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Abstract

Background: Gastric cancer (GC) commonly relates to dismal prognosis and lacks efficient biomarkers. This study
aimed to establish an antioxidant-related gene signature and a comprehensive nomogram to explore novel
biomarkers and predict GC prognosis.

Methods: Clinical and expression data of GC patients were extracted from The Cancer Genome Atlas database.
Univariate and multivariate Cox analyses were utilized to construct a score-based gene signature and survival
analyses were conducted between high- and low-risk groups. Furthermore, we established a prognostic nomogram
integrating clinical variables and antioxidant-related gene signature. Its predictive ability was validated by Harrell'
concordance index and calibration curves and an independent internal cohort verified the consistency of the
antioxidant gene signature-based nomogram.

Results: Four antioxidant-related genes (CHAC1, GGT5, GPX8, and PXDN) were significantly associated with overall
survival of GC patients but only two genes, CHAC1 (HR = 0.803, P < 0.05) and GPX8 (HR = 1.358, P < 0.05), were
confirmed as independent factors. A score-based signature was constructed and could act as an independent
prognosis predictor (P < 0.05). Patients with lower scores showed significantly better prognosis (P < 0.05).
Comprehensive nomogram combining the antioxidant-related gene signature and clinical parameters (age, gender,
grade, and stage) was established and effectively predicted overall survival of GC patients [3-year survival AUC =
0.680, C index = 0.665 (95% CI 0.614–0.716)]. The independent internal validation cohort verified the reliability and
good consistency of the model [3-year survival AUC = 0.703, C index = 0.706 (95% CI 0.612–0.800)].

Conclusions: Innovative antioxidant-related gene signature and nomogram performed well in assessing GC
prognoses. This study enlightened further investigation of antioxidant system and provided novel tools for GC
patient management.
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Background
In recent years, gastric cancer (GC) remains a com-
mon cancer worldwide. There are around 27,600
newly diagnosed GC patients and 11,010 GC related
deaths in the USA in 2020 [1]. Although recom-
mended life style and combined treatment have
helped improve the clinical outcome of GC patients,
general 5-year overall survival remains approximately
20% globally [2]. This poor clinical outcome of GC
patients is mainly due to the diagnosis at late stages
[3]. Therefore, it is urgently needed to find promising
biomarkers for screening patients at high risk and
build a risk model to evaluate their prognosis to
guide clinical practice.
There have been researches exploring biomarkers in-

cluding gene expression profiles emphasized in GC
prognosis, most of which demonstrated that the differ-
entially expressed genes were associated with patients
overall survival [4, 5]. In addition, more and more stud-
ies have tried to establish molecular signatures or com-
bine multiple biomarkers to present a more convincing
prediction of GC prognosis [6, 7]. Besides, nomograms
were developed incorporating these prognostic bio-
markers and clinical variables to further improve predic-
tion accuracy [8–10].
Researchers have noticed that reactive oxygen spe-

cies (ROS) and antioxidants participate in carcinogen-
esis and cancer treatment [11]. Limited ROS can be
anti-tumorigenic while excessive levels can be promo-
tive [12]. Similarly, recent studies have found conflict-
ing results about the role of antioxidants in cancer
treatment [13, 14]. Therefore, more studies are
needed to explore its functions. Meanwhile, clinical
researchers have made use of antioxidants to develop
new therapies for GC or to explain pharmacologic ac-
tion [15, 16], and some of them further studied the
expression profiles of the antioxidant-related genes in
GC, which might affect the function of ROS and anti-
oxidants [17, 18]. Antioxidant-related genes might be
promising biomarker candidates and informative to
prognostic prediction.
However, relevant studies on antioxidant-related gene

signature are few and its prognostic significance in GC
remains unexplored. Hence, in this study, based on the
data from The Cancer Genome Atlas (TCGA) database,
the predictive antioxidant-related genes were identified
and a risk model was constructed to evaluate the out-
come of GC patients, which also helps enlighten the po-
tential mechanisms of molecular antioxidant in gastric
cancer progression and offer more potential targets for
the treatment. Furthermore, a comprehensive nomo-
gram on the basis of the antioxidant-related gene signa-
ture and clinical variables was built to assess the
prognoses of GC patients effectively in clinical practice.

Methods
Data collection
Firstly, clinical information of GC patients and the gene
expression data were extracted and matched from
TCGA database (https://portal.gdc.cancer.gov/). A flow
chart was drawn to show all the analysis procedure in
this study (Fig. 1).

Screening of the differentially expressed genes
From the website of gene set enrichment analysis
(GSEA, https://www.gsea-msigdb.org/gsea/index.jsp), we
obtained four antioxidant-related gene sets (antioxidant
activity, GO antioxidant activity, GO glutathione cata-
bolic process and GO glutathione metabolic process).
Then, under the R environment, gene expression data
from TCGA database were screened and proceeded with
“limma” R package to select the differently expressed
antioxidant-related genes in GC patients [19].

Establishment of the gene signature
With “survival” R package, univariate and multivariate
Cox regression analyses were performed to select the
genes with independent prognostic value and a linear
risk score formula was established. Risk scores of all the
GC samples can be calculated as follows: risk parameter
= ∑ (expression of gene n × βn) (n represents the num-
ber of independent prognostic genes and β represents
regression coefficients). All the GC patients were
assigned risk scores and by group median risk score,
they were subsequently divided into high- or low-risk
teams. Log-rank tests and Kaplan-Meier curves of the
two groups validated the prognostic significance of the
risk score. Furthermore, we conducted overall survival
analyses in stratified subgroups to further explore the
prognostic ability of risk score by “survival” and “survmi-
ner” R package.

Construction and evaluation of the nomogram
A comprehensive nomogram predicting survival prob-
ability of GC patients was built by integrating
antioxidant-related gene signature and clinicopathologic
variables, which was conducted by “rms” R package.
Based on regression analyses, the nomogram can predict
the 3- and 5-year survival probability of GC patients. To
assess its performance, Harrell’ C-index, AUC of ROC,
and calibration curves were generated. Harrell’ C-index
is positively related to the accuracy of nomogram and an
ideal calibration graph should be close to 45-degree dot-
ted line. Besides, an internal validation from TCGA
database was performed to further confirm the feasibil-
ity. Bootstrap resampling was used in these activities.

Wu et al. World Journal of Surgical Oncology          (2021) 19:219 Page 2 of 11

https://portal.gdc.cancer.gov/
https://www.gsea-msigdb.org/gsea/index.jsp


Statistical analysis
Cox analyses aimed to select the variables with inde-
pendent prognostic value and Kaplan-Meier curve ana-
lysis was performed to evaluate clinical significance of
risk factors. Based on R software version 4.0.2 (http://
www.R-project.org/) and Excel software (Microsoft
Corporation, California), statistical analyses were prop-
erly conducted by flexible statistical methods. R packages
“limma,” “survival,” “rms,” and “survminer” were utilized
for organizing data, Cox analyses, survival analysis, and
construction of the nomogram respectively. Besides,
“pheatmap,” “ggplot2,” and “ggpubr” packages were ap-
plied for different plots. P < 0.05 was set as statistically
significant in most part of our study.

Results
Characteristics of GC patients enrolled in this study
Clinical and transcriptome data of 375 GC and 32
normal cases for subsequent analysis were selected

and matched by sample ID after they were extracted
separately from the TCGA database. The clinical in-
formation of 371 matched cases including variables of
age, gender, grade, stage, follow-up time, and survival
status and the detailed clinicopathologic features were
listed in Table 1.

Differentially expressed antioxidant-related genes
between GC and normal tissues
According to the four antioxidant-related gene sets
from GSEA, gene expressions of all specimens from
TCGA database were estimated and 62 antioxidant-
related genes were differentially expressed (30 down-
regulated and 32 upregulated) in GC tissues (Supple-
mentary Figure 1). Ranked by |logFC|, eight of the
top 10 differentially expressed genes were downregu-
lated (APOA4, GSTA3, GSTA2, GSTA1, GSTM5,
GPX3, HBA1, and HBB) and the other two genes

Fig. 1 The flow chart and the main process of analysis in this study
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(APOE and LOXHD1) were upregulated in GC
tissues.

Identification of antioxidant-related prognostic genes in
GC patients
Firstly, univariate Cox analysis was utilized to initially select
the prognostic genes associated with GC patient overall sur-
vival. Four genes, CHAC1 (HR = 0.808, P = 0.021), GGT5
(HR = 1.256, P = 0.007), GPX8 (HR = 1.349, P = 0.002), and
PXDN (HR = 1.315, P = 0.004), were correlated with GC pa-
tients overall survival significantly. Then, further multivariate
Cox regression analysis was performed and consequently,
two genes CHAC1 (HR = 0.803, P < 0.05) and GPX8 (HR =
1.358, P < 0.05) were confirmed as independent GC prognos-
tic biomarkers. It can be inferred that CHAC1 acted as a
protective role while GPX8 played a risky role.

Subsequently, the alternations in the two genes were
evaluated by testing the samples from TCGA in cBio-
Portal database (http://www.cbioprtal.org). The results
showed that 10 (2.67%) of all sequenced cases had alter-
nation. Among them, gene GPX8 contained two amplifi-
cation and four deep deletion alterations. The CHAC1
gene had 1% mutation, including one amplification, one
deep deletion, and two missense mutations (Fig. 2A).
The specific mutation sites were shown in Fig. 2B. No
mutation happens inside the domain of GPX8 gene, but
there were two mutation sites inside the domain of
CHAC1 gene, which could affect its function.
Besides, the expression of gene CHAC1 and GPX8 be-

tween GC and normal tissues were explored. Gene
CHAC1 expressed significantly lower in GC compared
with normal cases (P < 0.05) while gene GPX8 expressed
significantly higher in GC cases on the contrary (P < 0.01,
Fig. 2C). Furthermore, through other databases, we veri-
fied the differential expression of the four antioxidant-
related genes in GC by Oncomine analysis [20] and their
prognostic value using the Kaplan-Meier plotter (www.
kmplot.com) [21] (Supplementary Figure 2).

Construction of antioxidant-related gene signature as a
risk model
On the basis of Cox regression analysis, a two-gene signa-
ture was established with the risk score which could be
calculated as a linear combination of regression coefficient
weighted gene expression level of CHAC1 and GPX8: (−
0.2200 × expression of CHAC1) + (0.3058 × expression of
GPX8). Risk scores of all the GC patients were calculated
and by group median risk score, they were subsequently
divided into high- and low-risk teams (Fig. 3A). Distribu-
tion of the risk score and survival time was shown in Fig.
3B, and patients in high-risk group showed poorer prog-
noses than those in low-risk group. In addition, the ex-
pression profiles of CHAC1 and GPX8 were shown in a
heatmap (Fig. 3C). The expression of the GPX8 gene was
upregulated while the expression of the CHAC1 gene was
downregulated, along with increasing risk score. Further-
more, a receiver operator characteristic (ROC) curve was
drawn which could evaluate the performance of the risk
model (Fig. 3D). The area under the curve (AUC) was
0.719, indicating good sensitivity and specificity of the
score-based risk model in predicting the prognosis of GC
patients. And in overall survival analysis, patients with
lower risks were substantiated to have better prognoses by
the Kaplan-Meier survival curves and log-rank tests (P <
0.05, Fig. 3E).

Validation of prediction ability of the two-gene signature
Univariate and multivariate Cox analyses then estimated
the prognostic value of antioxidant-related gene signa-
ture as well as other clinicopathological features of GC

Table 1 Clinicopathologic features of patients with GC in this
study

Clinicopathologic features N %

Age(years)

≤ 65 163 43.94

> 65 205 55.26

Unknown 3 0.80

Gender

Male 238 64.15

Female 133 35.85

T classification

T1 18 4.85

T2 78 21.02

T3 167 45.01

T4 101 27.22

Unknown 7 1.90

N classification

N0 108 29.11

N1 97 26.15

N2 74 19.95

N3 74 19.95

Unknown 18 4.84

M classification

M0 328 88.41

M1 25 6.74

Unknown 18 4.85

Histologic grade

G1 10 2.70

G2 134 36.12

G3 218 58.76

Unknown 9 2.42
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patients containing age, gender, grade, and stage. Among
these five variables, the results of univariate analysis re-
vealed that age [hazard ratio (HR) = 1.026, 95% confi-
dence interval (CI) 1.008–1.044, P = 0.004], stage (HR =
1.534, 95% CI 1.241–1.896, P < 0.001) and risk score
(HR = 2.305, 95% CI: 1.467-3.622, P < 0.001) had signifi-
cantly close relationship with GC patients prognoses
(Fig. 3F). Meanwhile, multivariate analysis revealed that
these three features, age (HR = 1.035, 95% CI 1.016–
1.053, P < 0.001), stage (HR = 1.592, 95% CI 1.269–
1.998, P < 0.001), and risk score (HR = 2.063, 95% CI
1.295–3.286, P = 0.002), were independent prognostic
markers (Fig. 3G).

According to the previous two regression analyses,
age, stage, and risk score were independent predictors
for overall survival of GC patients, and these results
were further confirmed by Kaplan-Meier survival
curves (Fig. 4A–D). Patients > 65 years old and those
at III–IV stages manifested a poorer survival probabil-
ity. And patients at T1-2, N0, and M0 had better
prognoses (Fig. 4E–G).
Then, further stratified analysis was conducted to

confirm the performance of the antioxidant-related
gene signature in different subgroups. As shown in
the Kaplan-Meier curves (Fig. 5A–N), the two-gene
risk model could act as a reliable prognostic predictor

Fig. 2 Identification of antioxidant-related genes related to survival of GC patients. A Identified genes’ mutation in clinical tissues from TCGA
database. B Identified genes’ specific mutation sites. C Differential expression of the two selected genes (*p < 0.05, ***p < 0.001)
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for GC patients who were ≤ 65, female, T3-4, and
M0 stages by distinguishing patients into high- and
low-risk groups.

Construction and validation of a nomogram model
A nomogram model for the evaluation of GC patients
OS probability was constructed (Fig. 6A), combing clini-
copathological features and the antioxidant-related gene
signature. Harrell’ concordance index for survival predic-
tion was 0.665 (95% CI 0.614–0.716). And in Fig. 6B, C,

Fig. 3 Antioxidant-related gene signature acts as a predictor for GC prognosis. A Distribution of risk scores in ascending order of all GC patients:
low risk (green) and high risk (red). B Relationship between survival time and status. C A heatmap of the gene signature’s differential expression
profile in two groups. D ROC curve analysis to estimate the prognostic efficiency of gene signature. E Kaplan-Meier curves of the low- and high-
risk group. F Univariate regression analysis. G Multivariate regression analysis
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the calibration plots verified that both 3- and 5-year OS
predictions by nomogram were highly consistent with
the actual observation of GC patients. Additionally, we
calculated the area under ROC curves of the 3-year
(AUC = 0.680) and 5-year (AUC = 0.674) survival pre-
diction to test the specificity and sensitivity of the nomo-
gram model. Besides, to further confirm the consistency
and accuracy, we established another test cohort from

the TCGA database for internal validation. The nomo-
gram in the testing cohort also showed good prediction
performance as the training one and the C-index was
0.706 (95% CI 0.612–0.800). And the area under ROC
curves of the 3-year (AUC = 0.703) and 5-year (AUC =
0.641) survival prediction were also calculated.

Fig. 4 Kaplan-Meier survival analyses in GC subgroups with different clinicopathologic features. A Age. B Gender. C Grade. D Stage. E T
classification. F N classification. G M classification

Fig. 5 Stratified analyses for prognostic value of the risk model in different GC subgroups. A Age > 65. B Age ≤ 65. C Female. D Male. E G1-2. F
G3. G Stage I-II. H Stage III-IV. I T1-2. J T3-4. K N0. L N1-3. M M0. N M1
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Discussion
In normal cells, antioxidant system helps maintain the
appropriate level of reactive oxygen species (ROS)
through various signaling pathways [22]. But tumor cells
are featured with high levels of ROS, which can modu-
late pathways and change gene epigenetics, influencing
various cellular and molecular processes in tumor cells
and microenvironment [12]. Antioxidant proteins are
also elevated to reach a new redox balance with ROS in
tumor cells and maintain a pro-tumorigenic environ-
ment [23]. These suggested that antioxidants and ROS
are closely related to the beginning and progression of
cancer. Increasing researches have focused on the correl-
ation between antioxidant and GC, and some scholars

have demonstrated the significant role of antioxidant in
GC development. For example, previous research discov-
ered that exogenous antioxidant alpha-lipoic acid (ALA)
mediating the expression of MUC4 gene inhibited prolif-
eration and invasion of GC cells [18]. In xenograft
models, GC growth can be significantly suppressed after
intratumoral injection of an antioxidative enzyme nico-
tinamide nucleotide transhydrogenase [24]. Furthermore,
increasing researches have focused on the antioxidant-
related genes in signaling pathways of antioxidant sys-
tem [25]. The expression of these genes might be crucial
to GC development and might enlighten diagnosis,
evaluation and treatment of GC, which requires more
studies.

Fig. 6 Construction and validation of a nomogram model combing clinicopathologic variables and the antioxidant-related gene signature. A The
nomogram to predict 3- and 5-year survival probability of GC patients. B, C The calibration plots to estimate the predictive performance of the
nomogram. Nomogram-predicted OS probability is presented on the x-axis; actual survival is presented on the y-axis
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In recent years, instead of the traditional predictive
methods like TNM stages and pathological grades,
scholars showed interest in novel models to assess the
prognosis of cancer patient more efficiently and precisely
[26]. Recently, molecular biomarkers like mRNAs have
been seen as potential prognosis predictors, implying
their clinical significance in researches [27, 28]. For in-
stance, expression of MYOZ2 was significantly higher in
GC tissues than that in the normal tissues, which might
involve in the carcinogenesis of GC [29]. Similarly, ex-
cessive level of HBO1 mRNA in GC tissues and its nega-
tive correlation with GC patient survival indicated that
HBO1 might act as a potential biomarker to predict pa-
tient prognosis [30]. Nevertheless, single genes could be
affected by multiple factors, and it was insufficient to
predict patient prognosis independently based on these
individual biomarkers [31, 32]. Therefore, gene signa-
ture, a statistical model made up of various marker
genes, has been utilized to overcome the limitation of
consistency and to predict survival outcome on a com-
bined effect [33]. Some scholars have identified and vali-
dated prognostic gene signatures of GC and built up a
specific score formula to measure the risk, but these sig-
natures had not been widely accepted or put into prac-
tice [34]. And studies on antioxidant-related gene
signatures of GC are still absent to date.
Therefore, in the study, we determined two genes

(CHAC1 and GPX8) associated with antioxidant system
and unraveled their prognostic value in GC by bioinfor-
matics methods. Different from previous predicting
tools, this score-based risk model could act as a more ef-
ficient indicator for GC patients OS prediction and
could help classification and individualized treatment for
clinical application. Kaplan-Meier curves verified that
patients with higher risks showed worse prognoses. Fur-
thermore, we established a comprehensive nomogram
model to provide a more efficient predicting tool in clin-
ical practice and help make a more accurate assessment
of GC patients.
As for the two antioxidant-related genes, derived from

a family of Cys-glutathione peroxidase, GPX8 mainly re-
sides in mitochondrial endoplasmic reticulum mem-
branes and it supports the folding of oxidative protein
[35, 36]. In addition, it can reduce hydrogen peroxide,
lipid hydroperoxides, and other damage related to oxida-
tive stress with glutathione (GSH), which was closely as-
sociated with carcinogenesis [37, 38]. Scholars
discovered the GPX8/IL-6/STAT3 axis as an essential
pathway in regulating cell aggressiveness of breast can-
cer [39]. And in GC, expression of GPX8 has been
proved to increase in GC patients with worse OS, and it
was confirmed to be an independent prognosis predictor
[40], in accord with our result. However, its regulatory
pathway and cellular functions have not been fully

elucidated. CHAC1, a newly discovered enzyme associ-
ated with γ-glutamyl cyclotransferase activity, could de-
grade intracellular GSH, which might cause oxidative
stress and contribute to necroptosis and ferroptosis in
cancer [41, 42]. In previous studies, higher expression of
CHAC1 could act as a protective role in accelerating
apoptotic death of glioma through various pathways
[43], and it was suggested to be included in prognostic
prediction to aid the scheme of treatment in breast
cancer [44]. Our results also indicated the protective role
of CHAC1 and showed significant predictive value.
Contradictorily, some scholars found the overexpression
of CHAC1 in H. pylori-infected parietal cells could in-
crease the risk of GC [45], but overall, there are few
studies and direct evidence illustrating the relationship
between CHAC1 and GC. As analyzed above, these two
key antioxidant-related enzymes act as important parts
in the growth and proliferation of GC and show prog-
nostic value in GC patients. Furthermore, oxidative
stress and antioxidant system play a vital part in the
tumorigenesis and progression of GC.
In conclusions, an antioxidant-related gene signature

was firstly identified, and GC patient prognoses could be
quantified by this risk model more efficiently and accur-
ately. Nomogram integrating the gene signature with
clinical factors provides an efficient tool in predicting
prognosis of GC patients in clinical practice. Our results
help enlighten the potential mechanisms of molecular
antioxidant system in GC progression and offer more
potential biomarkers for early diagnostic and therapeutic
targets for GC treatment.
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