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Abstract 

Background:  Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites (SRMS) is a 
non-receptor tyrosine kinase that has been found to be overexpressed in various tumors. However, the role of SRMS in 
colorectal cancer (CRC) has not been well established.

Methods:  We evaluated the expression levels of SRMS in CRC using GEPIA, Oncomine, and HPA datasets. Survival 
information and gene expression data of CRC were obtained from The Cancer Genome Atlas (TCGA). Then, the asso-
ciation between SRMS and clinicopathological features was analyzed using UALCAN dataset. LinkedOmics was used 
to determine co-expression and functional networks associated with SRMS. Besides, we used TISIDB to assess the cor-
relation between SRMS and immune signatures, including tumor-infiltrating immune cells and immunomodulators. 
Lastly, protein-protein interaction network (PPI) was established and the function enrichment analysis of the SRMS-
associated immunomodulators and immune cell marker genes were performed using the STRING portal.

Results:  Compared to normal colorectal tissues, SRMS was found to be overexpressed in CRC tissues, which was 
correlated with a poor prognosis. In colon adenocarcinoma (COAD), the expression levels of SRMS are significantly 
correlated with pathological stages and nodal metastasis status. Functional network analysis suggested that SRMS 
regulates intermediate filament-based processes, protein autophosphorylation, translational initiation, and elongation 
signaling through pathways involving ribosomes, proteasomes, oxidative phosphorylation, and DNA replication. In 
addition, SRMS expression was correlated with infiltrating levels of CD4+ T cells, CD56dim, MEM B, Neutrophils, Th2, 
Th17, and Act DC. The gene ontology (GO) analysis of SRMS-associated immunomodulators and immune cell marker 
genes showed that they were mainly enriched in the immune microenvironment molecule-related signals. Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of these genes indicated that they are involved in 
multiple cancer-related pathways.

Conclusions:  SRMS is a promising prognostic biomarker and potential therapeutic target for CRC patients. In par-
ticular, SRMS regulates CRC progression by modulating cytokine-cytokine receptor interaction, chemokines, IL-17, and 
intestinal immune networks for IgA production signaling pathways among others. However, more studies are needed 
to validate these findings.
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Introduction
Globally, CRC is one of the most prevalent malignancies 
and the fourth leading cause of cancer-related mortality, 
resulting in almost 900,000 annual mortality [1]. The high 
incidence of colorectal cancer is correlated with age, diet, 
race, lifestyle, genetic alteration, and other factors. Since 
the early symptoms of colorectal cancer are not typical, 
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about 25% of colorectal cancers present distant metasta-
sis at the time of initial diagnosis [2]. Currently, the major 
therapeutic options for CRC include surgery, chemo-
therapy, radiotherapy, biotherapy, and immunotherapy. 
However, the 5-year survival outcomes for advanced 
CRC patients are approximately 10% [3, 4]. Identification 
of genes associated with tumor formation and metastasis 
will provide new ideas and targets for anti-CRC therapy.

Src-related kinase lacking C-terminal regulatory tyros-
ine and N-terminal myristoylation sites (SRMS) encode 
a 53-kDa non-receptor tyrosine kinase protein that was 
first cloned in mouse neural precursor cells [5]. SRMS 
is composed of 488 amino acids, which has a similar 
structure to Src family kinases. Its functional regions 
are composed of a Src homology 3 (SH3) domain, a Src 
homology 2 (SH2) domain, and a protein kinase domain 
[6]. These domains are important in mediating a series of 
intra-molecular or inter-molecular interactions as well 
as downstream signal transductions. The non-receptor 
tyrosine kinase plays an important role in the regulation 
of cell growth, proliferation, and invasion by activating 
the downstream substrate to initiate tyrosine phospho-
rylation [7]. Compared with other members of the non-
receptor tyrosine kinase family, the roles and functions of 
SRMS are still in the early stages. A recent review article 
noted that SRMS was overexpressed in six breast cancer 
cell lines and its levels were elevated in breast tumors 
compared to adjacent normal tissues [8]. In addition, a 
proteomic study of gastric cancer patients showed that 
SRMS was the only differentially expressed kinase [9]. 
However, the expression levels and biological functions 
of SRMS in CRC have not been clearly elucidated.

In this study, we evaluated and validated the expres-
sion levels and prognosis value of SRMS in CRC through 
multiple independent cohorts. Then, the relationship 
between SRMS expression levels and clinic-pathological 
features such as histological grade and metastasis were 
systemically determined. In addition, we performed co-
expression analysis and assessed the gene sets associated 
with SRMS in CRC through gene set enrichment analysis 
(GSEA). Lastly, we assessed the roles of SRMS in tumor 
immunity.

Materials and methods
SRMS differential expression and proggesnosis analysis
GEPIA (http://​gepia.​cancer-​pku.​cn/) is a database used 
to perform comprehensive and customizable functions 
using TCGA and GTEx data [10]. It includes 9736 tumor 
and 8587 normal samples. We used GEPIA to analyze the 
mRNA expression levels of SRMS in tumor and normal 
CRC tissue samples. The Y-axis represents the average 
log2 abundance in transcripts-per-million (TPM). DNA 
copy number variations (CNV) of SRMS in CRC and 

normal tissues were examined using the Oncomine 4.5 
database. Oncomine (https://​www.​oncom​ine.​org/) is the 
largest cancer microarray database and data-mining plat-
form [11]. It contains 715 datasets and 86,733 samples. 
The screening conditions were set as ① gene: “SRMS”;② 
analysis type: “cancer VS normal analysis”; ③ cancer 
type: “Colorectal cancer”; ④ data type: “mRNA”; and ⑤ 
P value < 0.05, fold change > 2, gene rank = top 10%.

Subsequently, we compared SRMS protein expression 
levels between CRC tissues and normal colorectal tis-
sues in the Human Protein Atlas (HPA) database. The 
HPA database (https://​www.​prote​inatl​as.​org/) is aimed 
at mapping IHC-based protein expression profiles in 
cancerous and normal tissues as well as in cell lines [12]. 
Protein expression score is based on immunohistochemi-
cal data manually scored with regard to staining inten-
sity (negative, weak, moderate, or strong) and fraction 
of stained cells (< 25%, 25–75%, or > 75%). For prognostic 
analysis, the gene expression profiles and clinical infor-
mation for CRC patients were obtained from the TCGA 
database. Kaplan-Meier survival curves were plotted with 
R 3.6.3.

UALCAN analysis
UALCAN (http://​ualcan.​path.​uab.​edu/) is a comprehen-
sive and interactive web-portal that provides an easy 
access to publicly available cancer OMICS data [13]. 
Moreover, it has gene expression profiles and patient sur-
vival information. In this study, SRMS expression levels 
in various sub-groups of clinical characteristics (age, gen-
der, race, stages, histological types, and nodal metastasis 
status) were examined in UALCAN. p ≤ 0.05 was consid-
ered statistically significant.

LinkedOmics analysis
LinkedOmics (http://​www.​linke​domics.​org/​login.​php) is 
a web-based platform that includes multiple omics data 
and proteomics data based on mass spectrometry (MS) 
generated by the CPTAC [14]. The “LinkFinder” module 
of LinkedOmics was used to evaluate gene co-expres-
sions that are related to SRMS in the TCGA CRC cohort 
(n = 379). Statistical analyses were conducted using Pear-
son’s correlation coefficients and results were presented 
in form of heatmaps, scatter plots, and volcano plots. The 
expression of co-expressed genes was normalized using 
Z-score approach, Z  = (X-mean (X))/sd (X). Based on 
the median SRMS gene expression, the data were divided 
into two groups, high expression group and low expres-
sion group. The color of the bar indicates the redder the 
color, the higher the gene expression; the bluer the color, 
the lower the gene expression.

In the “LinkInterpreter” module of LinkedOmics, 
we also performed functional enrichment analysis of 
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co-expressed genes. Data from LinkFinder were used to 
perform GO and KEGG pathway enrichment analysis 
through GSEA. Rank criterion was an FDR < 0.05 and 500 
simulations.

TISIDB analysis
TISIDB (http://​cis.​hku.​hk/​TISIDB/) is a web portal 
for tumor and immune system interactions, including 
genomics and transcriptomics of 30 cancer types from 
TCGA, RNA sequencing data set of patient cohorts 
treated with immunotherapy [15]. The TCGA database 
provides a large amount of tumor public data, providing 
useful information for studying the complex interaction 
of the tumor microenvironment [16]. TISIDB has “Func-
tion,” “Literature,” “Screening,” “Immunotherapy,” “Lym-
phocyte,” “Immunomodulator,” “Chemokine,” “Subtype,” 
“Clinical,” and “Drug” modules. We used the TISIDB 
database to determine the correlations between SRMS 

expression levels and tumor-infiltrating lymphocytes 
(TILs) and immunomodulators.

STRING analysis
STRING (https://​string-​db.​org/) is a database of known 
and predicted protein-protein interactions [17]. Cur-
rently, it has 24,584,628 proteins from 5090 organisms. In 
this study, STRING was used to visualize protein-protein 
interaction networks and to predict the functions of the 
SRMS-associated immunomodulators and immune cell 
marker genes. GO and KEGG enrichment analysis was 
performed using Cluster-Profiler package 3.14.0. Proteins 
with a minimum required interaction score greater than 
or equal to 0.400.

Result
SRMS expression and prognosis in colorectal cancer
Initially, we compared mRNA expression levels of SRMS 
in GEPIA, which matched TCGA and GTEx data. mRNA 

Fig. 1  Expression and prognostic value of SRMS in CRC. A Comparison of SRMS mRNA expression levels between normal and tumor tissues in the 
TCGA and GTEx CRC cohorts, p value cutoff < 0.01, |Log2FC| Cutoff< 1. B Protein expression levels of SRMS in CRC tissues from the HPA database. 
C Protein expression levels of SRMS in non-cancerous colorectal tissues. D SRMS copy numbers in the Cancer Genome Atlas (TCGA) Colorectal 
datasets. *, p < 0.05. (E) SRMS copy numbers in Kurashina colorectal datasets. *, p < 0.05. F Kaplan-Meier survival curves reveal the prognostic value of 
SRMS in CRC​
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expression levels of SRMS were significantly elevated in 
CRC tissues than in the paired adjacent normal tissues 
(p ≤ 0.05, Fig.  1A). Moreover, from the HPA database, 
protein expression levels of SRMS were high elevation in 
tumor tissues and moderate in normal tissues (Fig.  1B, 
C). Data in the Oncomine database, including TCGA 
colorectal and Kurasgina colorectal, showed that CNVs 
of SRMS were significantly elevated in colon adenocar-
cinoma (COAD) tissues than in paired normal tissues (p 
< 0.01, Fig. 1D, E). KM-Plotter shows that SRMS overex-
pressed is associated with a poor prognosis (Fig. 1F). It is 
worth noting that a more clear difference can be found 
between the overall survivals rates within 2000 days 
among the two groups. Therefore, SRMS expression is a 
potential diagnostic and prognostic indicator for CRC.

SRMS expression in clinical characteristic sub‑groups
The association between SRMS and clinicopathologi-
cal features was further evaluated in the online cancer 
OMICS database of UALCAN. In subgroup analyses 
based on age, gender, race, clinical stage, and histologi-
cal and nodal metastasis status, the transcription level 
of SRMS was significantly elevated in CRC patients than 
in healthy individuals (p < 0.05, Figs. 2 and 3). In COAD 
patients, SRMS expression levels were positively cor-
related with clinical stages and nodal metastasis. The 
expression of SRMS in stage 4 was higher than in stage 
1 and 2 (p = 0.0028, 0.015, respectively). The expression 
of SRMS in N2 was high than in N0 (p < 0.05). In rectum 

adenocarcinoma (READ) patients, SRMS expression was 
negatively correlated with nodal metastasis. The expres-
sion of SRMS in N2 was low than in N0 (p < 0.05).

SRMS co‑expression networks in colorectal cancer
To clarify on the functional properties of SRMS in CRC, 
the “LinkFinder” module in LinkedOmics was used to 
analyze the co-expression networks of SRMS. As shown 
in the volcano plot (Fig.  4A), a total of 2176 genes (red 
dots) were significantly positively correlated with SRMS 
while 1368 genes (green dots) were significantly nega-
tively correlated (p < 0.05). The left and right heatmaps 
show the top 50 genes that were positively and negatively 
correlated with SRMS, respectively (Fig.  4B, C). SRMS 
expression was positively correlated with the expression 
of C20orf195 (positive rank #1, r = 0.389, p = 3.90E-15), 
HES2 (r = 0.301, p = 2.20E-9), PTK6 (r = 0.300, p = 3.04E-
9), and SYNGR3 (r = 0.300, p = 2.43E− 9), and nega-
tively correlated with the expression of PNRC2 (negative 
rank #1, r = − 0.247, p = 1.16E− 6), STMN1 (r = − 0.246, 
p = 1.20E− 6), and EPHX1 (r = − 0.234, p = 4.04E− 6).

GO biological process analysis by GSEA showed that 
co-expressed genes were mainly involved in the interme-
diate filament-based processes, epidermis development, 
and protein autophosphorylation (Fig.  4D). In contrast, 
translational initiation and elongation, mitochondrial 
gene expression, and cytoplasmic translation were inhib-
ited. KEGG pathway analysis by GSEA showed enrich-
ment in inositol phosphate metabolism, ribosomes, 

Fig. 2  SRMS transcription levels in subgroups of patients with colon adenocarcinoma. A age, B gender, C race, D clinical stages, E histological types, 
F nodal metastasis status. Data are mean ± SE. *, p < 0.05; **, p < 0.01; ***, p < 0.001
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proteasomes, oxidative phosphorylation, and DNA repli-
cation among others (Fig. 4E).

Association between SRMS and immune signatures
Figure  5 shows that some immune subsets were associ-
ated with SRMS mRNA expression levels in COAD and 
READ. The 7 types of tumor-infiltrating lymphocytes that 
exhibited important correlations with SRMS in COAD 
included activated CD4+ T cells (Act CD4; Spearman: 
r = − 0.196, p = 2.37e− 05), CD56 dim natural killer cells 
(CD56 dim, Spearman: r = 0.283, p = 7.68e− 10), memory 
B cells (MEM B, Spearman: r = − 0.115, p = 0.0137), neu-
trophils (neutrophil, Spearman: r = 0.102, p = 0.0293), 
effector memory CD4+ T cells (Tem CD4, Spearman: 
r = − 0.296, p = 1.17e− 10), type 2 T helper cells (Th2, 
Spearman: r = − 0.187, p = 5.98e− 05), and type 17 T 
helper cell (Th17, Spearman: r = 0.23, p = 6.6e− 07).

The 5 types of tumor-infiltrating lymphocytes that 
exhibited important correlations with SRMS in READ 
included activated dendritic cells (Act DC, Spearman: 
r = 0.23, p = 6.6e− 07), CD56 dim natural killer cells 

(CD56 dim, Spearman: r = 0.214, p = 0.006), effector 
memory CD4 T cells (Tem CD4, Spearman: r = − 0.188, 
p = 0.011), type 2 T helper cells (Th2, Spearman: 
r = − 0.187, p = 0.0213), and type 17 T helper cells (Th17, 
Spearman: r = 0.178, p = 0.021).

Moreover, we identified 19 immunostimulators 
(C10orf54, CD276, CD28, CD70, CXCL12, ENTPD1, 
IL6R, KLRK1, RAET1E, TMRM173, TMIGD2, ULBP1, 
TNFRSF13B, TNFRSF14, TNFRSF18, TNFRSF25, 
TNFRSF4, TNFSF4, and TNFSF9) and 8 immuno-inhibi-
tors (ADORA2A, BTLA, CD160, KDR, LGALS9, PVRL2, 
TGFB1, and TGFBR1) that were significantly associated 
with SRMS in CRC (Fig. 6A, B).

Immune signatures associated with the SRMS gene
The SRMS-associated 27 immunomodulators and 
191 immune cell marker genes were analyzed in the 
STRING database to validate functional connectivity. 
From the STRING database, we obtained the SRMS-
associated immune gene PPI network (enrichment p 
value < 1.0e− 16) of a total of 214 nodes and 829 edges, 
which represented proteins and functional interactions 

Fig. 3  SRMS transcription levels in subgroups of patients with rectum adenocarcinoma. A age, B gender, C race, D clinical stages, E histological 
types, F nodal metastasis status. Data are mean ± SE. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns (non-significant), p > 0.05
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(Fig.  6C). Next, we performed GO and KEGG enrich-
ment analysis for these genes. The GO terms within 
the biological processes (BP), cell components (CC), 
and molecular function (MF) categories are shown in 
Fig. 6E. GO analysis showed that these genes were mainly 
enriched in the immune microenvironment molecule-
related signals. Consequently, we probed the signal-
ing pathways through which SRMS regulates immune 
responses in CRC. Figure 6D shows the top 20 enriched 
KEGG pathways, including cytokine-cytokine receptor 
interaction, chemokine, Th17 cell differentiation, IL-17, 
and intestinal immune network for IgA production. 
These signaling pathways may be related to SRMS-medi-
ated immune events.

Discussion
It is important to understand the basic mechanism of 
cancer occurrence at the gene level for increasing the effi-
ciency of cancer therapy. In the present study, SRMS was 
highly expressed in CRC tissues compared to paired nor-
mal tissues.

A higher SRMS expression level was significantly 
associated with late TNM stages, more lymph node 
metastasis in COAD, but not with age, gender, race, his-
tological. In READ, there was no significant association 
between the SRMS expression and patients’ age, gender, 
race, clinical stage, and histological. Moreover, SRMS 
expression was correlated with many immune cells and 
immunostimulators, and these immune signatures were 
focused on inflammation and cancer signaling pathways.

Tumor occurrence is closely associated with cell pro-
liferation, differentiation, and apoptosis. Non-receptor 
tyrosine kinases, including PTK6 (protein tyrosine kinase 
6), FAK (focal adhesion kinase), and Jak (janus kinase) 
are involved in cell differentiation, apoptosis, and prolif-
eration through their interactions with transmembrane 
receptors [18]. PTK6 is the most studied member of the 
non-receptor tyrosine kinase family. Important roles of 
PTK6 in various cancers, including breast, prostate, and 
colon cancers have been reviewed [19]. SRMS and PTK6 
genes are closely linked on the chromosome. Addition-
ally, SRMS has been shown to biochemically interact 
with PTK6, which phosphorylates the C-terminus of 
PTK6 [20]. It has been reported that PTK6 expression is 
highest in normal colon epithelial tissues and decreases 
during colon tumor progression [21].

In the present study, we found that proteins, CNVs, 
and mRNA expression levels of SRMS were significantly 
elevated in CRC than in normal colorectal tissues. Copy 
number variants play a significant role in genetic varia-
tions and evolution, and can also cause genetic diseases 
and cancer [22]. We also found that elevated SRMS 
expression levels were correlated with poor prognostic 

outcomes, which may be involved in CRC progression. 
In addition, high expression levels of SRMS have been 
associated with advanced clinical stage and lymph node 
metastasis in COAD. However, SRMS expression was 
negatively correlated with nodal metastasis in READ. 
There are probably several reasons for this pattern: (1) 
The differences in anatomical location and biological 
function between COAD and READ. Studies have shown 
that right colon cancer patients had significantly higher 
gene mutation than left colon and rectum cancer patients 
[23]; (2) With lymph node metastasis, the exertion effects 
of some tumor suppressor factors reduce the expres-
sion of SRMS; (3) The number of cases with READ in 
UALCAN is relatively small. A larger sample size would 
obtain more robust and reliable statistic. Therefore, more 
clinical cohorts are needed to validate SRMS as a diag-
nostic or prognostic marker in CRC.

Within the gene co-expression network of SRMS, we 
identified genes that were significantly positively cor-
related, such as C20orf195, HES2, PTK6, and SYNGR3. 
C20orf195, also known as fibronectin type III domain-
containing 11, is mainly expressed in the testis. Regretta-
bly, its role in human disease is still unknown. HES genes 
are Notch downstream target genes, which could reflect 
expression levels of Notch signals [24]. Aberrant activa-
tion of Notch signaling has been associated with various 
tumors, such as breast and colorectal cancers [25, 26]. As 
mentioned earlier, PTK6 and SRMS have a close relation-
ship. PTK6 is mainly expressed in epithelial tissues, with 
the highest levels in gastrointestinal linings [27]. In the 
azoxymethane model, PTK6 promoted STAT3 activation 
to promote survival and proliferation of damaged cells 
and colon tumorigenesis [28]. SYNGR3 is a synaptic ves-
icle-associated protein that interacts with the dopamine 
transporter. There are studies indicating that SYNGR3 
may serve as a potential biomarker for the diagnosis and 
treatment of malignant tumors [29, 30].

We also found that SRMS expression was negatively 
associated with PNRC2, STMN1, and EPHX1 levels in 
the co-expression network. PNRC2, belonging to the 
PNRC family, was first found in breast cancer. In colorec-
tal cancer, PNRC2 is expressed at low levels and PNRC2 
upregulated can inhibit cell proliferation, migration, 
invasion, and EMT [31]. STMN1 is a major cytosolic 
phosphoprotein that regulates cell spindle formation 
and microtubule dynamics. Overexpression of STMN1 
blocks the invasion of cancer cells and induces cancer 
cells growth arrest at the G2/M phase checkpoint [32, 
33]. EPHX1, which mainly localizes in the endoplasmic 
reticulum, is a biotransformation enzyme. However, 
EPHX1 has been less studied in tumors. It is considered 
to be well associated with the anti-epileptic drug resist-
ance [34].
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In addition, co-expression functional networks were 
found to be mainly involved in protein autophosphoryla-
tion, translational initiation and elongation, mitochon-
drial gene expression, and cytoplasmic translation. Thus, 
the SRMS co-expression network is involved in post-
transcriptional regulation, which is closely associated 
with protein translation and phosphorylation.

KEGG analysis showed the SRMS co-expression genes 
mainly enrichment in the ribosomal, proteasomal, oxi-
dative phosphorylation, and DNA replication pathways. 
Ribosomes, comprised of ribonucleoprotein and non-
coding ribosomal RNAs in eukaryotes, are conserved 
molecular structures required for protein synthesis [35]. 
Cancer development and progression are associated 
with ribosomal dysregulation, which affects the expres-
sion of key factors involved in tumorigenesis [36]. It has 
been reported that a single ribosomal assembly factor 
promotes lung adenocarcinoma progression through the 
Notch signaling pathway [37]. The proteasome pathway 
is one of the major mechanisms of protein degradation. 
Among these mechanisms, 26S proteasomes are the 
most active isoforms that are involved in cell cycle pro-
gression, apoptosis, and transcription [38]. Therefore, 
they are potential targets for anticancer therapy. Sup-
pressed oxidative phosphorylation is a basic feature of 
tumor cells and tumors [39]. Huang et  al. showed that 
LYRM2 directly interacts with complex I and enhances 
its activity, thereby promoting oxidative phosphoryla-
tion to induce colorectal cancer cell growth [40]. Since 
co-expressed genes share functions and affect each other, 
SRMS may play a role in CRC occurrence and progres-
sion through the above factors.

In the TISIDB database, we found that the Reactome 
pathway of SRMS was mainly involved in the immune 
system. Moreover, SRMS expression levels were posi-
tively correlated with infiltration levels of CD56dim, 
neutrophils, and Th17 and negatively correlated with Act 
CD4, MEM B, Tem CD4, and Th2 in CRC. There were 
studies that some TILs can promote lymph node invasion 
[41]. Moreover, tumor-infiltrating immune cell patterns 
are associated with cancer initiation and prognosis. For 
instance, neutrophils and Th17 have been shown to cor-
relate with a poor prognosis in colorectal carcinoma [42, 
43]. Given that TILs are critical for immunosurveillance 
and immunotherapy, SRMS potentially serves as a prom-
ising target to shape the immune microenvironment in 

colorectal cancer. In addition, we identified the immu-
nomodulators that were significantly associated with 
SRMS in CRC. Tumor cells utilize various immune 
escape mechanisms, creating a microenvironment that is 
favorable for tumor growth and metastasis [44]. Immu-
nomodulators have the potential for cancer treatment.

The biological functions of these SRMS-associated 
immune genes were explored using GSEA enrichment 
analyses. The enrichment of GO biological processes 
suggested that these genes mainly regulated immune 
microenvironment molecules by affecting their activa-
tion, migration, and adhesion, etc. Moreover, cell compo-
nents showed that these genes were enriched in various 
membranes such as secretory granule membrane and 
anchored component of membrane. In addition, molec-
ular function analysis showed that these genes chiefly 
regulate cytokines, receptor, and bind with various 
structures, such as carbohydrate, chemokine, and tumor 
necrosis factor receptor superfamily.

KEGG pathway analysis of SRMS-associated immu-
nomodulators and immune cell marker genes revealed 
that cytokine-cytokine receptor interaction, chemokine, 
Th17 cell differentiation, IL-17, and intestinal immune 
network for IgA production may be involved in SRMS-
mediated immune responses. Cytokine-cytokine recep-
tor interaction is related to the viability and apoptosis 
rate of colon cancer cell lines [45]. It has been reported 
that the CXCL5 chemokine enhances the migratory and 
invasive properties of colorectal cancer cells by inducing 
epithelial-mesenchymal transition [46]. Chemokine sign-
aling systems play critical roles in either the promotion 
or inhibition of tumor growth, proliferation, angiogen-
esis, or metastasis [47]. Aberrated activation of intestinal 
immune networks for IgA production signaling pathway 
promotes tumorigenesis [48]. IL-17 promotes tumor 
development through chronic tissue inflammation sig-
nals. In ETBF-colonized Min-CD4Stat3−/− mice, IL17 
blockade can significantly reduce colon cancer forma-
tion [49]. For many cancers, Th17-cell signatures (RORC, 
IL17, IL23, STAT3) are correlated with the worse clinical 
outcomes [50]. Therefore, it is biologically plausible that 
SRMS promotes tumor immunity by regulating multiple 
signaling pathways. This study provides the first evidence 
for the link between SRMS and tumor immunity, opening 
up more avenues for CRC research.

(See figure on next page.)
Fig. 4  SRMS co-expression genes in CRC. A SRMS correlated genes in CRC were analyzed by the Pearson test. Red dots represent positively 
correlated genes dots while green represent negatively correlated genes. B Heatmaps of the top 50 genes that were positively correlated with 
SRMS. C Heatmaps of the top 50 genes that were negatively correlated with SRMS. D GO annotations: biological processes of SRMS co-expression 
genes. E KEGG pathways analysis of SRMS co-expression genes
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Fig. 4  (See legend on previous page.)
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This study has several limitations. First, the data we 
analyzed were obtained from several public datasets, 
which is a lack of validation data. Second, the mecha-
nisms of SRMS-mediates tumor immunity were not fully 
evaluated. More clarification and basic data are required 
to better assess the potential relationships between 
SRMS and CRC.

Conclusion
In summary, the present study demonstrated for the first 
time that SRMS is overexpressed and associated with 
an adverse clinical outcome in CRC. Moreover, SRMS 
expression levels were significantly correlated with vari-
ous immune signatures. These findings indicate that 
SRMS might play a role in the control of tumor immune 
microenvironments.
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Fig. 6  Identification and analysis of immune signatures associated with SRMS. A The heatmap shows the correlation between SRMS and 
immune-stimulators. B The heatmap shows the correlation between SRMS and immune-inhibitors. C Protein-protein interaction network 
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immunomodulators and immune cell marker genes, respectively, where larger dot sizes are related with higher gene counts and a darker red color 
is correlated to lower P value
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