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Abstract 

Background:  This study aimed to establish a radiomics-based nomogram for predicting severe (grade B or C) post-
hepatectomy liver failure (PHLF) in patients with huge (≥ 10 cm) hepatocellular carcinoma (HCC).

Methods:  One hundred eighty-six patients with huge HCC (training dataset, n = 131 and test dataset, n = 55) that 
underwent curative hepatic resection were included in this study. The least absolute shrinkage and selection operator 
(LASSO) approach was applied to develop a radiomics signature for grade B or C PHLF prediction using the training 
dataset. A multivariable logistic regression model was used by incorporating radiomics signature and other clinical 
predictors to establish a radiomics nomogram. Decision tree analysis was performed to stratify the risk for severe PHLF.

Results:  The radiomics signature consisting of nine features predicted severe PHLF with AUCs of 0.766 and 0.745 for 
the training and test datasets. The radiomics nomogram was generated by integrating the radiomics signature, the 
extent of resection and the model for end-stage liver disease (MELD) score. The nomogram exhibited satisfactory dis-
crimination ability, with AUCs of 0.842 and 0.863 for the training and test datasets, respectively. Based on decision tree 
analysis, patients were divided into three risk classes: low-risk patients with radiomics score < -0.247 and MELD score 
< 10 or radiomics score ≥ − 0.247 but underwent partial resections; intermediate-risk patients with radiomics score < 
− 0.247 but MELD score ≥10; high-risk patients with radiomics score ≥ − 0.247 and underwent extended resections.

Conclusions:  The radiomics nomogram could predict severe PHLF in huge HCC patients. A decision tree may be use-
ful in surgical decision-making for huge HCC hepatectomy.
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Introduction
The high prevalence of hepatitis B virus (HBV) infection 
in China is paralleled by an elevated incidence of hepato-
cellular carcinoma (HCC), accounting for approximately 
half of cases worldwide [1, 2]. Huge HCC (≥ 10 cm) is not 

uncommon due to a lack of early detection, often due to 
poor awareness. Studies have shown a relatively satisfac-
tory overall survival in selected patients that underwent 
huge HCC hepatectomy [3–5]. However, patients with 
huge HCC often require major or extended liver resec-
tion, which puts them at high risk of post-hepatectomy 
liver failure (PHLF).

PHLF is a predominant cause of postoperative mortal-
ity, with reported mortality rates as high as 50% [6], and is 
associated with a prolonged hospital stay, compromised 

Open Access

*Correspondence:  shengyan@zju.edu.cn
1 Department of Hepatobiliary Pancreatic Surgery, Second Affiliated 
Hospital, Zhejiang University School of Medicine, Hangzhou 310003, 
China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-4153-3546
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12957-021-02459-0&domain=pdf


Page 2 of 11Xiang et al. World Journal of Surgical Oncology          (2021) 19:344 

long-term overall survival, and increased costs in 
patients undergoing this surgical procedure. To prevent 
PHLF, a detailed assessment of liver function is a prereq-
uisite for the appropriate selection of patients for hepa-
tectomy. Numerous methods have been used to predict 
PHLF, including clinical parameters and scoring systems 
[7–9], dynamic quantitative liver function tests [10, 11], 
and remnant liver volume [12, 13]. However, the predic-
tive outcomes are variable, and no single method alone 
can accurately predict PHLF. Therefore, establishing a 
comprehensive model based on multiple approaches may 
improve the predictive yield.

An emerging methodology named radiomics involves 
the high-throughput extraction of imaging features based 
on intensity, shape, texture, and higher-order features. 
Radiomics can potentially characterize diseases and 
guide clinical decision-making. Initially applied in onco-
logical studies, it is increasingly used nowadays to study 
non-oncological diseases [14]. Recent studies substanti-
ate that radiomics has improved the accuracy in diagnos-
ing liver fibrosis and cirrhosis and could have significant 
value in assessing liver function [15, 16].

Accordingly, we sought to establish a CT-based radi-
omics signature and a nomogram by combining radi-
omics features and independent clinical factors for 
predicting severe (grade B or C) PHLF in patients with 
huge HCC.

Materials and methods
Patients
From January 2012 to December 2020, a total of 1267 
patients with HCC underwent hepatic resection in our 
hospital. Of these, 254 patients with huge HCC who 
underwent curative surgical resection were retrospec-
tively recruited. Sixty-eight patients were excluded, and 
186 patients who met the following inclusion and exclu-
sion criteria were enrolled in this study. The inclusion 
criteria consisted of (1) patients who did not receive any 
treatment before surgery; (2) liver function was classi-
fied as Child-Pugh grade A or B; (3) Eastern Cooperative 
Oncology Group (ECOG) performance score 0–2; (4) 
patients that underwent an enhanced CT scan within 7 
days before surgery; (5) patients with histologically con-
firmed HCC. The exclusion criteria comprised (1) no 
preoperative contrast-enhanced CT available or poor CT 
image quality; (2) patients who underwent preoperative 
therapy; and (3) cases of huge HCC rupture that required 
emergency hepatic resection. The detailed enrollment 
process of patients is presented in Fig. 1. Then, patients 
were divided into training and test datasets at a ratio of 
7:3. The training dataset was used to construct the pre-
diction model, and the test dataset was used to confirm 
the model’s performance. The Ethics Review Board of the 
Second Affiliated Hospital of Zhejiang University School 
of Medicine approved this study (No. 2021-0376).

Fig. 1  Flowchart of patients enrolled in this study. TACE, transarterial chemoembolization; ALPPS, associating liver partition and portal vein ligation 
for staged hepatectomy; PVL, portal vein ligation
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Clinical characteristics
Baseline demographic, clinical and laboratory character-
istics (including liver and kidney function tests, platelet 
count, blood coagulation index, and serum alpha-feto-
protein level), and clinical grading scores were collected. 
The operative variables (including surgical methods, 
intraoperative blood loss, intraoperative blood transfu-
sion, and intraoperative vascular occlusion methods) cor-
related with PHLF were also recorded.

Diagnosis and definitions
PHLF was diagnosed according to the International 
Study Group of Liver Surgery (ISGLS) criteria [17]. The 
INR was set at 1.5 and the bilirubin level of more than 
20 μmol/L (1.2 mg/dL). The severity of PHLF was divided 
into 3-classes according to the clinical management: 
grade A, no further clinical management necessary; 
grade B, requires an active therapeutic intervention with-
out invasive approach; grade C, invasive approach. We 
defined grades B and C PHLF as severe PHLF, which was 
the primary outcome of our study since grade A PHLF 
does not require any additional management.

CT scan acquisition
CT scans were performed using multi-detector CT sys-
tems (16-slice SOMATOM Perspective, SIEMENS; 
16-slice SOMATOM Sensation, SIEMENS, Germany). 
Dynamic contrast-enhanced CT imaging was obtained 
following the administration of iodinated contrast mate-
rial (Iohexol, GE Healthcare, USA) at 3.0 mL/s. Scanning 
parameters included 120 KV, 160 mAs; rotation time 0.5 
s; 350 mm×350 mm field of view; matrix of 388 × 388; 
slice thickness, 3 mm. The arterial phase and portal phase 
images were obtained at 40 s and 72 s after injection of 
contrast medium.

Image segmentation and radiomics features extraction
The region of interest (ROI) was drawn manually using 
the freely available application ITK-SNAP (version 
3.6.0). ROI was delineated in the liver along the border 
of the whole liver parenchyma by avoiding major blood 
vessels, focal lesions, and artifacts on the portal phase 
images. Features were extracted from each segmented 
ROI, divided into textual and non-textural features using 
PyRadiomics [18], an open-source python package for 
medical imaging.

To obtain reproducible radiomics features, standard-
ized computation of radiomics features was necessary 
[19]. In our study, the sitkBSpline interpolation was 
applied to resample the images with a pixel size of 1 × 1 
mm. Voxel intensities were discretized using a bin-width 
of 25 HU. Seven hundred eighty-eight radiomics features 

were extracted from the liver ROI, including 18 original 
first-order histogram features, 14 original shape features, 
68 original textural features, and 688 high-order wavelet 
features. The list of radiomics features is shown in Sup-
plementary Table 1.

Inter‑observer and intra‑observer agreement
To ensure reproducibility, CT images of 20 patients were 
randomly selected and independently resegmented by 
reader 1 (X.F. with 7 years of experience in liver imaging) 
at an interval of 2 weeks and reader 2 (YLL with 8 years 
of experience in liver imaging). The intra-observer repro-
ducibility and inter-observer reliability of features extrac-
tion were assessed using intra- and inter-class correlation 
coefficients (ICCs). Features with ICC > 0.75 represented 
a good agreement and were retained.

Feature selection and radiomics signature construction
The extracted radiomics features were normalized by the 
Z-score method. Radiomics features with ICCs lower 
than 0.75 were excluded. Univariate analyses were con-
ducted using univariate logistic regression analysis. Fea-
tures were considered to be associated with severe PHLF 
when the p values were less than 0.1. The least absolute 
shrinkage and selection operator (LASSO) algorithm 
was applied to identify significant features with non-zero 
coefficients based on the selected features. The penalty 
parameter (λ) was optimized through the tenfold cross-
validation method. A radiomics signature was con-
structed by summing the selected features multiplied by 
their coefficients. The area under the receiver operating 
characteristic curve (AUC area under the ROC curve) 
was calculated to assess the predictive ability of the 
established radiomics signature.

Development of the clinical‑radiomics nomogram
To develop a comprehensive clinical-radiomics nomo-
gram, the clinical characteristics and radiomics signature 
were analyzed by univariate logistic regression. Signifi-
cant factors (p < 0.05) were used to build the multivariate 
logistic model. Finally, a clinical-radiomics nomogram 
model integrating the clinical predictors and the radiom-
ics signature was established using the training dataset.

Assessing the accuracy of nomogram model 
and comparison with conventional methods
We determined the discriminatory ability of the nomo-
gram model by comparing the radiomics signature, 
albumin-bilirubin score (ALBI) score, the model for end-
stage liver disease (MELD) score, and Child-Pugh score 
with the areas under the receiver operating characteris-
tic curve (AUC). DeLong’s test was used to compare the 
nomogram model with conventional methods based on 
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the AUC values in both datasets. To evaluate the consist-
ency of the nomogram, we plotted a calibration curve 
with the Hosmer-Lemeshow goodness-of-fit test.

Clinical use
To assist in surgical decision-making, a decision tree 
for safe huge HCC hepatectomy was built based on the 
identified risk factors. In addition, to evaluate the clinical 
usefulness of the nomogram model, radiomics signature, 
MELD, ALBI, and Child-Pugh scores, decision curve 
analysis (DCA) was conducted to assess the net benefits 
across a variety of threshold risks.

Statistical analysis
The radiomics analysis workflow is shown in Fig. 2. Con-
tinuous variables and categorical variables were com-
pared by Mann–Whitney U test and the chi-square test, 
respectively. Two-tailed values of p < 0.05 were statisti-
cally significant for all analyses. All analyses were con-
ducted using R software (version 3.6.1).

Results
Patient demographic
A total of 186 patients (71 men, 66 women) were 
included in the present study. The patients were assigned 
to training (n = 131) and test datasets (n = 55) at a ratio 
of 7:3. The clinical variables did not differ significantly 
between the two datasets, except for HBsAg positivity 
(P = 0.044) and intraoperative blood transfusion (P = 

0.002). The percentage of severe PHLF was 31.3% (n = 
41) and 23.64% (n = 13) in the training and test datasets, 
respectively. The baseline characteristics are presented in 
Table 1.

Radiomics signature construction
Of the 788 extracted radiomics features, 165 features 
were eliminated due to an ICC lower than 0.75. Subse-
quently, univariate logistic regression was used to select 
PHLF-associated features. Thirty features remained and 
were subjected to LASSO regression to screen for critical 
features and construct the radiomics signature. Finally, 
nine features with non-zero coefficients were screened by 
the LASSO approach using the training dataset (Fig. 3A, 
B). Among the nine features, two features were origi-
nal shape features, and the remaining were wavelet fea-
tures. The radiomics signature was constructed using the 
nine features, and the radiomics score was computed as 
follows:

Radscore = − 0.93044761 + 0.20910827 * original_
shape_Maximum2DDiameterSlice + 0.04625660 * 
original_shape_SurfaceVolumeRatio − 0.08693156 
* HHH_glszm_ZoneVariance − 0.44200827 
*HHL_firstorder_Median − 0.42800711*HHL_
gldm_DependenpendenceNonUniformityNormal-
ized − 0.04493315 *HLH_firstorder_Maximum 
− 0.35475442*HLH_glcm_ClusterProminence 
+ 0.01233872 * LHH_glszm_LowGray − Level-

Fig. 2  Workflow for the radiomics process. After CT images were acquired, segmentation of liver parenchyma was performed. The extracted 
radiomics features include intensity, shape, texture features, and wavelet features. Nine radiomics features were selected by the LASSO algorithm. 
A nomogram was built that incorporates radiomics signature and independent clinical predictors for individualized predicting severe PHLF. The 
discrimination ability of nomogram and conventional models were compared by ROC curve analysis and quantified by the AUC values. A decision 
tree was built to stratify the risk for severe PHLF into three classes. Clinical benefits of nomogram and conventional models were compared by 
decision curve analysis



Page 5 of 11Xiang et al. World Journal of Surgical Oncology          (2021) 19:344 	

ZoneEmphasis − 0.36996067*LLH_glszm_GrayLev-
elNonUniformity

In patients with PHLF, the Radscore (median [range]) 
was significantly higher than non-PHLF patients in the 
training dataset (− 0.290 − 2.443∼1.462] vs. − 1.067 
[− 3.686∼0.404], respectively, P < 0.001). The same 

Table 1  Comparison of patient demographics and clinicopathological features of the two datasets

BMI body mass index, HBsAg hepatitis B surface antigen, AFP alpha fetoprotein, SD standard deviation, ALB albumin, TBIL total bilirubin, ALT alanine aminotransferase, 
AST aspartate transaminase, GGT​ γ-glutamyl transpeptidase, PLT platelets, PT prothrombin time, INR international normalized ratio, MELD model for end-stage liver 
disease, ALBI albumin to bilirubin ration index, PHLF posthepatectomy liver failure
a Median (range)
b Median (IQR)

Variable Training dataset
(n = 131)

Test dataset
(n = 55)

p value

Sex, n (%) 0.363

  Male 118 (90.08) 47 (85.46)

  Female 13 (9.92) 8 (14.54)

Age, years 58.69 ± 11.13 53.25 ± 17.19 0.387

BMI, kg/m2 23.97 ± 3.79 23.89 ± 4.01 0.963

HBsAg positive, n (%) 104 (79.38) 36 (65.45) 0.044
Child-Pugh class, n (%) 0.923

  A 115 (87.79) 48 (87.27)

  B 16(12.21) 7(12.72)

AFP, median (IQR), ng/ml 38.7 (4–3849) 171.5 (9–9312) 0.717

Liver function tests

  ALB (g/L) 38.07 ± 4.84 37.55 ± 6.57 0.837

  TBIL (μmol/L) 16.07 ± 8.75 18.94 ± 12.43 0.541

  ALT (U/L) 48.00 ± 53.05 58.88 ± 47.64 0.641

  AST (U/L) 81.23 ± 63.99 75.75 ± 66.02 0.853

  GGT(U/L) 130.62 ± 109.54 167.13 ± 166.12 0.549

  Cr (μmol/L) 50.46 ± 11.81 55.63 ± 12.83 0.358

PLT(109/L) 202.92 ± 83.81 198.50 ± 63.50 0.900

PT (s) 13.45 ± 1.32 12.59 ± 1.26 0.155

INR 1.04 ± 0.12 1.02 ± 0.96 0.631

Tumor size, mm 125.54 ± 25.78 127.13 ± 52.94 0.930

Cirrhosis, n (%) 76 (58.02) 29 (52.72) 0.507

Extent of resection 0.515

  Extended (≥ 4 segments) 84 (64.12) 38 (69.09)

  Partial (< 4 segments) 47 (35.88) 17 (30.91)

Conventional predictive models

  Child-Pugh scorea 5 (5–8) 5 (5–8) 0.463

  MELD scorea 7 (6–15) 7 (6–13) 0.568

  ALBI scoreb − 2.47 (− 0.51~− 3.42) − 2.55 (− 1.09~− 3.32) 1.000

Intraoperative blood loss, ml b 400 (200–800) 500 (300–800) 0.199

Intraoperative blood transfusion, n (%)

  Yes 87 (66.4%) 23 (41.8%) 0.002
  No 44 (33.6%) 32 (58.2%)

Pringle maneuver, n (%) 0.872

  Yes 65 (49.6%) 28 (50.9%)

  No 66 (50.4%) 27 (49.1%)

PHLF (B/C), n (%) 0.293

  Yes 41 (31.30) 13 (23.64)

  No 90 (68.70) 42 (76.36)

Postoperative mortality, n (%) 5 (3.8%) 3 (5.4%) 0.696
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trend was observed in the test dataset (− 0.536 [− 
1.375∼1.461] vs. − 0.930 [− 3.875∼1.138], respectively, 
P = 0.007). The distributions of Radscore for each patient 
in the training and test datasets are shown in Supplemen-
tary Fig. 1.

Development of the clinical‑radiomics nomogram 
and comparison with conventional models
Univariate and multivariate logistic regression analy-
sis found that Radscore, MELD score, and the extent of 
resection were significant predictive factors of severe 
PHLF (Table 2). An individualized nomogram model was 
developed using these significant independent risk fac-
tors (Fig.  4). The nomogram showed good discrimina-
tion ability, with a mean AUC of 0.842 (95% confidence 

Fig. 3  The LASSO algorithm was used to select predictive radiomics features. A Tuning parameter (λ) in the LASSO model was selected by ten-fold 
cross-validation. The optimal λ value of 0.015 with log(λ) of − 4.269 was chosen (at the minimum criteria). B Coefficients of 30 features were shrunk 
with the penalty term increases. Nine features with nonzero coefficients were obtained with the optimal λ

Table 2  Univariable and multivariable logistic regression analyses of risk factors for severe PHLF in the training dataset

Variables Univariate analysis Multivariate analysis

OR 95%CI P value OR 95% CI P value

Age 1.012 0.962–1.066 0.639

Sex, male vs female 2.470 0.456–13.379 0.294

BMI (≥ 25 vs < 25) 0.628 0.182–2.160 0.460

HBV infection 1.703 0.419–6.922 0.457

TBIL 0.949 0.871–1.034 0.232

ALB 0.965 0.844–1.103 0.603

PT 1.512 0.809–2.829 0.195

INR (per 0.1 increase) 0.707 0.327–1.529 0.378

PLT 0.999 0.993–1.006 0.820

Tumor size 0.996 0.976–1.018 0.741

Cirrhosis 0.660 0.177–2.465 0.537

Extent of resection (extended vs partial) 4.903 1.381–17.405 0.014 4.483 1.591–12.633 0.005
Blood loss (≥ 800 vs < 800 ml) 0.250 0.054–1.161 0.077

Blood transfusion 2.609 0.517–13.164 0.245

Pringle maneuver 1.217 0.394–3.763 0.733

Child-Pugh score 2.803 0.239–32.839 0.412

MELD score 1.891 1.093–3.271 0.023 1.589 1.189–2.124 0.002
ALBI score 0.955 0.355–2.725 0.931

Radscore (per 0.1 increase) 1.144 1.068–1.224 < 0.001 1.139 1.066–1.216 < 0.001
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interval (CI): 0.761–0.922) and 0.863 (95% CI 0.750–
0.975) in the training (Fig. 5A) and test datasets (Fig. 5B). 
In the training dataset, the nomogram model yielded a 
significantly higher AUC than the Child-Pugh score (P 
< 0.001), MELD score (P = 0.001), and ALBI score (P < 
0.001). Similar results were found with the test dataset 
(nomogram vs. Child-Pugh score, P < 0.001; nomogram 
vs. MELD score, P = 0.002; nomogram vs. ALBI score; 
P = 0.02). The calibration curve showed good agreement 
between the predicted and actual observations in the 
training and test datasets (Fig.  5C, D). Moreover, the p 
value of the Hosmer-Lemeshow test was 0.397 and 0.285 
in the training and test datasets, suggesting a good fit 
between the nomogram and actual observations.

Clinical use
Decision tree analysis stratified the risk for severe PHLF 
based on the Radscore, MELD score, and the extent 
of resection into three classes (Fig.  6A). For low-risk 
patients with radiomics score < − 0.247 and MELD score 
< 10 or radiomics score ≥ − 0.247 but underwent partial 
resections, the probability of severe PHLF was 18%. For 
intermediate-risk patients with radiomics score <− 0.247 
but MELD score ≥ 10, the likelihood of severe PHLF 
was 50%. Finally, for high-risk patients with radiomics 
score ≥− 0.247 that underwent extended resections, the 
probability of severe PHLF was 82%. Importantly, DCA 
(Fig. 6B) showed that our nomogram has a high potential 

for clinical application with wider threshold probabilities 
than conventional models.

Discussion
The present study established a radiomics signature for 
the individual preoperative prediction of severe PHLF for 
patients that undergo huge HCC hepatectomy. We then 
developed a clinical-radiomics nomogram comprising 
the radiomics signature and clinical predictors. The nom-
ogram model integrated three predictive variables that 
could reflect the preoperative clinical essentials, which 
yielded good predictive ability for severe PHLF. Based on 
radiomics score, MELD score, and the extent of resec-
tion, a decision tree was built, and the whole series was 
split into three risk groups.

In recent years, improved hepatic resection techniques 
and expanded surgical indications have acted as a prel-
ude to an increase in extensive liver resection, lead-
ing to a higher risk of PHLF. Single-center studies have 
reported that the PHLF risk ranged between 25.8% and 
35.3%, while severe PHLF ranged between 11.3% and 
28% [20–23]. Due to large tumor diameters and major 
vascular invasion, approximately 62% to 80% of patients 
with huge HCC undergo major or extensive liver resec-
tion leading to morbidity and mortality rates in the range 
of 10.9–43.6% and 4.2–18.1% [24–27]. Therefore, estab-
lishing an individualized prediction model for PHLF in 
patients with huge HCC is critical.

Fig. 4  The radiomics nomogram was developed by incorporating the Radscore, the MELD score, and the extent of resection
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Fig. 5  Assessing the accuracy of the nomogram model and comparison with conventional methods. The nomogram showed a significantly 
higher discrimination power than Radscore, MELD score, ALBI score, and Child-Pugh score for predicting severe PHLF in the training (A) and test (B) 
datasets. The calibration curves demonstrated good agreement between the radiomics nomogram predicted and actual observation in the training 
(C) and test (D) datasets

Fig. 6  Clinical use. A The decision tree stratified the risk for severe PHLF into three classes. B DCA showed that the nomogram had wider threshold 
probabilities and yielded more net benefit than conventional models
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Radiomics is a high-throughput data mining method 
that involves extracting features from medical images 
and is extensively used in oncological studies. Radi-
omics quantitatively assesses tumor heterogeneity by 
reflecting the distribution of gray level values and spatial 
arrangement of the pixels. Besides, in recent years, it has 
gradually been applied for the study of non-oncological 
diseases. In chronic liver diseases, studies have demon-
strated the potential benefits of radiomics in assessing 
liver parenchyma heterogeneity, reflecting architectural 
disturbance to predict liver function [28]. For instance, 
radiomics of shear wave elastography, MRI, and CT 
have been used to assess liver fibrosis quantitatively and 
have shown good diagnostic accuracy, irrespective of the 
imaging modality [15, 16, 29]. Furthermore, radiomic fea-
tures have been used to predict the occurrence of PHLF. 
In this regard, a study by Pak [30] reported that the liver 
parenchyma in patients with PHLF exhibited a more 
heterogeneous appearance, with wide variations in pixel 
intensities. In contrast, a more homogenous liver appear-
ance was documented in normal patients. Importantly, 
with the help of machine learning, significant features 
can be selected and established as radiomics signatures. 
In a study by Cai et  al. [31] where the radiomics score 
was calculated using CT-based higher-order wavelet fea-
tures, the AUCs for the prediction of PHLF were 0.82 
and 0.76 in the training and validation groups, respec-
tively. Besides, Zhu et  al. [32] reported an MRI-based 
radiomics model which combined first order and texture 
features associated with PHLF, resulting in an accuracy 
of 80.9% during validation. Similarly [33], a liver failure 
model developed by Chen et al. incorporated PLT count, 
tumor size, and radiomics features from Gd-EOB-DTPA-
enhanced MRI images and yielded better performance 
than the conventional clinical model. We reviewed these 
studies and compared the outcomes in Supplementary 
Table  2. Unlike these studies, grade A PHLF was not 
included in our study since patients with grade A PHLF 
tended to be asymptomatic and did not require specific 
treatments. Based on our experience, we are convinced 
that predicting symptomatic grade B or C PHLF is more 
valuable to guide surgeons during the decision-making 
process.

Herein, various prediction models from the literature 
were compared to our model. Indeed, conventional scor-
ing systems, in combination with laboratory biochemi-
cal parameters, have valuable diagnostic value. However, 
conventional scoring systems only provide a rough esti-
mate of liver function. Moreover, a single scoring system 
often does not fully capture the liver function status. To 
accurately predict PHLF, integrated models that consider 
patient, liver, and surgery-related risk factors are needed 
[34]. To this end, we established a combined nomogram 

model that integrated radiomics score and other clini-
cal factors. In our nomogram model, three independ-
ent indicators, including radiomics, MELD, and extent 
of hepatectomy, were incorporated during multivariate 
logistic regression. The radiomics score was calculated 
using wavelet and liver shape features. The wavelet fea-
tures exhibited higher weights in the radiomics score, 
and evidence has shown that wavelet transformation 
can further reflect the spatial heterogeneity across mul-
tiple dimensions [35]. Even though the MELD score has 
been criticized for several reasons, evidence shows that 
it presents good predictive accuracy for severe liver dis-
eases [8]. Besides, numerous studies demonstrate that 
the MELD score is a significant factor in predicting PHLF 
and can be integrated with other factors to enhance the 
prediction accuracy [36, 37]. It has been established that 
extended hepatectomy is a risk factor for PHLF [22]. 
Moreover, the incidence of PHLF is reported to increase 
with the number of segments resected [38].

In our study, a decision tree was built to further assist 
clinical decision-making by using these factors as deter-
minants for risk stratification. As the root node of the 
decision tree, the radiomics score was the most impor-
tant factor associated with severe PHLF, according to the 
results of multivariate regression analysis. The cutoff of 
the radiomics score was − 0.247. Patients that under-
went extended resections with a radiomics score greater 
than − 0.247 were classified as high risk and experienced 
an 82.1% risk of severe PHLF. The above findings sug-
gest that the decision to perform surgery should be made 
with caution, and local treatment approaches should be 
considered. For patients with an intermediate risk, with 
a radiomics score < − 0.247 but MELD score ≥ 10, addi-
tional clinical and diagnostic information is required to 
determine whether hepatectomy will confer additional 
benefit. Clinical decision-making is straightforward for 
low-risk patients if there is evidence that the patient can 
benefit from surgery. We advocate that the decision tree 
model is easy to understand and manipulate by generat-
ing a set of “if-then” rules. Most importantly, the classifi-
cation results can simplify the decision-making process.

One major limitation of this study is the retrospective 
nature that may be a source of selection bias. Another 
limitation is the lack of external validation using data 
from other hospitals. Therefore, further prospective 
multi-institutional studies should be conducted to assess 
the value of the radiomics nomogram in predicting 
severe PHLF and increase the robustness of our findings.

Conclusion
The proposed clinical-radiomics nomogram, which 
integrates a radiomics signature and clinical predic-
tors, yielded satisfactory discrimination and calibration 
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power in predicting severe PHLF. The radiomics nomo-
gram combined with the decision tree potentially pro-
vides alternative clinical prediction and decision-making 
methods for hepatectomy in patients with huge HCC. We 
hypothesize that this radiomics nomogram and decision 
tree play an important complementary role in predicting 
severe PHLF in patients with huge HCC after hepatec-
tomy and improve the patient-selection criteria.
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