 CD8 T cell-
related genes were identified (Supplementary file 5). In 
the enrichment analysis of activated memory CD4 T cells 
and CD8 T cell-related genes, activated memory CD4 T 
cell-related genes were enriched in 406 GO-BPs and 35 
KEGG pathways [e.g., CAMs, Th1 and Th2 cell differen-
tiation, and Hematopoietic cell lineage], the Top 8 GO 
terms and Top 10 KEGG pathways were shown in Fig. 3A 

and B, respectively. In addition, CD8 T cell-related genes 
were involved in 596 GO-BPs and 42 KEGG pathways 
[e.g., Th17 cell differentiation, Th1 and Th2 cell differ-
entiation, and CAMs], the Top 8 GO terms and Top 10 
KEGG pathways were shown in Fig.  3C and D, respec-
tively. In addition, based on the CTD database, activated 
memory CD4 T cell-related genes were involved in 31 
liver cancer-related pathways [e.g., CAMs, Th1 and Th2 
cell differentiation, hematopoietic cell lineage] (Table 2), 
and CD8 T cell-related genes were involved in 36 liver 

A B

C D

Fig. 3  Enrichment analysis of activated memory CD4 T cells and CD8 T cell-related genes. The clusterProfiler package in R was used to perform 
GO and KEGG pathway enrichment analysis with a cutoff of P < 0.05 and count ≥ 2. In the enrichment analysis of activated memory CD4 T cells 
and CD8 T cell-related genes, activated memory CD4 T cell-related genes were enriched in 406 GO-BPs (e.g., regulation of lymphocyte activation, 
regulation of T cell activation, and regulation of cell-cell adhesion) and 35 KEGG pathways [e.g., CAMs, Th1 and Th2 cell differentiation and 
Hematopoietic cell lineage]. In addition, CD8 T cell-related genes were involved in 596 GO-BPs (e.g., regulation of lymphocyte activation, regulation 
of T cell activation, and regulation of cell-cell adhesion) and 42 KEGG pathways [e.g., Th17 cell differentiation, Th1 and Th2 cell differentiation, and 
CAMs]. A The GO analysis of activated memory CD4 T cell-related genes. B The GO analysis of CD8 T cell-related genes. C The KEGG pathways 
analysis activated memory CD4 T cell-related genes. D The KEGG pathways analysis CD8 T cell-related genes. The size of the ball represents the 
number of genes enriched in each term. The color of the ball represents the value of the P value. GO, Gene Ontology; BP, biological process; KEGG, 
Kyoto Encyclopedia of Genes and Genomes
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Table 2  The KEGG pathway analysis of activated memory CD4 T cells and CD8 T cell-related genes in the Comparative 
Toxicogenomics Database. The KEGG pathway analysis of activated memory CD4 T cell-related genes

ID Description p value p.adjust q value Count gene_symbol

hsa04514 Cell adhesion molecules (CAMs) 1.98E-10 1.98E-10 8.55E-09 11 CTLA4/CD8A/CD8B/TIGIT/HLA-DRB1/ICOS/CD86/HLA-
DPB1/HLA-DQA1/HLA-DRA/HLA-DPA1

hsa04658 Th1 and Th2 cell differentiation 9.90E-10 9.90E-10 2.14E-08 9 IL12RB1/TBX21/HLA-DRB1/CD3D/HLA-DPB1/HLA-DQA1/
HLA-DRA/HLA-DPA1/LCK

hsa04640 Hematopoietic cell lineage 1.92E-09 1.92E-09 2.76E-08 9 CD8A/CD8B/HLA-DRB1/CD3D/HLA-DPB1/HLA-DQA1/
HLA-DRA/FCGR1A/HLA-DPA1

hsa04659 Th17 cell differentiation 3.86E-09 3.86E-09 4.16E-08 9 IL12RB1/TBX21/HLA-DRB1/CD3D/HLA-DPB1/HLA-DQA1/
HLA-DRA/HLA-DPA1/LCK

hsa04060 Cytokine-cytokine receptor interaction 2.07E-05 2.07E-05 3.58E-05 9 CXCL9/CCL4/CCL5/IL12RB1/CD27/CXCR6/CXCL13/
CXCR3/CCR5

hsa04612 Antigen processing and presentation 6.37E-09 6.37E-09 4.58E-08 8 CD8A/CD8B/CD74/HLA-DRB1/HLA-DPB1/HLA-DQA1/
HLA-DRA/HLA-DPA1

hsa05323 Rheumatoid arthritis 2.61E-08 2.61E-08 1.41E-07 8 CTLA4/CCL5/HLA-DRB1/CD86/HLA-DPB1/HLA-DQA1/
HLA-DRA/HLA-DPA1

hsa05322 Systemic lupus erythematosus 4.29E-07 4.29E-07 1.23E-06 8 HLA-DRB1/CD86/HLA-DPB1/FCGR3A/HLA-DQA1/HLA-
DRA/FCGR1A/HLA-DPA1

hsa04145 Phagosome 1.19E-06 1.19E-06 2.70E-06 8 HLA-DRB1/HLA-DPB1/FCGR3A/HLA-DQA1/OLR1/HLA-
DRA/FCGR1A/HLA-DPA1

hsa05152 Tuberculosis 4.24E-06 4.24E-06 8.72E-06 8 CD74/HLA-DRB1/HLA-DPB1/FCGR3A/HLA-DQA1/HLA-
DRA/FCGR1A/HLA-DPA1

hsa04062 Chemokine signaling pathway 6.10E-06 6.10E-06 1.14E-05 8 CXCL9/CCL4/CCL5/CXCR6/CXCL13/CXCR3/CCR5/GNGT2

hsa04672 Intestinal immune network for IgA production 5.76E-09 5.76E-09 4.58E-08 7 HLA-DRB1/ICOS/CD86/HLA-DPB1/HLA-DQA1/HLA-DRA/
HLA-DPA1

hsa05320 Autoimmune thyroid disease 1.02E-08 1.02E-08 6.27E-08 7 CTLA4/HLA-DRB1/CD86/HLA-DPB1/HLA-DQA1/HLA-
DRA/HLA-DPA1

hsa05321 Inflammatory bowel disease (IBD) 4.38E-08 4.38E-08 1.72E-07 7 IL12RB1/TBX21/HLA-DRB1/HLA-DPB1/HLA-DQA1/HLA-
DRA/HLA-DPA1

hsa05140 Leishmaniasis 1.44E-07 1.44E-07 4.45E-07 7 HLA-DRB1/HLA-DPB1/FCGR3A/HLA-DQA1/HLA-DRA/
FCGR1A/HLA-DPA1

hsa04660 T cell receptor signaling pathway 1.14E-06 1.14E-06 2.70E-06 7 CTLA4/CD8A/CD8B/ICOS/CD3D/LCP2/LCK

hsa04380 Osteoclast differentiation 4.63E-06 4.63E-06 9.08E-06 7 SIRPG/LILRB2/LILRB1/FCGR3A/FCGR1A/LCP2/LCK

hsa05166 Human T cell leukemia virus 1 infection 0.000148 0.000148 0.000237 7 HLA-DRB1/CD3D/HLA-DPB1/HLA-DQA1/HLA-DRA/HLA-
DPA1/LCK

hsa05168 Herpes simplex virus 1 infection 0.014966 0.014966 0.018997 7 CCL5/CD74/HLA-DRB1/HLA-DPB1/HLA-DQA1/HLA-DRA/
HLA-DPA1

hsa05330 Allograft rejection 4.14E-08 4.14E-08 1.72E-07 6 HLA-DRB1/CD86/HLA-DPB1/HLA-DQA1/HLA-DRA/HLA-
DPA1

hsa05332 Graft-versus-host disease 6.67E-08 6.67E-08 2.40E-07 6 HLA-DRB1/CD86/HLA-DPB1/HLA-DQA1/HLA-DRA/HLA-
DPA1

hsa04940 Type I diabetes mellitus 8.97E-08 8.97E-08 2.98E-07 6 HLA-DRB1/CD86/HLA-DPB1/HLA-DQA1/HLA-DRA/HLA-
DPA1

hsa05416 Viral myocarditis 6.88E-07 6.88E-07 1.75E-06 6 HLA-DRB1/CD86/HLA-DPB1/HLA-DQA1/HLA-DRA/HLA-
DPA1

hsa05145 Toxoplasmosis 2.67E-05 2.67E-05 4.44E-05 6 HLA-DRB1/HLA-DPB1/HLA-DQA1/HLA-DRA/CCR5/HLA-
DPA1

hsa05164 Influenza A 0.000272 0.000272 0.000419 6 CCL5/HLA-DRB1/HLA-DPB1/HLA-DQA1/HLA-DRA/HLA-
DPA1

hsa05169 Epstein-Barr virus infection 0.000665 0.000665 0.000989 6 HLA-DRB1/CD3D/HLA-DPB1/HLA-DQA1/HLA-DRA/
HLA-DPA1

hsa05310 Asthma 5.48E-07 5.48E-07 1.48E-06 5 HLA-DRB1/HLA-DPB1/HLA-DQA1/HLA-DRA/HLA-DPA1

hsa04620 Toll-like receptor signaling pathway 0.002276 0.002276 0.003274 4 CXCL9/CCL4/CCL5/CD86

hsa04650 Natural killer cell mediated cytotoxicity 0.005222 0.005222 0.007042 4 FCGR3A/SH2D1A/LCP2/LCK

hsa04623 Cytosolic DNA-sensing pathway 0.004625 0.004625 0.006439 3 CCL4/CCL5/ZBP1

hsa04662 B cell receptor signaling pathway 0.00961 0.00961 0.012568 3 LILRB2/CD72/LILRB1
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Table 3  The KEGG pathway analysis of activated memory CD4 T cells and CD8 T cell-related genes in the Comparative 
Toxicogenomics Database. The KEGG pathway analysis of CD8 T cell-related genes

Description p value p.adjust q value gene_symbol

Th17 cell differentiation 4.53E-24 4.53E-24 2.55E-22 TBX21/IL12RB1/ZAP70/CD3D/LCK/HLA-DPB1/HLA-DQB1/HLA-DRA/HLA-
DPA1/HLA-DRB1/CD3E/IL21R/HLA-DRB5/JAK3/HLA-DMB/IL2RB/HLA-DOA/
CD247/HLA-DQA1/CD3G/IL2RG/GATA3/IRF4/IL2RA

Th1 and Th2 cell differentiation 2.90E-24 2.90E-24 2.55E-22 TBX21/IL12RB1/ZAP70/CD3D/LCK/HLA-DPB1/HLA-DQB1/HLA-DRA/HLA-
DPA1/HLA-DRB1/RUNX3/CD3E/HLA-DRB5/JAK3/HLA-DMB/IL2RB/HLA-
DOA/CD247/HLA-DQA1/CD3G/IL2RG/GATA3/IL2RA

Cell adhesion molecules (CAMs) 8.08E-17 8.08E-17 3.03E-15 CD8B/CD8A/CTLA4/TIGIT/ICOS/PDCD1/HLA-DPB1/HLA-DQB1/HLA-DRA/
HLA-DPA1/HLA-DRB1/CD2/HLA-DRB5/HLA-DMB/HLA-DOA/CD6/ICAM3/
HLA-DQA1/CD226/CD86/SELPLG

Cytokine-cytokine receptor interaction 6.07E-10 6.07E-10 3.42E-09 CCL4/CXCL9/CCL5/CD27/IL12RB1/CXCR3/CXCR6/CCR5/TNFRSF8/IL21R/
IL2RB/CXCL13/IL10RA/CCR2/IL18RAP/CXCL11/TNFRSF17/IL2RG/IL16/IL2RA

Human T cell leukemia virus 1 infection 2.30E-10 2.30E-10 1.44E-09 CD3D/LCK/HLA-DPB1/HLA-DQB1/HLA-DRA/HLA-DPA1/HLA-DRB1/PIK3CD/
CD3E/HLA-DRB5/JAK3/HLA-DMB/IL2RB/HLA-DOA/HLA-DQA1/CD3G/
IL2RG/IL2RA

Hematopoietic cell lineage 3.87E-15 3.87E-15 7.27E-14 CD8B/CD8A/CD3D/HLA-DPB1/HLA-DQB1/HLA-DRA/HLA-DPA1/HLA-
DRB1/CD2/CD3E/HLA-DRB5/HLA-DMB/HLA-DOA/HLA-DQA1/FCGR1A/
CD3G/IL2RA

Epstein-Barr virus infection 4.09E-09 4.09E-09 2.00E-08 CD3D/HLA-DPB1/HLA-DQB1/HLA-DRA/HLA-DPA1/HLA-DRB1/RUNX3/
PIK3CD/CD3E/HLA-DRB5/JAK3/HLA-DMB/HLA-DOA/CD247/HLA-DQA1/
CD3G

Inflammatory bowel disease (IBD) 1.70E-15 1.70E-15 4.77E-14 TBX21/IL12RB1/HLA-DPB1/HLA-DQB1/HLA-DRA/HLA-DPA1/HLA-DRB1/
IL21R/HLA-DRB5/HLA-DMB/HLA-DOA/HLA-DQA1/IL18RAP/IL2RG/GATA3

T cell receptor signaling pathway 2.60E-12 2.60E-12 3.67E-11 CD8B/CD8A/CTLA4/ZAP70/ICOS/PDCD1/CD3D/LCK/PIK3CD/CD3E/LCP2/
ITK/CD247/VAV1/CD3G

Systemic lupus erythematosus 9.81E-11 9.81E-11 7.17E-10 HLA-DPB1/HLA-DQB1/HLA-DRA/HLA-DPA1/HLA-DRB1/C1QB/C1QA/C1QC/
HLA-DRB5/FCGR3A/HLA-DMB/HLA-DOA/HLA-DQA1/FCGR1A/CD86

Tuberculosis 7.02E-09 7.02E-09 3.29E-08 CD74/HLA-DPB1/HLA-DQB1/HLA-DRA/HLA-DPA1/HLA-DRB1/CIITA/HLA-
DRB5/FCGR3A/HLA-DMB/CORO1A/HLA-DOA/IL10RA/HLA-DQA1/FCGR1A

Chemokine signaling pathway 1.37E-08 1.37E-08 6.16E-08 CCL4/CXCL9/CCL5/CXCR3/CXCR6/CCR5/PIK3CD/JAK3/GNGT2/CXCL13/
ITK/VAV1/CCR2/CXCL11/DOCK2

Antigen processing and presentation 1.24E-11 1.24E-11 1.55E-10 CD8B/CD8A/CD74/HLA-DPB1/HLA-DQB1/HLA-DRA/HLA-DPA1/HLA-DRB1/
CIITA/HLA-DRB5/HLA-DMB/HLA-DOA/HLA-DQA1

Phagosome 5.66E-08 5.66E-08 2.36E-07 HLA-DPB1/HLA-DQB1/HLA-DRA/HLA-DPA1/HLA-DRB1/HLA-DRB5/
FCGR3A/HLA-DMB/CORO1A/HLA-DOA/HLA-DQA1/FCGR1A/NCF2

Herpes simplex virus 1 infection 0.00945 0.00945 0.02596 CCL5/CD74/HLA-DPB1/HLA-DQB1/HLA-DRA/HLA-DPA1/HLA-DRB1/
PIK3CD/HLA-DRB5/HLA-DMB/HLA-DOA/HLA-DQA1/POU2F2

Intestinal immune network for IgA production 6.14E-13 6.14E-13 9.88E-12 ICOS/HLA-DPB1/HLA-DQB1/HLA-DRA/HLA-DPA1/HLA-DRB1/HLA-DRB5/
HLA-DMB/HLA-DOA/HLA-DQA1/CD86/TNFRSF17

Leishmaniasis 1.82E-10 1.82E-10 1.21E-09 HLA-DPB1/HLA-DQB1/HLA-DRA/HLA-DPA1/HLA-DRB1/HLA-DRB5/
FCGR3A/HLA-DMB/HLA-DOA/HLA-DQA1/FCGR1A/NCF2

Rheumatoid arthritis 1.75E-09 1.75E-09 9.36E-09 CTLA4/CCL5/HLA-DPB1/HLA-DQB1/HLA-DRA/HLA-DPA1/HLA-DRB1/HLA-
DRB5/HLA-DMB/HLA-DOA/HLA-DQA1/CD86

Toxoplasmosis 1.52E-08 1.52E-08 6.56E-08 HLA-DPB1/HLA-DQB1/HLA-DRA/HLA-DPA1/HLA-DRB1/CIITA/CCR5/HLA-
DRB5/HLA-DMB/HLA-DOA/IL10RA/HLA-DQA1

Influenza A 1.52E-06 1.52E-06 5.91E-06 CCL5/HLA-DPB1/HLA-DQB1/HLA-DRA/HLA-DPA1/HLA-DRB1/CIITA/
PIK3CD/HLA-DRB5/HLA-DMB/HLA-DOA/HLA-DQA1

Autoimmune thyroid disease 4.21E-11 4.21E-11 3.95E-10 CTLA4/HLA-DPB1/HLA-DQB1/HLA-DRA/HLA-DPA1/HLA-DRB1/HLA-DRB5/
HLA-DMB/HLA-DOA/HLA-DQA1/CD86

Osteoclast differentiation 6.09E-07 6.09E-07 2.45E-06 SIRPG/LILRB2/LCK/LILRB1/PIK3CD/FCGR3A/LCP2/FCGR1A/LILRA1/LILRA5/
NCF2

Allograft rejection 2.62E-11 2.62E-11 2.68E-10 HLA-DPB1/HLA-DQB1/HLA-DRA/HLA-DPA1/HLA-DRB1/HLA-DRB5/HLA-
DMB/HLA-DOA/HLA-DQA1/CD86

Graft-versus-host disease 6.01E-11 6.01E-11 5.21E-10 HLA-DPB1/HLA-DQB1/HLA-DRA/HLA-DPA1/HLA-DRB1/HLA-DRB5/HLA-
DMB/HLA-DOA/HLA-DQA1/CD86

Type I diabetes mellitus 1.01E-10 1.01E-10 7.17E-10 HLA-DPB1/HLA-DQB1/HLA-DRA/HLA-DPA1/HLA-DRB1/HLA-DRB5/HLA-
DMB/HLA-DOA/HLA-DQA1/CD86

Viral myocarditis 3.31E-09 3.31E-09 1.69E-08 HLA-DPB1/HLA-DQB1/HLA-DRA/HLA-DPA1/HLA-DRB1/HLA-DRB5/HLA-
DMB/HLA-DOA/HLA-DQA1/CD86
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cancer-related pathways [e.g., Th17 cell differentiation, 
Th1 and Th2 cell differentiation, and CAMs] (Table 3).

T cells associated with prognosis of liver cancer
Liver cancer was an often fatal malignant with poor prog-
nosis. The purpose was to further analyze the role of T 
cell-related genes in the prognosis of hepatocellular car-
cinoma. A total of 363 sets of survival information from 
patients with liver cancer was obtained. Moreover, nine 
activated memory CD4 T cell-related genes were asso-
ciated with liver cancer prognosis [e.g., eomesodermin 
(EOMES), glutathione S-transferase (CST7), and adhe-
sion G protein-coupled receptor E2 (EMR2)] (Table  4). 
In addition, there were 30 CD8 T cell-related genes asso-
ciated with liver cancer prognosis [e.g., CD5 molecules 
like CD5L, EOMES, and CST7] (Table  5). Upregulated 
expression of T cell-related genes including EOMES, 
CST7, and CD5L indicated the favorable prognosis of 
liver cancer. Downregulated expression of T cell-related 

Table 3  (continued)

Description p value p.adjust q value gene_symbol

Asthma 1.02E-10 1.02E-10 7.17E-10 HLA-DPB1/HLA-DQB1/HLA-DRA/HLA-DPA1/HLA-DRB1/HLA-DRB5/HLA-
DMB/HLA-DOA/HLA-DQA1

Chagas disease (American trypanosomiasis) 5.47E-06 5.47E-06 2.05E-05 CCL5/CD3D/C1QB/PIK3CD/C1QA/CD3E/C1QC/CD247/CD3G

Natural killer cell mediated cytotoxicity 0.000256 0.000256 0.000875 ZAP70/SH2D1A/LCK/PIK3CD/FCGR3A/LCP2/CD247/VAV1

Measles 0.000366 0.000366 0.001211 CD3D/PIK3CD/CD3E/JAK3/IL2RB/CD3G/IL2RG/IL2RA

JAK-STAT signaling pathway 0.001058 0.001058 0.003309 IL12RB1/PIK3CD/IL21R/JAK3/IL2RB/IL10RA/IL2RG/IL2RA

B cell receptor signaling pathway 7.87E-05 7.87E-05 0.000277 CD72/LILRB2/LILRB1/PIK3CD/VAV1/LILRA1/LILRA5

Toll-like receptor signaling pathway 0.002081 0.002081 0.006167 CCL4/CXCL9/CCL5/PIK3CD/CD86/CXCL11

Fc gamma R-mediated phagocytosis 0.006618 0.006618 0.019112 PIK3CD/FCGR3A/VAV1/FCGR1A/DOCK2

Prion diseases 0.000973 0.000973 0.00313 CCL5/C1QB/C1QA/C1QC

Cytosolic DNA-sensing pathway 0.008425 0.008425 0.023723 CCL4/CCL5/ZBP1/AIM2

Table 4  Activated memory CD4 T cells and CD8 T cells 
associated with prognosis of liver cancer. Activated memory CD4 
T cell-related genes associated with liver cancer prognosis

Names p High.median Low.median

EOMES 0.002087 82 41

CST7 0.008028 71 41

EMR2 0.013856 48 83

TRGC2 0.018419 71 47

IGLV7-43 0.021593 72 47

GPR171 0.02511 71 52

TRBV9 0.030513 82 55

ANKRD22 0.03693 46 85

PYHIN1 0.042679 82 52

Table 5  Activated memory CD4 T cells and CD8 T cells 
associated with prognosis of liver cancer. CD8 T cell-related 
genes associated with liver cancer prognosis

Names p High.median Low.median

CD5L 0.001343 82 41

EOMES 0.002087 82 41

IL18RAP 0.002115 71 38

TRBV25-1 0.005602 82 41

NCF2 0.006911 47 85

CST7 0.008028 71 41

ZAP70 0.012036 82 47

IGHV3-7 0.012411 82 47

TRAV19 0.01277 72 41

IGLV3-19 0.016579 82 47

TRGC2 0.018419 71 47

HTRA3 0.018774 47 72

C16orf54 0.019534 71 47

IGKV2D-29 0.01972 71 52

IGLV7-43 0.021593 72 47

ICAM3 0.024014 71 52

RP11-367G6.3 0.024711 62 41

GPR171 0.02511 71 52

RP11-1094M14.8 0.025113 71 52

S1PR4 0.026595 62 52

PTGDR 0.029741 62 47

TRBV9 0.030513 82 55

SLAMF6 0.030972 82 52

GZMK 0.033125 82 47

UBASH3A 0.033482 82 47

TRGC1 0.034744 71 41

TRAV1-2 0.037557 71 41

PYHIN1 0.042679 82 52

THEMIS 0.045249 82 47

CD69 0.046828 71 52
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genes including NCF2 and HTAR3 indicated the poor 
prognosis of liver cancer.

PPI network of the T cell‑related genes
The PPI network was constructed to plot the characteris-
tics of these molecules. PPI network analysis of activated 
memory CD4 T cell-related genes revealed 53 nodes, 
including one survival-related gene (EOMES), and 162 
interaction pairs (Fig.  4A). The CD8 T cell-related gene 
PPI network contained 127 nodes, including 11 survival-
related genes [e.g., EOMES, CD69 molecule (CD69), and 
zeta chain of T cell receptor-associated protein kinase 70 
(ZAP70)], and 613 interaction pairs (Fig. 4B).

CeRNA network of the T cell‑related genes
The ceRNA network was constructed to describe the 
regulatory effect of non-coding RNA on T cell-related 
differential molecules. Based on the HMDD database, 
ten miRNA-mRNA relationships of activated memory 
CD4 T cell-related genes were obtained (10 miRNAs 
and three target genes). Also, 26 miRNA-mRNA rela-
tionships of CD8 T cell-related genes were obtained 
(22 miRNAs and 10 target genes). Four miRNA-
lncRNA relationships of activated memory CD4 T 
cell-related genes were obtained (four miRNAs and 
one lncRNA). Furthermore, 21 miRNA-lncRNA rela-
tionships of CD8 T cell-related genes were obtained 
(21 miRNAs and 13 lncRNAs). Based on the ten 
miRNA-mRNA relationships and four miRNA-
lncRNA relationships of activated memory CD4 T 

cell-related genes, a ceRNA network of activated 
memory CD4 T cell-related genes was constructed 
(Fig.  5A). Here, EOMES was regulated by has-miR-
23b-3p and has-miR-23b-3p was regulated by lncRNA 
AC104820.2. In addition, the ceRNA network of 
CD8 T cell-related genes was constructed among 26 
miRNA-mRNA relationships and 21 miRNA-lncRNA 
relationships (Fig. 5B). Here, EOMES was regulated by 
has-miR-23a-3p and has-miR-23a-3p was regulated by 
lncRNA AC000476.1.

Chemical small‑molecule–target network analysis of T 
cell‑related genes
The chemical small-molecule–target network was con-
structed to find agents that regulate these differentially 
expressed genes. There were 44 chemical small-mole-
cule–target interaction pairs associated with activated 
memory CD4 T cells (Fig. 6A), including five mRNAs and 
26 chemical small molecules. In addition, there were 276 
CD8 T cell-associated chemical small-molecule–target 
interaction pairs, containing 19 mRNAs and 110 chemi-
cal small molecules (Fig. 6B).

Discussion
In this study, a total of 55,955 stromal-related DEGs 
and 1811 immune-related DEGs were obtained. Then, 
the 1238 overlapped DEGs were enriched in 1457 BPs 
and 74 KEGG pathways. In addition, a total of 120 acti-
vated memory CD4 T cell-related genes and 309 CD8 T 
cell-related genes were identified. The survival analysis 

A B

Fig. 4  The PPI network of activated memory CD4 and CD8 T cell-related genes. The STRING database was used to analyze protein-protein 
interactions encoded by activated memory CD4 T cells and CD8 T cells. The PPI score was set as 0.7 (high-confidence value). Afterward, the PPI 
networks of activated memory CD4 T cells and CD8 T cell-related genes were constructed using Cytoscape software. PPI network analysis of 
activated memory CD4 T cell-related genes revealed 53 nodes and 162 interaction pairs. The CD8 T cell-related gene PPI network contained 
127 nodes and 613 interaction pairs. A The PPI network of activated memory CD4 T cell-related genes. B The PPI network of CD8 T cell-related 
genes. Red nodes represent survival-related DEGs, triangles represent upregulated DEGs, and blue nodes represent other DEGs. The size of nodes 
represents the value. Larger nodes indicate a larger value. PPI, protein-protein interaction; STRING, Search Tool for the Retrieval of Interacting Genes
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showed that the T cell-related genes EOMES, CST7, 
CD5L, and EMR2 were associated with the prognosis of 
liver cancer. Our analysis recommended the AC104820.2-
has-miR-23b-3p-EOMES axis and the AC000476.1-has-
miR-23a-3p-EOMES axis from activated memory CD4 T 
cell- and CD8 T cell-related ceRNAs, respectively.

A total of 120 activated memory CD4 T cell-related 
genes and 309 CD8 T cell-related genes were identi-
fied in this study. Moreover, T cell-related genes were 
involved in Th1 and Th2 cell differentiation and CAM 
signaling pathways. Wang et  al. found that abnormal 
expression of CD4 T cell subsets in peripheral blood of 

Fig. 5  CeRNA network of activated memory CD4 T cells and CD8 T cell-related genes. The miRNAs of activated memory CD4 T cells and CD8 T 
cell-related genes were predicted using miRWalk 3.0, and miRNA-target interaction pairs in the TargetScan, MiRDB, and MirTarBase databases were 
obtained using a threshold of score > 0.95. In addition, the HMDD V3.2 database was used to further validate and screen the predicted miRNA 
using the keywords “Carcinoma, Hepatocellular”. The lncRNAs-miRNAs relationship between activated memory CD4 T cells and CD8 T cell-related 
genes was predicted using the DIANA-LncBase database. Finally, activated memory CD4 T cell- and CD8 T cell-related gene lncRNA-miRNA-mRNA 
network was constructed utilizing Cytoscape software. EOMES was regulated by has-miR-23b-3p and has-miR-23b-3p were regulated by lncRNA 
AC104820.2. EOMES was regulated by has-miR-23a-3p and has-miR-23a-3p was regulated by lncRNA AC000476.1. A ceRNA network of activated 
memory CD4 T cell-related genes. B ceRNA network of CD8 T cell-related genes. Red nodes represent upregulated DEGs, green triangles represent 
miRNA, and the red rhombi represent upregulated lncRNAs
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A

B

Fig. 6  Chemical small-molecule–target network analysis of activated memory CD4 T cells and CD8 T cell-related genes. To search for liver 
cancer-related genes and chemicals, the Comparative Toxicogenomics Database was searched using “Carcinoma, Hepatocellular” as keywords. 
Genes that were both associated with liver cancer, and belonged to the T cell-related genes ceRNA network, were used to screen chemical-target 
pairs. The T cell-related genes chemical small-molecule–target network was obtained utilizing the Cytoscape software. There were 44 chemical 
small-molecule–target interaction pairs associated with activated memory CD4 T cells, including five mRNAs and 26 chemical small molecules. In 
addition, there were 276 CD8 T cell-associated chemical small-molecule–target interaction pairs, containing 19 mRNAs and 110 chemical small 
molecules. A The chemical small-molecule–target network of genes in activated memory CD4 T cells. B The chemical small-molecule–target 
network of genes in CD8 T cells. Red nodes represent survival-related upregulated DEGs, and green nodes represent chemical small molecules. The 
size of nodes represents the value, such that larger nodes indicate a larger value
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patients with ovarian cancer and an imbalance of Th1/
Th2 and Treg/Th17 provide a basis for clinical immu-
notherapy of ovarian cancer [33]. In addition, Su et  al. 
identified lncRNAs and genes related to the progno-
sis of gastric cancer and showed that prognostic genes 
positively related to mortality were enriched in the CAM 
signaling pathway by performing a functional enrich-
ment analysis [34]. Furthermore, Talia et al. showed that 
GPER levels are related to metastasis and premigration 
genes belonging to the CAM signaling pathway in breast 
cancer [35], which further suggested that T cell-related 
genes may be related to the progression of liver cancer 
via Th1- and Th2-cell differentiation and CAM signaling 
pathways.
EOMES is an important transcription factor that 

regulates the differentiation and function of effector T 
cells, and previous studies have shown that the survival 
of tumor patients is closely related to EOMES expres-
sion. For instance, Gao et al. suggested that the poten-
tial anticancer functions of EOMES, ATF5, and ECM1 
were confirmed by siRNA experiments [36]. The CD8 
T cells were divided into three distinct subpopulations: 
PD1Hi, PD1Int, and PD1-. Ma et al. showed that com-
pared with adjacent non-tumor liver tissues, the PD1Hi 
CD8 T cells were significantly enriched in tumors, 
and the PD1Hi CD8 T cells in liver cancer were highly 
expressed with depletion-related inhibitory receptors 
(TIM3, ctla-4, and so on) and transcription factors 
(EOMES, BATF, and so on) [37]. In the present study, 
EOMES was a T cell-related gene associated with liver 
cancer prognosis. Moreover, EOMES was regulated by 
has-miR-23b-3p and has-miR-23b-3p was regulated 
by lncRNA AC104820.2 in activated memory CD4 T 
cell-related genes ceRNA network, and EOMES was 
regulated by has-miR-23a-3p and has-miR-23a-3p was 
regulated by lncRNA AC000476.1 in CD8 T cell-related 
genes ceRNA network. Zaman et al. found an inhibitory 
effect of miR-23b-3p on the expression of the PTEN 
gene in renal carcinoma [38]. Meanwhile, Wen et  al. 
showed that osthole inhibited EMT-mediated metasta-
sis of prostate cancer by inhibiting snail signaling and 
miR-23a-3p [39]. Considering these results together, 
we speculate that EOMES may be the potential target 
of has-miR-23b-3p and has-miR-23a-3p in liver cancer 
and that they play important roles in the progression of 
the disease.

Moreover, in the present study, CST7 was a T cell-
related gene associated with liver cancer prognosis. 
CST7, also known as CMAP, has been reported to have 
close connections with liver cancer. For instance, Zhou 
et al. suggested that CST7 and CSTB genes may serve as 
potential prognostic and diagnostic biomarkers for liver 
cancer [40]. Interestingly, CMAP is a novel cystatin-like 

gene involved in liver metastasis [41]. CD5L is a solu-
ble scavenger cysteine-rich protein that regulates the 
inflammatory response. Aran et al. suggest that CD5L is 
upregulated in hepatocellular carcinoma and promotes 
the proliferation and anti-apoptotic response of liver 
cancer cells by binding to HSPA5 (GRP78) [42]. Thus, we 
speculate that CST7 and CD5L contribute to liver cancer 
progression.

In the present study, immune-related prognostic indi-
cators and chemical small-molecule–target interaction 
pairs associated with liver cancer were screened, which 
could guide liver cancer clinical decision-making. Moreo-
ver, we constructed a ceRNA network of immune-related 
genes associated with liver cancer prognosis and predicted 
miRNA targets, which provided a basis for the study of 
tumor-induced T cell-mediated immune escape. However, 
we did not use molecular biological experiments to verify 
our results. The molecular mechanisms that T cell-related 
genes influence the prognosis of liver cancer have not been 
investigated, and further molecular biological experiments 
are needed to explore the specific roles of these genes.

Conclusion
T cell-related RNAs EOMES, CST7, CD5L, has-miR-
23b-3p, and has-miR-23a-3p may be associated with the 
prognosis of liver cancer. And the molecular characteristics 
of these T cell-related genes were plotted by PPI network, 
ceRNA network, chemical small-molecule–target network.
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