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Abstract

Background: Breast cancer is the most common malignancy in women. Cancer driver gene-mediated alterations in
the tumor microenvironment are critical factors affecting the biological behavior of breast cancer. The purpose of
this study was to identify the expression characteristics and prognostic value of cancer driver genes in breast
cancer.

Methods: The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets are used as the training
and test sets. Classified according to cancer and paracancerous tissues, we identified differentially expressed cancer
driver genes. We further screened prognosis-associated genes, and candidate genes were submitted for the
construction of a risk signature. Functional enrichment analysis and transcriptional regulatory networks were
performed to search for possible mechanisms by which cancer driver genes affect breast cancer prognosis.

Results: We identified more than 200 differentially expressed driver genes and 27 prognosis-related genes. High-
risk group patients had a lower survival rate compared to the low-risk group (P<0.05), and risk signature showed
high specificity and sensitivity in predicting the patient prognosis (AUC 0.790). Multivariate regression analysis
suggested that risk scores can independently predict patient prognosis. Further, we found differences in PD-1
expression, immune score, and stromal score among different risk groups.

Conclusion: Our study confirms the critical prognosis role of cancer driver genes in breast cancer. The cancer driver
gene risk signature may provide a novel biomarker for clinical treatment strategy and survival prediction of breast
cancer.
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Background

In the past few years, the incidence of breast cancer has
been on the rise. Among all malignant tumors in
women, breast cancer ranks first with an incidence rate
of 30% [1]. Women with breast cancer have the second-
highest mortality rate, and the prognosis of patients with
different molecular types varies significantly [2—4]. For
example, the choice of drugs varies among patients with
different hormone receptor status, and patients with
triple-negative breast cancer usually have a poorer prog-
nosis [5-7]. Besides, traditional tumor staging some-
times cannot objectively represent the tumor status of
patients. Patients with the same tumor stage sometimes
have significant survival differences [8]. The heterogen-
eity of breast cancer poses a challenge for clinical treat-
ment strategy choice and prognosis prediction, while
studies of different molecular typing are expected to elu-
cidate the differences in heterogeneity and better guide
clinical treatment of breast cancer.

The journal of Nature Reviews Cancer recently re-
ported on the important role played by cancer driver
genes in the progression of tumor malignancy [9]. 568
cancer driver genes were identified through a large-scale
transcriptome analysis, which may mediate complex mo-
lecular regulatory networks and changes in the tumor
microenvironment. Aberrantly expressed cancer driver
genes may result in multiple processes such as uncon-
trolled tumor cell proliferation, invasion, recurrence, and
drug resistance [10, 11]. Zhang’s study reported the fre-
quency of mutations in the whole genes of breast cancer
[12]. The most frequently mutated genes were TP53
(45%), followed by PIK3CA (44%), GATA3 (18%), and
MAP3KI1 (10%), all of which also were identified as can-
cer driver genes. Kruse’s study [13] identified metastasis
driver genes in breast cancer by massive parallel sequen-
cing, and the cancer driver genes DCC and CREBBP
were also identified as key metastatic genes.

Tumorigenesis is often associated with alterations in the
stromal environment and immune status, mainly mani-
fested as changes in the tumor microenvironment (TME)
[14, 15]. TME plays a key role in several steps of tumor de-
velopment, including local drug resistance, immune escape,
recurrence, and distant metastasis [16, 17]. Tumor cell ex-
posure to TME also contributes to shaping the tissue-
specificity of driver genes [18]. Antibodies or inhibitors that
target driver gene-mediated signaling pathways may effect-
ively inhibit tumor growth and prolong patient survival
[19]. KRAS mutations may affect the TME and patient re-
sponse to immunotherapy [20]. Cancer driver genes and
TME determine the type of liver cancer and can be consid-
ered as predictors of patient survival outcomes [21, 22]. All
these studies provide a reference for clinical decisions.
However, there are fewer studies on cancer driver genes af-
fecting the TME and prognosis of breast cancer.
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In this study, we systematically analyzed the expres-
sion characteristics of 568 cancer driver genes in breast
cancer. We screened for risk driver molecules that affect
breast cancer prognosis, and the relationship between
risk groups with the tumor microenvironment. Our
study is expected to find novel molecular subtypes of
breast cancer for better guiding clinical treatment
strategies.

Materials and methods

Data sources

Breast cancer transcriptome data and corresponding
clinical data were downloaded from The Cancer Gen-
ome Atlas (TCGA) (https://portal.gdc.cancer.gov/) data-
base. As a training set, TCGA transcriptome data
contained a total of 112 cases of paracancerous tissues
and 1096 cases of cancerous tissues, and the clinical in-
formation of patients is shown in Table 1.

The Gene Expression Omnibus (GEO) (https://www.
ncbi.nlm.nih.gov/geo/) database serves as an external
validation of the TCGA dataset and contains two sub-
sets: GSE7390 and GSE42568. GSE42568 dataset con-
tained 17 cases of paracancerous tissues and 104 cases
of cancerous tissues. GSE7390 dataset only contained
198 cases of paracancerous tissues. Clinical information
of the GEO test set is shown in Table 2. The RNA

Table 1 Clinical features of BRCA patients (n = 1096) from
TCGA database

Variables N %
Total 1096 100.0%
Age, years

<60 582 53.1%

260 514 46.9%
Stage

Stage i 183 16.7%

Stage ii 621 56.7%

Stage iii 248 22.6%

Stage iv 20 1.8%
T classification

T 281 25.6%

T2 635 57.9%

T3 138 12.6%

T4 39 3.6%
ER status

Negative 796 72.6%

Positive 233 21.3%
PR status

Negative 688 62.8%

Positive 338 30.8%
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Table 2 Clinical features of BRCA patients (n = 302) from GEO

database
Variables GSE7390 GSE42568
N % N %
Total 198 100.0% 104 100.0%
Age, years
<60 195 98.5% 59 56.7%
260 3 1.5% 45 43.3%
Grade
Gl 30 15.2% 1 10.5%
G2 83 41.9% 40 38.5%
G3 83 41.9% 53 51.0%
ER status
Negative 64 32.3% 34 32.7%
Positive 134 67.7% 67 64.4%

transcriptome data from different platforms were nor-
malized using the “limma” and “sva” R packages.

Expression of cancer driver genes in breast cancer tissues
The list of 568 cancer driver genes was obtained from
the Integrative OncoGenomics platform (https://www.
intogen.org/search). The differentially expressed genes
(DEGs) were analyzed according to the classification of
cancerous and paracancerous tissues by using the
“limma” R package (P<0.05) in GSE42568 and TCG
datasets. Venn diagrams were drawn to summarize dif-
ferentially expressed genes both in TCGA and GEO
datasets. These DEGs are considered to be associated
with tumor progression and are used for further prog-
nostic molecular screening.

Construction and validation of the risk signature

We used the univariate Cox and Kaplan-Meier method
to screen for cancer driver genes associated with overall
survival (OS) (P<0.05) in breast cancer patients. Candi-
date genes that were both differentially expressed and
associated with OS were substituted into least absolute
shrinkage and selection operator (Lasso) Cox regression
and stepwise multivariate Cox proportional regression to
construct the risk signature. According to the risk driver
genes expression of the prognostic signature, R package
Stats was used for Principal Component Analysis (PCA).
PCA could confirm the clustering ability of the cancer
driver genes risk signature.

We used several methods to analyze the clinical value
of the risk signature. Survival curves and receiver operat-
ing characteristic (ROC) curves were used to verify the
prognostic value of different risk groups. Univariate and
multifactorial regression analyses were performed to ex-
plore the independent prognostic role of risk scores.
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Besides, we further analyzed whether age, tumor stage,
and other clinicopathology were associated with risk
scores.

Construction of transcription factor regulatory networks
and functional enrichment analysis

To clarify the possible mechanisms by which cancer
driver genes affect the progression and prognosis of
breast cancer, we constructed a transcription factor
regulatory network and gene set enrichment analysis
(GSEA). The cancer-associated transcription factors
were obtained from the Cistrome platform (http://
cistrome.org/). We screened for cancer driver genes as-
sociated with transcription factors (|[R*| > 0.3 and P <
0.05) and constructed a regulatory network using Cytos-
cape software (https://cytoscape.org/). Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses were performed with the
“enrichplot” R package, which suggests possible func-
tional and pathway sets of cancer driver genes affecting
breast cancer prognosis.

Correlation analysis of tumor microenvironment

The immune and TME scores were calculated for each
sample using single-sample GSEA (ssGSEA) algorithm
by the “gsva” R package. We first analyzed the expres-
sion levels of PD-1, stromal score, immune score, and
estimate score in different risk groups. We likewise ana-
lyzed the correlation of risk groups with 16 immune cell
scores and 13 immune-related pathway scores. These re-
sults contribute to confirm the interaction of tumor
microenvironment with cancer driver genes.

Statistical analysis

All data processing was performed on R v3.4.1 (https://
www.r-project.org/). Differences in gene expression be-
tween cancerous and paracancerous tissues were ana-
lyzed by the Wilcoxon method. The correlation between
transcription factors and cancer driver gene expression
was performed using the Pearson’s correlation coeffi-
cient method. Kaplan-Meier method verifies the impact
of the candidate driver genes on patient OS. Mann—
Whitney U test was used to compare immune or TME
scores between the high-risk and low-risk groups. Uni-
variate and multifactorial regression were used to
analyze the prognostic value of risk scores.

Results

Differentially expressed cancer driver genes in TCGA and
GEO datasets

In the TCGA cohort, the expression of 194 cancer driver
genes was higher in cancer tissues than in paracancerous
tissues (P<0.05), and 257 cancer driver genes were lower
in cancer tissues than in paracancerous tissues (P<0.05)
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Fig. 1 The differentially expressed genes in TCGA cohort and GEO cohort. A The expression of cancer driver genes between tumor tissues and
paracancerous tissues in TCGA cohort. B The expression of cancer driver genes between tumor tissues and paracancerous tissues in GEO cohort.

(Fig. 1A). The results of the GEO cohort were consistent
with the TCGA cohort, with 210 genes highly expressed
and 139 genes lowly expressed in cancer tissues (P<0.05)
(Fig. 1B, C). Most cancer driver genes are specifically
expressed in cancerous tissues, which suggest that driver
genes may be involved in multiple biological processes
in breast cancer.

Construction of a thirteen-mRNA signature for predicting
patient prognosis

Through univariate Cox and Kaplan-Meier analysis (P<
0.05), we screened 27 cancer driver genes associated with
OS in breast cancer patients (Fig. 2A). Substituting these

candidate molecules in lasso Cox regression and stepwise
multivariate Cox proportional regression, we finally con-
structed a thirteen-mRNA risk signature (Fig. 2B, C). The
coefficients for each risk genes are shown in Table 3. The

risk score for each patient can be calculated by the risk for-
mula, risk score= e (expression of BRD4*(-0.072) + expression of

BRD7%0.049 + expression of BTG1%(-0.014) + expression of CCR7*0.023 + ex-
pression of DAXX*(-0.026) + expression of DDX3X*0.024 + expression of
EGR2*(-0.024) + expression of FLT3*(-0.096) + expression of IKZF3*(-0.089)
+ expression of JAK1*(-0.020) + expression of MAX*(-0.034) + expression of

NFKBIA*(-0.009) + expression of UBE2A*0.051) Accordin g to the me-

dian values of the risk scores in the TCGA cohort, all pa-
tients were divided into high-risk and low-risk groups. PCA
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Table 3 Each gene of the thirteen-mRNA signature (AUC 0.790) was higher than other clinical features, sug-

mRNA Coefficient HR 95%Cl P gesting the high precision of the risk signature for pre-
BRD4 —0.072 0931 0.870-0.996 0.037 dicting patient survival (Fig. 3B). The results of the test
BRD7 0,049 1,050 0989-1116 0109 set were consistent with the training set. The survival of

patients in different risk groups differed significantly (P<
BTG1 -0.014 0.986 0.974-0.998 0.019 . . .

0.05), and the risk score could predict the survival of
CCR7 R RS 1.015-1.031 <0001 breast cancer patients well (AUC 0.641) (Fig. 3C, D).
DAXX —0026 0975 0950-0.999 0.049 Univariate and multifactorial regression analyses sug-
DDX3X 0024 1.024 1.007-1.041 0.007 gested that risk score could be an independent risk fac-
EGR2 0024 0976 0.948-1.006 0115 tor affecting the prognosis of breast cancer patients (P<
FLT3 ~0.09% 0909 0.824-1.002 0os4  0:05) (Fig. 3E, F). . o o

We analyzed the level of risk scores in different clinical

IKZF3 —-0.089 0915 0.851-0.984 0.017 L.

characteristics separately. The results suggest that people
JAKT —0020 0981 0.962-0.999 0042 older than 60 years, advanced tumor stage, and estrogen
MAX —0034 0967 0925-1.010 0132 and progesterone receptor-negative patients have higher
NFKBIA -0.009 0991 0.980-1.002 0.092 risk scores (P<0.05), which may represent a poorer prog-
UBE2A 0.051 1.052 1.012-1.094 0.010 nosis (Flg 4) This group belongs to the high-risk group

of the risk signature and requires more attention.

validates that the different risk groups showed a two-way
distribution, indicating the high specificity of the risk signa-
ture (Fig. 2D, E).

Survival curves were used to analyze the relationship
between risk groups and OS of breast cancer patients. In
the training set, the overall survival rate in the high-risk
group was lower than in the low-risk group (P<0.05)
(Fig. 3A). The area under curve (AUC) of the risk score

Transcription factor regulatory networks and functional
enrichment analysis

To explore the possible mechanisms by which cancer
driver genes affect breast cancer progression and prog-
nosis, we first tried to explore the co-expression network
of transcription factors and cancer driver genes. Through
Pearson’s correlation coefficient analysis (|R*|> 0.3 and P<
0.05), 206 transcription factors were associated with
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cancer driver gene expression, and DDX3X, JAK1, EGR2,
IKZF3, and CCR7 were the five most enriched cancer
driver genes (Fig. 5A). A series of twelve cancer driver
gene expressions were identified to be associated with
transcription factors, of which CCR7, BRD7, DDX3X, and
UBE2A were upregulated in breast cancer tissues, and the
others were downregulated in breast cancer tissues. Next,
all molecules were substituted into Cytoscape to map the
regulatory network (Fig. 5B).

GO and KEGG analysis suggest possible mechanisms
by which cancer driver genes impact breast cancer prog-
nosis. GO analysis showed that the functional sets of im-
mune response, T cell activity, and immune-related
receptors were significantly enriched. KEGG analysis
suggests that B cell receptor signaling pathway, T cell re-
ceptor signaling pathway, and PD-1 checkpoint pathway
were significantly enriched. These results suggest a
strong association between cancer driver genes and the
immune status, which supports our further studies on
the risk signature and tumor microenvironment.

Correlation of the risk signature with tumor
microenvironment

Alterations in the tumor microenvironment may be an es-
sential way in which cancer driver genes affect breast

cancer. We analyzed the correlation between PD-1 levels,
tumor microenvironment, and risk groups. The results
suggested that PD-1 expression levels, stromal scores, and
immune scores were higher in the low-risk group com-
pared to the high-risk group (P<0.05) (Fig. 6A-D). We
likewise analyzed the correlation of immune cells and im-
mune pathways with the risk signature, and the results
suggested that most immune function scores differed sig-
nificantly in the risk groups (P<0.05) (Fig. 6E, F).

Discussion

In the precision medicine era, the mutation and expres-
sion characteristics of breast cancer patients’ tumor ge-
nomes are playing an increasingly critical role in the
choice of therapeutic strategies [23]. Tumor heterogeneity
is the main reason for the different responses to the treat-
ment of breast cancer patients [24, 25]. Different molecu-
lar typing is used to explain breast cancer heterogeneity.
For example, estrogen and progesterone receptor status
can indicate whether a patient is suitable for endocrine
therapy [26]. In contrast, traditional tumor markers are
gradually showing their limitations, while novel markers
at the molecular level, such as mRNA, miRNA, and DNA
methylation, are being intensively investigated [27-30].
Tumor-infiltrating lymphocytes (TIL) are a heterogeneous
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population of lymphocytes [31]. Triple-negative breast
cancers have the highest degree of TIL infiltration,
followed by HER2+ breast cancers [32]. The KEYNOTE-
086 study found that abundant mesenchymal TIL was
closely associated with better efficacy of pembrolizumab
[33]. The combined consideration of PD-L1 levels in
tumor cells and immune cells predicts the possible benefit
of receiving immunotherapy in breast cancer patients [34].
Molecular targeted therapy, immunotherapy, and novel
molecular biomarkers have broadened the treatment op-
portunities for breast cancer, improving patients’ quality
of life and prolonging survival time.

The specific expression of cancer driver genes is a
major contributor to the formation of the tumor micro-
environment, which further leads to various biological
processes such as uncontrolled tumor cell proliferation,
invasion, metastasis, recurrence, and drug resistance [21,
35]. Martinez’s study analyzed the gene expression of
over 20,000 tumor samples and mapped cancer driver
gene profiles [9]. Algorithms and identification of cancer

driver genes have been intensively studied [36, 37]; how-
ever, the clinical value of newly identified cancer driver
genes has been relatively under-explored. Aberrant ex-
pression and mutations of cancer driver genes are very
common in breast cancer patients, approaching 50%
[12]. Comprehensive analysis of the clinical significance
of these genes may lead to the discovery of new clinical
biomarkers. We studied cancer driver gene expression
profiles of more than 1000 breast cancer samples and
identified cancer driver genes associated with breast can-
cer progression and prognosis. For example, Rizeq’s
study found that activation of the C—C chemokine re-
ceptor 7 (CCR7)-related complex increased tumor cell
proliferation and migration [38]. Vahidi’s study con-
cluded that CD8-positive memory T cells in tumor-
draining lymph nodes are associated with CCR7 [39].
We found the specific expression and prognostic value
of CCR7 in breast cancer. Both Niu [40] and our study
confirmed the oncogenic role of bromodomain-
containing 7 (BRD7) molecule in breast cancer. In
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general, these studies suggest the involvement of cancer
driver genes in complex tumor biological behavior and
clinically important roles. Based on the identification of
the cancer driver genes, we further constructed a
thirteen-mRNA prognostic signature with high specifi-
city and sensitivity of prediction. The survival of patients
in different risk groups differed significantly, and the risk
score was an independent risk factor in predicting breast
cancer prognosis.

Several clinical trials have demonstrated favorable re-
sults of PD-1/PD-L1 antibodies in the treatment of
breast cancer [34, 41, 42]. Targeting PD-1-related path-
ways effectively blocks immune surveillance and escape
and activates the immune response of T cells against
tumor cells [43, 44]. The stromal environment, immune
cell level, and composition are crucial in the immuno-
therapy process. Cancer driver genes can indirectly alter
the tumor microenvironment through multiple regula-
tory networks [21], but fewer studies have been con-
ducted. Raskov’s study [45] found that mutations in
some cancer driver genes could increase accessibility for
DNA targeting chemotherapeutics and reduce cytotoxic
drug resistance in colorectal cancer. In our study, KEGG
analysis revealed significant enrichment of immune-
related pathways such as T cell activation and PD-1-

related pathways, suggesting possible interactions be-
tween cancer driver genes and immunity. We found that
the survival time was longer in the low-risk group com-
pared to the high-risk group, who also had higher PD-1
expression, immune-related scores, and tumor micro-
environment scores. Our findings suggest that cancer
driver genes may be involved in the body’s immune re-
sponse and have an enhancing effect on the effectiveness
of immunotherapy.

Conclusion

In summary, we analyzed the expression profiles of 568
cancer driver genes in breast cancer and identified
driver genes associated with breast cancer prognosis.
We further constructed a risk signature to predict
breast cancer prognosis, and both the training and ex-
ternal test sets performed sensitive predictive efficacy.
Cancer driver genes may affect the biological behavior
of breast cancer by mediating transcriptional processes
and alterations in the immune and tumor microenvir-
onment. Our study confirms the critical role of cancer
driver genes in breast cancer, and it is expected to sup-
ply a reference for the prognostic stratification and
treatment strategy of breast cancer.
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