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Abstract 

Background:  The characteristics of immune-related long non-coding ribonucleic acids (ir-lncRNAs), regardless of 
their specific levels, have important implications for the prognosis of patients with bladder cancer.

Methods:  Based on The Cancer Genome Atlas database, original transcript data were analyzed. The ir-lncRNAs were 
obtained using a coexpression method, and their differentially expressed pairs (DE-ir-lncRNAs) were identified by 
univariate analysis. The lncRNA pairs were verified using a Lasso regression test. Thereafter, receiver operating char-
acteristic curves were generated, and an optimal risk model was established. The clinical value of the model was 
verified through the analysis of patient survival rates, clinicopathological characteristics, presence of tumor-infiltrating 
immune cells, and chemotherapy efficacy evaluation.

Results:  In total, 49 pairs of DE-ir-lncRNAs were identified, of which 21 were included in the Cox regression model. A 
risk regression model was established on the premise of not involving the specific expression value of the transcripts.

Conclusions:  The method and model used in this study have important clinical predictive value for bladder cancer 
and other malignant tumors.
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Background
The incidence and mortality of bladder cancer (BLCA) 
were approximately 500,000 and 200,000 worldwide, 
respectively, in 2020 [1]. Muscle-invasive bladder cancer 
(MIBC) accounts for approximately 25% of patients with 
BLCA [2]. Bacillus Calmette–Guérin, a type of Mycobac-
terium, reportedly prevents recurrence in patients with 
non-muscle–invasive bladder cancer, with the majority 
progressing to the MIBC subtype. With the development 
of immune checkpoint inhibitors (ICIs), patients who 

have been treated with pembrolizumab as second-line 
therapy during the KEYNOTE045 trial [3, 4] reportedly 
achieve approximately 10.3-month survival with an anti-
tumor response (objective response rate) of 21.1%, which 
is greater than that in the chemotherapy group (11%). In 
addition, ICIs (atezolizumab and pembrolizumab) have 
been confirmed to be effective as first-line therapy, based 
on the results of NCT02108652 [5] and KEYNOTE052 
[6] phase II clinical trials. Therefore, the European Medi-
cines Agency (EMA) and the U.S. Food and Drug Agency 
have approved atezolizumab and pembrolizumab as first-
line treatments for metastatic cisplatin-ineligible MIBC, 
restricted to cisplatin-unfit patients with PD-L1-high 
tumors. Although PD-L1 is a predictor of efficacy [7], 
other useful biomarkers related to ICIs for patients 
with BLCA need to be further explored to guide clinical 
practice.
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Long non-coding RNAs (lncRNAs), with a transcript 
length of more than 200 nucleotides, are abundant, occu-
pying more than 80 human transcripts [4]. Recently, 
lncRNAs have been considered significant regulators of 
organic biological processes, including normal devel-
opment and tumorigenesis. For example, the urothe-
lial carcinoma-associated lncRNA (UCA1) [8], which is 
overexpressed in BLCA compared with healthy tissues, 
was reportedly associated with cisplatin sensitivity by 
modulating miR-196a-5p via the regulation of CREB. In 
addition, some lncRNAs have been reported to regulate 
the tumor microenvironment by targeting genes impli-
cated in the function of immune cells [9–11]. Moreover, 
some immune-related lncRNA (ir-lncRNA) signatures 
have been recently identified in BLCA, and their expres-
sion is associated with the survival of patients with BLCA 
[12–14]. However, all these prognostic models were 
established based on the expression of lncRNA. Here, 
we established a novel model to predict the efficacy of 
immunotherapy regardless of expression.

Methods
Data resources
RNA-seq data from The Cancer Genome Atlas (TCGA)-
BLCA project were integrated into fragments per kilo-
base million (FPKM), and the GTF files were used to 
annotate and differentiate mRNAs and lncRNAs accord-
ing to the Ensembl database (http://​asia.​ensem​bl.​org). 
The ImmPort portal database (http://​www.​immpo​rt.​org) 
was used to obtain confirmed immune-related genes and 
ir-lnRNAs by coexpression analysis.

Establishment of DE‑ir‑lncRNA pairs
The relationship between immune-related genes and 
all lncRNAs was verified by correlation tests; the highly 
correlated lncRNAs were considered ir-lncRNAs, with 
the cutoff value of correlation efficacy being > 0.5 and 
a P value of < 0.05. Thereafter, the R package “limma” 
(Bioconductor, USA) was used to detect differentially 
expressed lncRNAs (DE-lncRNAs), with the thresholds 
being defined as log fold change (FC) > 2, with a false dis-
covery rate (FDR) < 0.05.

Lasso regression analysis and construction of Cox 
regression model
For DE-ir-lncRNA pairing, if one of two markers was 
highly expressed in a sample, the sample was regarded 
as a highly expressing sample of the two DE-ir-lncRNA 
markers. DE-ir-lncRNAs were tautologically paired, and 
a 0 or 1 matrix was constructed as per the following rule: 
considering that A is equal to lncRNA B plus lncRNA C, 
A is 1 if the expression of lncRNA B is higher than that of 
lncRNA C; if not, A is defined as 0. Then, the established 

matrix was filtered. Pairs were considered unrelated to 
prognosis as long as the expression value of the lncRNA 
pair was 0 or 1. DE-lncRNA pairs were deemed to be an 
applicable match when the expression value was > 20% 
of the total pairs. The least absolute shrinkage and selec-
tion operator (Lasso) regression model [15] was con-
structed with a P value of 0.05. The lasso regression was 
performed for 1000 cycles, and for each cycle, a random 
stimulation was set up 1000 times. Next, the frequency 
of each pair in the 1000-time-repeated lasso regression 
model was recorded, and pairs with frequencies > 100 
times were selected for Cox proportional hazard regres-
sion analysis as well as the construction of the model. The 
area under the curve (AUC) of each model was calculated 
and plotted as a curve. If the curve reached the highest 
point, indicating the maximum AUC value, the calcula-
tion procedure was terminated, and the model was con-
sidered the optimal candidate.

Survival analysis
We conducted a Kaplan–Meier analysis to validate the 
accuracy of the risk model using the following R pack-
ages [16]: “survival,” “glmnet,” “pbapply,” “survivalROC,” 
“survminer,” and “heatmap.” In addition, the chi-squared 
test was used to analyze the relationship between the risk 
model and clinical characteristics, and the Wilcoxon test 
was used to evaluate risk score differences among the 
clinical groups.

Immune infiltration status analysis
We applied novel methods, including TIMER (http://​cistr​
ome.​org/​TIMER/), CIBERSORT, XCELL, QUANTISEQ, 
MCPcounter, and EPIC, to calculate the immune infil-
tration status of BLCA. The Wilcoxon signed-rank test 
was then applied to calculate the differences in infiltrat-
ing immune cells between the high- and low-risk groups. 
Subsequently, the relationship between the risk score val-
ues and the immune-infiltrated cells was evaluated using 
Spearman’s correlation analysis. The significance cutoff 
was set at P < 0.05, and the R package “ggplot2” was used 
for this analysis.

Finally, we calculated the half-maximal inhibitory con-
centration (IC50) of common chemotherapeutic drugs 
among patients with BCLA in the TCGA-BLCA project. 
The difference between the high- and low-risk groups 
was determined using the Wilcoxon test, and results 
were obtained using the R packages “pRRophetic” and 
“ggplot2.”

Statistical analysis
The chi-squared and Fisher’s exact tests were per-
formed to detect the relationship between the risk 
score and clinical characteristics [17]. The prognostic 
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value of the risk model was assessed by determining 
the AUC of receiver operating characteristic (ROC) 
[18]. R environment and Bioconductor packages (ver-
sion 3.5.5) were used for statistical analysis, and P 
value < 0.05 was considered statistically significant 
[19].

Results
Identification of DE‑ir‑lncRNAs and construction of two 
DE‑ir‑lncRNA pairs
A flow chart of the study is shown in Fig. 1. First, we 
identified the raw data for BLCA from the TCGA pro-
ject, which comprised 19 normal and 411 tumor sam-
ples. Then, we annotated the transcriptome according 
to the Ensembl database. Consequently, a total of 1094 
ir-lncRNAs were detected (Table  S1), among which 
109 were identified as DE-ir-lncRNAs, (14 downregu-
lated and 95 upregulated; Fig. 2A). Ultimately, we con-
structed a 0 or 1 matrix to generate DE-ir-lncRNA 
pairs. In total, 4896 pairs were constructed, 251 pairs 
were identified using univariate analysis, and 49 DE-ir-
lncRNA pairs were verified by lasso regression model 
analysis. Then, we established a multi-Cox regression 
model including 21 DE-lncRNA pairs using the for-
ward method (Fig. 2B).

Establishing a risk assessment model and evaluating 
the relationship between the model and the prognosis 
of patients with BLCA
We calculated the AUCs for each ROC curve for the 21 
DE-lncRNA pairs (Fig. 3A) and detected the optimal cut-
off value, which referred to 1483 using the Akaike infor-
mation criterion [20] (AIC) values [21] (Fig.  3B). Based 
on the cutoff point, we divided the patients into high- and 
low-risk groups. To validate the cutoff value, we deline-
ated the 1-, 3-, and 5-year ROC curves, the AUC values 
of which were over 0.80 (Fig. 3C) and outlined the 5-year 
ROC curves with other clinical characteristics (Fig. 3D).

Evaluating the relationship between the risk assessment 
model and clinical characteristics
Based on the cutoff value previously defined, 156 and 
244 patients were categorized into the high- and low-risk 
groups, respectively. The risk score and survival data of 
each patient are shown in Fig. 4A and B; this result con-
firms that the clinical prognosis of the low-risk group 
was superior to that of the high-risk group. Moreover, we 
observed that patients in the low-risk group had longer 
survival than those in the high-risk group, according 
to analysis using the Kaplan–Meier method (P < 0.001) 
(Fig. 4C). Subsequently, we conducted chi-squared tests 
to elucidate the relationship between the risk of BLCA 
and clinical characteristics. The ribbon chart and ladder 

Fig. 1  Detailed flow chart of the study approach
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Fig. 2  Detection of DE-ir-lncRNAs (A) and identification of 21 DE-lncRNAs by Cox regression model (B)

Fig. 3  Proposed model comprising 21 DE-ir-lncRNA pairs related to the optimal AUC (A). All AUC values of the model were over 0.80 (B). AUC of 
1-year ROC curves was compared with common clinical characteristics (C). RiskScore (E) for 430 patients with BLCA and cutoff points shown in this 
figure were obtained by the AIC
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diagrams established using the Wilcoxon signed-rank 
test showed that age (Fig. 5B), grade (Fig. 5C), and stage 
(Fig. 5D) were significantly associated with the risk group 
(P < 0.001). In addition, age (P < 0.01, hazard ratio (HR) 
= 1.026, 95% confidence interval (CI) [1.009–1.042]), 
stage (P < 0.001, HR = 1.564, 95% CI [1.280–1.912]), and 
risk score (P < 0.001, HR = 1.154, 95% CI [1.126–1.182]) 
were statistically significant as indicated by univariate 
Cox regression model analysis (Fig. 5E) and further veri-
fied by multivariate Cox regression analysis.

Relationship between the tumor microenvironment 
and the risk model
After establishing and verifying the risk model, we inves-
tigated whether the model was relevant to the tumor 
immune microenvironment. The high-risk group was 
more significantly associated with tumor-infiltrating 
immune cells, such as macrophages, neutrophils, and 
CD8+ T cells, but negatively associated with myeloid 
dendritic cells and CD4+ T cells, as verified using the 
Wilcoxon signed-rank test (Fig.  6A). As ICIs have been 
used to treat BLCA in clinical practice, we investigated 
whether the risk model was correlated with ICI-related 
biomarkers. Overall, high-risk scores were positively 
correlated with the high expression of discoidin domain 
receptor tyrosine kinase 2 (DDR2) (P < 0.05, Fig.  6C) 
and hepatitis A virus cellular receptor 2 (HAVCR2) (P < 
0.001, Fig. 6D), whereas lymphocyte activating 3 (LAG3) 
(P > 0.05, Fig. 6E) and cytotoxic T lymphocyte associated 

protein 4 (CTLA4) (P > 0.05, Fig. 6A) showed no signifi-
cant differences.

Relationship between the risk model and clinical 
chemotherapeutics
In addition to the aforementioned immunotherapy, we 
identified the potential relationship between the risk 
model and the efficacy of common chemotherapeutics 
in treating BLCA. The analysis of the TCGA-BLCA data-
set revealed that a high-risk score was associated with 
a lower IC50 of chemotherapeutics, such as cisplatin (P 
= 0.00021, Fig. 7A), docetaxel (P < 0.0001, Fig. 7B), and 
paclitaxel (P < 0.0047, Fig. 7C). In contrast, we found that 
it was associated with a higher IC50 for metformin (P < 
0.001, Fig. 7D) and methotrexate (P < 0.001, Fig. 7E). Col-
lectively, these results demonstrate the predictive value of 
the proposed DE-lncRNA-based risk model.

Discussion
It is widely known that RNA expression (including 
mRNA and lncRNA) have crucial biological functions 
[22–24]. Some of the DE-ir-lncRNAs detected in this 
study, such as TRPM2-AS, LINC01605, AC104041.1, 
and UCA1, have been confirmed to play significant 
roles in BLCA progression. Avgeris et al. [25] reported 
that the downregulation of UCA1 was correlated with 
a higher risk of short-term relapse in BLCA. Tian et 
al. [26] reported that TRPM2-AS promoted BLCA by 
targeting miR-22-3p and regulating the expression of 

Fig. 4  Relationship between the model and patient prognosis. The risk score and survival outcome of each case are shown (A, B). Survival curves of 
different groups were plotted using the Kaplan–Meier method (C)
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GINS2. Qin et al. [27] revealed that high LINC01605 
expression promoted BLCA progression by upregu-
lating MMP9. Moreover, Lian et al. [28] established 
an 8-lncRNA signature, comprising APCDD1L-AS1, 
FAM225B, LINC00626, LINC00958, LOC100996694, 
LOC441601, LOC101928111, and ZSWIM8-AS1, as can-
didate prognostic markers for BLCA. Although various 
functions of lncRNAs have been proposed [29–32], sin-
gle lncRNAs may be biased in predicting the prognosis 
of patients with BLCA. Furthermore, previous studies 

[33–38] have shown that the combinations of two genetic 
markers are more accurate than single genes in establish-
ing prognostic cancer models. To date, few studies have 
confirmed the prognostic value of lncRNA pairs in this 
setting [39–41]. In the present study, we established a 
prognostic risk model by pairing immune-related genes 
and constructed a risk model with two lncRNA pairs 
without adopting their exact expression value. First, we 
screened the lncRNAs within the TCGA-BLCA dataset, 
selected the DE-lncRNAs, conducted a coexpression 

Fig. 5  Strip chart (A) and scatter diagrams showing that age (B), grade (C), and tumor stage (D) are significantly related to the RiskScore. The 
univariate Cox regression model analysis showed that stage (P < 0.001), age (P < 0.001), and RiskScore (P < 0.001) (E) were statistically different, 
which was further verified by the multi-Cox regression model analysis
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analysis for DE-ir-lncRNAs identification, and validated 
the obtained DE-ir-lncRNA pairs using a 0 or 1 matrix. 
Second, we applied a modified lasso penalized regres-
sion model, including the procedures of the cross, mul-
tiple repetitions of validation, and random stimulations 
to determine DE-ir-lncRNA pairs. Third, we delineated 
ROC curves and calculated the AUC values to acquire 
the optimized model. In addition, we calculated the AIC 

value of each point on the AUC to detect the best cut-
off value to differentiate the high- and low-risk groups 
among patients with BLCA. Finally, we assessed the rela-
tionship between this novel risk model and different clin-
ical parameters.

Preclinical studies have confirmed that increased infil-
tration of CD4+ or CD8+ immune cells [42–44] leads to 
a better response to ICIs. In the present study, we used 

Fig. 6  Spearman correlation analysis to detect the infiltration of different immune cells (A). High-risk scores were positively correlated with 
upregulated expression of DDR2 (C) and HAVCR2 (D), whereas CTLA4 (B) and LAG3 (E) showed no statistical difference in patients with BLCA
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various online tools, including CIBERSORT, XCELL, 
CIBERSORT-ABS, QUANTISEQ, MCPcounter, EPIC, 
and TIMER, to estimate the tumor-infiltrating cells in 
patients with BLCA, and analyzed their association with 
the predicted risk scores. Our results showed that CD4+ 
T cells, monocytes, macrophages, cancer-associated 
fibroblasts, and myeloid dendritic cells were enriched in 
the high-risk group, which may explain why the high-
risk group was related to poor prognosis. In addition, 

correlation analysis demonstrated that the high-risk 
group was positively correlated with the expression of 
some immune microenvironmental inhibitory genes, 
such as HAVCR2 and DDR2, and it had a positive corre-
lation trend with the expression of LAG3.

LINC00665 and some other lncRNAs have been shown 
to enhance the efficacy of immunotherapy in BLCA 
[45–47]. In addition, Zhang et al. [48] found that the 
lncRNA HOTAIR can inhibit 5-fluorouracil sensitivity by 

Fig. 7  Proposed model can effectively predict chemosensitivity. High risk was related to a lower IC50 for chemotherapeutics, such as cisplatin (A), 
doxorubicin (B), and paclitaxel (C), whereas was related to a higher IC50 for metformin (D) and methotrexate (E) 
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mediating MTHFR methylation, and Gu et al. reported 
that NONHSAT141924 was associated with paclitaxel 
chemotherapy resistance [49]. Overall, these findings 
demonstrate that lncRNAs may be related to chemo-
therapy resistance. Based on this, herein, we explored 
the relationship between the identified risk group and 
chemotherapy. Our risk model suggested that the high-
risk group was more sensitive to methotrexate and met-
formin, whereas the low-risk group was more sensitive to 
cisplatin, docetaxel, and paclitaxel, which was consistent 
with previous studies [50–52].

This study has some limitations. First, the raw data 
obtained from the TCGA database were relatively insuf-
ficient for an initial analysis. Second, external validation 
was necessary to verify the efficiency of the risk model 
established in this study. To overcome these limitations, 
we screened lncRNA pairs using a 0 or 1 matrix, which 
was optimal in this study. Further studies comprising 
more clinical samples are underway for further verifica-
tion of the proposed model. In summary, we defined a 
novel risk predictive model comprising ir-lncRNAs that 
does not require the exact expression of the lncRNAs. 
This may help clinicians identify patients who can benefit 
from immunotherapy.

Conclusions
This study established a lncRNA pair model with the 
exact expression to predict the prognosis of patients with 
bladder cancer, which may have significant value for clin-
ical practice.
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