
Highlights:

1. Expression of DPYSL2 was considerably lower in LUAD than in normal tissues.
2. Investigation of multiple databases showed a high diagnostic value of DPYSL2 in LUAD.
3. DPYSL2 can independently predict the LUAD outcomes.
4. Immune-related mechanisms may be potential ways for DPYSL2 to play a role in LUAD.
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Background
Globally, lung cancer accounts for the highest number
of tumor-related deaths [1]. The most prevalent patho-
logic type of non-small cell lung cancer, lung adenocar-
cinoma (LUAD), constitutes nearly 85% of entire cases
[2, 3]. Despite the availability of multiple therapies, the
rate at which LUAD patients can survive for 5 years is
15% [1, 4]. Recent advancements in tumor immunother-
apy have prompted the continuous update of treatment
models for many types of cancer [5–8]. Immune-related
mechanisms have also been instrumental in LUAD [9].
Numerous studies have shown that immunotherapeutic
approaches, among them, programmed death-1 inhibi-
tors exhibit high tolerability and anti-tumor effects when
treating tumors [8, 9]. However, these immunotherapy
drugs have some drawbacks, including high costs and
limited benefits for specific cancer patient cohorts [10].
Compelling evidence indicates that immune cells infil-
trating tumors are linked to immunotherapy efficacy and
that biomarkers found in immune cells have significant
implications for patient outcomes [11–14]. Therefore,
further research is needed to explore new immune-
related biomarkers.

Collapsin response mediators are homo- and hetero-
tetrameric proteins that play a role in Sema3A-driven
growth cone collapse, cell migration, and promote
neuron guidance, development, and polarity [15–18].
Numerous reports have recently implicated DPYSL2
phosphorylation in the development of drug resistance
and tumor metastasis, but there are a few reports on the
involved mechanisms [19, 20]. For example, a recent
study demonstrated that DPYSL2 could inhibit stemness
and metastasis of cancer cells in breasts through
stabilization of kazal motifs-harboring proteins, e.g.,
reversion-inducing cysteine-rich proteins [21]. However,
there are few reports on DPYSL2 in other tumors.

Herein, through databases such as Oncomine, TIMER,
and others, we explored the association of DPYSL2 ex-
pression with LUAD prognosis of patients. Moreover,
DPYSL2-immune infiltration associations were assessed
with TIMER. The GSEA was applied in the TCGA-
LUAD dataset, which revealed the potential molecular
mechanism for DPYSL2. Our findings demonstrated the

prognostic function of DPYSL2 expression in LUAD pa-
tients, and the possible correlation and interaction
mechanism between DPYSL2 and immune response in
tumors.

Materials and methods
Data collection
Gene expression profiles and clinical details of 585
LUAD patients were retrieved from the TCGA database
using Xena browser (https://xenabrowser.net/datapages/
). The TCGA-LUAD cohort contained information on
59 normal tissues and 526 adenocarcinoma tissues (13
of which were duplicated).

Oncomine database analysis
We used Oncomine, a comprehensive database for the
study of tumor-related genes to assess the level of DPYS
L2 expression in different cancer types [22]. In Onco-
mine database, the specified gene was assessed for differ-
ential expression with Student’s t test. p value < 0.05,
fold change > 2, gene ranking = all, data type = all were
set as the threshold.

DPYSL2 gene expression analysis
In TCGA-LUAD, the statistical significance of the ex-
pression levels of DPYSL2 was tested in 513 LUAD tis-
sues and 59 surrounding normal tissues using unpaired
and paired t test. P < 0.05 was considered statistically
meaningful. The GEPIA database was employed for the
analysis of the DPYSL2 showing differential expression.
GEPIA is a developed interactive website that integrates
TGCA data and data from the Genotype-Tissue Expres-
sion projects [23].

Analysis of DPYSL2 protein expression
The immunohistochemical images of DPYSL2 protein in
lung adenocarcinoma and healthy lung tissues were de-
rived from the HPA database [24]. Moreover, the differ-
ence in protein expression of DPYSL2 between normal
tissues and LUAD tissues was analyzed via the UALCAN
database, a bioinformatics tool [25, 26].
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Survival analysis of DPYSL2 expression
We employed the Kaplan–Meier plotter database for
analysis of DPYSL2’s prognostic role in LUAD patients
[27]. Using the progression-free survival (PFS,n = 461)
and the overall survival (OS,n = 719) of LUAD patients,
we established the prognostic value of DPYSL2 expres-
sion. Accordingly, the median value expressed by DPYSL2
guided us in categorizing LUAD patients into high and
low groups. The 95% confidence intervals (CI), hazard ra-
tio (HR), andlog-rank Pvalues were then determined. In
addition, “survminer” and “survival” packages in R (ver-
sion 4.0.3) were applied to examine the connection be-
tween DPYSL2 level and OS in TCGA-LUAD data.

TIMER database analysis
The TIMER is an online resource that integrates 10,897
samples across 32 types of cancer in the TCGA, allowing
researchers to systematically evaluate how different im-
mune cells clinically impact various cancers [28, 29]. We
applied the TIMER to explore DPYSL2 expression and
its connection to several immune system cells (dendritic
cells, macrophages, CD8+ T cells, B cells, CD4+ T cells,
and neutrophils) in LUAD. The purity of the tumor was
also examined because it is crucial for determining im-
mune infiltration [30]. Furthermore, we applied the cor-
relation modules of TIMER to evaluate DPYSL2 level
association with genes of immune infiltrated cells.

Gene set enrichment analysis
Using the GSEA, we explored the possible mechanism of
DPYSL2 by analyzing the TCGA-LUAD dataset with
c5.all.v7.2 ontology gene sets from Molecular Signatures
Database [31]. The median values expressed by DPYSL2
were applied in categorizing the TCGA-LUAD cohort
into two groups (high and low).P adjust value < 0.05 de-
noted statistical significance.

Statistical analysis
All statistical data were analyzed in R software (version
4.0.3). We applied pairedt test and unpairedt test for
gene expression differential analysis. The diagnostic
value of DPYSL2 in LUAD was assessed via the receiver
operating characteristic (ROC) curves. The prognostic
value of DPYSL2 in LUAD was delineated via the
Kaplan–Meier plotter database. In addition, the prog-
nostic function of DPYSL2 expression was evaluated
through multivariate and univariate Cox analyses.P
value < 0.05 represented statistically significant data.

Results
Low DPYSL2 expression in LUAD
The exploration of the Oncomine database revealed
markedly lower DPYSL2 level in lung cancer tissues than
normal tissues (Fig.1A). Furthermore, analysis of the

TIMER online database indicated a significant downreg-
ulation of DPYSL2 expression in LUAD than in the
paracancerous tissues or normal lung tissues (Fig.1B; *P
< 0.05, **P < 0.01, ***P < 0.001).

Furthermore, we analyzed DPYSL2 expression in
LUAD, whereby the TCGA-LUAD data was retrieved and
applied to assess variations in mRNA levels. The unpaired
t test (Fig.1C; t value = 29.09,P = 1.63e−05) and pairedt
test (Fig.1D; t value = 13.60,P = 3.53e−22) demonstrated
low DPYSL2 expression in LUAD. Analyzing the GEPIA-
LUAD cohort yielded similar results (Fig.1G; P < 0.05).
Subsequently, we determined the protein level of DPYSL2
from HPA and CPTAC data byt test. As expected, we
found lower DPYSL2 protein expression in LUAD than in
normal tissues (Fig.1E, F;P = 2.60e−54).

DPYSL2 has a high diagnostic efficiency
We generated ROC curves for the assessment of the
diagnostic value of DPYSL2. The entire AUC for DPYS
L2 was 0.975 (95% CI 0.962–0.988), suggesting that
DPYSL2 was capable of discriminating between adjacent
tissues and LUAD tissues (Fig.2A). Additionally, sub-
group analysis showed that the diagnostic value of DPYS
L2 in I–IV stages of LUAD had AUC values of 0.978
(95% CI 0.962–0.9995), 0.993 (95% CI 0.979–1.000),
0.960 (95% CI 0.922–0.997), and 0.904 (95% CI 0.789–
1.000) respectively (Fig.2B–E). These findings suggest
that DPYSL2 exhibits high diagnostic efficiency in separ-
ating patients with LUAD from healthy subjects.

Low DPYSL2 level predict poor prognosis in LUAD
Data were analyzed using the Kaplan–Meier Plotter. Pa-
tients were classified in relation to the median DPYSL2
expression levels. Notably, low DPYSL2 expression ex-
hibited a significant correlation with poor OS (Fig.3A;
OS; hazard ratio HR = 0.42, 95% CI = 0.33–0.54, log-
rank P = 2.5e−12) and PFS (Fig.3B; PFS; HR = 0.49,
95% CI = 0.36–0.68, log-rankP = 9e−06) in LUAD pa-
tients. Similarly, low DPYSL2 expression was linked with
adverse OS in TCGA-LUAD cohort (Fig.3C; OS; HR =
0.74, 95% CI = 0.64–0.87, log-rankP = 0.009).

To further elucidate the relevance of low DPYSL2 ex-
pression on survival, we explored the interrelation in the
DPYSL2 expression with clinical characteristics of
LUAD patients. Low DPYSL2 expression had a correl-
ation with worse PFS and OS in males and females, stage
I, stage M0, and in smoking and nonsmoking LUAD pa-
tients (Table 1; P < 0.05). Furthermore, we found that
low expression predicted poor OS in stage 2 and stage
N0 patients, and PFS in stage T1 and stage N1 patients
(Table 1; P < 0.05).

R packages (survminer” and “survival”) were used to fit
the Cox regressive models. We applied the Cox analyses
to establish the prognostic significance of DPYSL2
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Fig. 1 (See legend on next page.)
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