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Abstract

Introduction: Radiomics methods are used to analyze various medical images, including computed tomography
(CT), magnetic resonance, and positron emission tomography to provide information regarding the diagnosis,
patient outcome, tumor phenotype, and the gene-protein signatures of various diseases. In low-risk group,
complete surgical resection is typically sufficient, whereas in high-risk thymoma, adjuvant therapy is usually
required. Therefore, it is important to distinguish between both.

This study evaluated the CT radiomics features of thymomas to discriminate between low- and high-risk thymoma
groups.

Materials and methods: In total, 83 patients with thymoma were included in this study between 2004 and 2019.
We used the Radcloud platform (Huiying Medical Technology Co,, Ltd) to manage the imaging and clinical data
and perform the radiomics statistical analysis. The training and validation datasets were separated by a random
method with a ratio of 2:8 and 502 random seeds. The histopathological diagnosis was noted from the pathology
report.

Results: Four machine-learning radiomics features were identified to differentiate a low-risk thymoma group from a
high-risk thymoma group. The radiomics feature names were Energy, Zone Entropy, Long Run Low Gray Level
Emphasis, and Large Dependence Low Gray Level Emphasis.

Conclusions: The results demonstrated that a machine-learning model and a multilayer perceptron classifier
analysis can be used on CT images to predict low- and high-risk thymomas. This combination could be a useful
preoperative method to determine the surgical approach for thymoma.
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Introduction

Radiomics is a rapidly growing field of mapping digital med-
ical images to quantitative data, with the end goal of generat-
ing imaging biomarkers as clinical decision-making support
tools. The fundamental premise of radiomics is that radio-
logical images contain biological, prognostic, and predictive
knowledge that is not revealed during visual inspection; thus,
converting medical radiological images into high-
dimensional data and the subsequent quantitative analysis of
these data support decision-making guidelines used in clin-
ical practice [1-3]. Radiomics is intended to predict patient-
specific results based on high throughput analysis and min-
ing of sophisticated imaging biomarkers through machine-
learning algorithms.

Thymic epithelial tumors (TETSs) originate from the
thymus and consist of thymomas, thymic carcinomas,
and thymic neuroendocrine tumors. Although rare (1.5
cases/million), thymomas are common primary tumors
of the anterior mediastinum in adults. Thymic carcin-
omas are very rare. Thymic carcinomas often present
with metastasis and involve a poorer prognosis com-
pared to thymomas, so TETs are a heterogeneous group
[4, 5]. Despite the good survival rate of patients with
thymoma, the histological subtype affects tumor behav-
ior and the prognosis. Thymomas are subdivided into
types A, AB, Bl, B2, and B3 according to the World
Health Organization (WHO) classification. Thymomas
can also be subdivided depending on the prognosis into
low-risk (types A, AB, and B1) and high-risk (types B2
and B3) groups. The high-risk group of thymomas is
more likely to invade locally than the low-risk group.
Surgery is the main strategy to treat thymomas, and
complete resection provides the best survival rate, but
the thymoma subgroups are an important factor in de-
termining the treatment approach. The possibility of
complete surgical resection is very high in the low-risk
group, and this is typically an adequate treatment with-
out adjuvant or neoadjuvant chemotherapy. In contrast,
the high-risk group of thymomas has less of an oppor-
tunity for complete surgical resection than the low-risk
group and may require multimodal therapy. Histological
classification can inform risk stratification for patients
and personalize the surgical treatment course [6—10].

Robotic-assisted thoracoscopic surgery and video-
assisted thoracoscopic surgery are considered minimally
invasive surgeries (MISs) and have recently become
common for many surgeries, including surgery for
thymic neoplasms. Some studies have reported that the
results obtained from MIS are equivalent to the median
sternotomy approach in the surgical treatment of thym-
oma. However, the indication for MIS in thymoma sur-
gery is controversial. Many surgeons, particularly those
with open surgery experience, are reluctant to perform
MIS to treat TETs because MIS techniques are
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associated with increased manipulation of the tumor
during surgery and a corresponding risk for capsular dis-
ruption, pleural seeding with tumor fragments, and in-
complete resection, particularly for thymic carcinomas
and high-risk thymomas. Thus, MIS may cause higher
local recurrence rates and lead to lower overall survival
rates. The possibility of local recurrence and spread is
less likely for low-risk thymomas, so MIS is an accept-
able surgical treatment approach for these cases [11].
Knowing whether a thymoma is at high or low risk pre-
operatively would help inform the choice of surgical
approach.

Contrast-enhanced chest computed tomography (CT)
is the most common imaging modality to preoperatively
assess thymomas. The value of qualitative CT features in
determining thymic carcinoma versus thymoma or low-
versus high-risk remains unclear [12, 13]. Also, both CT
and magnetic resonance imaging (MRI) have limited
value for predicting the histologic subtype of thymoma
[14, 15]. Preoperative prediction of the histological sub-
type of thymoma may facilitate patient management. A
pre-surgical needle biopsy is a reliable method for diag-
nosing thymoma, but a small biopsy sample may not al-
ways represent the entire tumor; a deep biopsy is an
invasive procedure with a risk of complications, and a
transpleural biopsy may cause tumor seeding [16, 17].
Also, CT-guided biopsy and a histopathological evalu-
ation of specimens are expensive, destroy tissues, and
take 10-14 days. Overall, no clear non-invasive pre-
operative criteria have been defined to help surgeons
choose either an open thymectomy or a minimally inva-
sive approach. Therefore, an effective and objective sur-
gical approach to preoperatively determine the thymoma
subtype would be useful.

This study analyzed the textural features of thymomas
using CT radiomics features to discriminate low- versus
high-risk thymoma groups in a single center.

Materials and methods

The study protocol was approved by the Institutional
Review Board of Ankara University, Faculty of Medicine
(IRB no: 17-426-20). The need for informed consent was
waived because the study had a retrospective design.
The initial study population included 221 consecutive
patients who underwent surgical resection or biopsy be-
tween 2004 and 2019 in the Thoracic Surgery Depart-
ment and were diagnosed with a thymic epithelial tumor
in the Department of Pathology of Ankara University
Medical Faculty. Of these patients, 158 were diagnosed
with thymoma. The following inclusion criteria were ap-
plied: (1) histopathologically confirmed thymoma; (2)
CT images since 2011, which was the beginning of the
Ankara University Faculty of Medicine electronic data-
base archive; (3) contrast-enhanced CT performed within
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4 weeks before surgery or biopsy; (4) no history of resection
for a thymic neoplasm or another malignant tumor; and (5)
no history of chemotherapy or radiotherapy before the pri-
mary thoracic malignancy. After applying these selection cri-
teria, 83 patients were included (Table 1).

CT protocol and lesion segmentation

All patients underwent contrast-enhanced CT before bi-
opsy and/or surgery to evaluate suspected mediastinal
tumors. Chest CT examinations were performed with ei-
ther 320-row detector CT (Toshiba Aquilion ONE,
Otawara-shi, Japan), 64-row detector CT (Toshiba Aqui-
lion 64, Otawara-shi, Japan), or 16-row detector CT (Sie-
mens Somatom Sensation 16, Forcheim, Germany)
scanners. The acquisition parameters were 0.5 mm, 0.5
mm, and 0.625 mm detector collimation; 120 kVp tube
voltage; 0.5 s gantry rotation time; 1 mm, 1 mm, and 1.5
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mm reconstructed section thickness; and 0.8 mm, 0.8
mm, and 1 mm reconstruction intervals. All examina-
tions were performed after injecting 60-100 ml (1-1.5
ml/kg) of nonionic intravenous contrast agent (350/100
Omnipaque, GE healthcare, Oslo, Norway), at a rate of
2.5 ml/s via the antecubital vein. The area from the thor-
acic inlet caudally to include the adrenal glands was
scanned. All images were reviewed by a senior radiolo-
gist (C.U) with more than 10 years of experience in thor-
acic imaging. She was blinded to the histopathological
data to avoid bias. Multiplanar reformatted images were
analyzed on a workstation (GE Healthcare, Waukesha,
WI, USA) (Figs. 1 and 2).

Patients and dataset management
Of the 83 patients included in analyses, 45 were male
and 38 were female; the mean age was 49 + 13.32 years

Table 1 Clinical characteristics of the patients with the low-risk group and high-risk group

Patients (n = 83) Low-risk group, n (%) High-risk group, n (%) p-value*
51 (61) 32 (39)
Sex, n (%)
Male 25 (49) 20 (62) 0.23
Female 26 (51) 12 (38)
Age, median (range) (years) 50 (21-73) 50 (24-66) 0.68
Smoking status, n (%)
Never 34 (67) 18 (56) 0.34
Current or past smoker 17 (33) 14 (44)
Previous malignancy or synchronous tumor, n (%)
Absent 48 (94) 27 (52) 0.25
Present 3(6) 5 (48)
Clinical presentation, n (%)
Asymptomatic 16 (31) 10 (31) 0.99
Symptomatic 35 (69) 22 (69)
Myasthenia gravis, n (%)
Absent 43 (84) 22 (69) 0.09
Present 8 (16) 10 (31)
LDH, median (range) (U/L) 180 (113-338) 179 (89-310) 0.80
ALP, median (range) (U/L) 68 (29-124) 67 (31-167) 0.74
CRP, median (range) (mg/L) 4.1 (06-70.7) 35 (0.1-25.8) 067
HGB, median (range) (g/dL) 14 (9-16.6) 13.6 (9-16.3) 062
WBC count, median (range) (x10%/L) 7.7 (3.3-16.8) 73 (3.9-13.9) 097
LYMP count, median (range) (x10°/L) 2.1 (0.01-6.1) 1.8 (0.5-3.8) 0.10
PLT count, median (range) (x10%/L) 258 (121-454) 233 (122-404) 0.58
Type of treatment, n (%)
Surgerytadjuvant treatment 44 (86) 28 (87) 1.00
Definitive chemotherapy+radiotherapy 7(14) 4 (13)
Largest dimension of tumor size on CT (mean + SD) (range) in mm 66.8+ 2.1 (21-160) 63+2.2 (20-134) 0.55

LDH lactate dehydrogenase, ALP alkaline phosphatase, CRP C-reactive protein, HGB hemoglobin, WBC white blood cell, LYMP Imyphocyte, PLT platelet
*Differences were compared using the t-test/Mann-Whitney U test, Pearson Chi-square test/Fisher’s exact test
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Sagittal

Fig. 1 The lung extraction and 3D representation of tumor with lung structures

(range 20-74 vyears). We used the Radcloud platform
(Huiying Medical Technology Co., Ltd) to evaluate the data,
and performed a radiomics statistical analysis. The training
and validation datasets were separated by a random method
2:8 ratio with 502 random seeds. The histopathological diag-
nosis was noted from the pathology report.

Image segmentation

Images were evaluated by two senior observers with 10
and 5 years of experience, respectively, in mediastinal
surgery, and all disease lesions (VOIs) were annotated
manually by observers who were blinded to the histo-
pathological diagnoses of patients. Then, all images were
re-evaluated by the senior radiologist. When there was >
5% discrepancy, the radiologist made the final decision
on the tumor borders. Because of the artifacts due to
motion and breath during scan where the tumor mar-
gins could not be able to delineate precisely, 79 VOIs
were included from the scans of the 83 patients and
used for subject analysis to compute and extract the
radiomics features.

Feature extraction

In total, 1409 features were extracted from the CT im-
ages using the Radcloud platform. These features were
classified into three groups. Table 2 lists the details of
the groups: group 1 (first-order statistics-126 descrip-
tors); group 2 (shape- and size-based features-14 fea-
tures); group 3 (textural features-525 textural) (Table 2).

Qualification

A large number of image features were measured. A di-
mensionality reduction was performed, and task-specific
features were selected to identify the appropriate fea-
tures. To reduce the redundant features, selection
methods included the variance threshold (variance
threshold = 0.8), SelectKBest, and the least absolute
shrinkage and selection operator (LASSO), which were
used to detect significant differences between low- and
high-risk groups. Eigenvalues of the variance < 0.8 were
removed. The SelectKBest method was used with a p-
value to analyze the relationship between the features
and the classification results. All features with p-values <
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Fig. 2 3D representation of regional segmentation of bronchus, artery, and vessels together with tumor volume

0.05 were used. The L1 regularizer was used as the cost
function in the LASSO model; the error value of the
cross-validation was 5, and the maximum number of it-
erations was 1000.

Statistical analysis

Statistical analyses were performed in the Radcloud plat-
form. The 1409 features identified were significantly cor-
related. The radiomics-based models were constructed

with six classifiers: k-nearest neighbor (KNN), support
vector machine (SVM), eXtreme Gradient Boosting
(XGBoost), random forest (RF), logistic regression (LR),
and decision tree (DT), and the validation method was
used to improve the effectiveness of the model.

The following parameters were applied. For KNN: n_
neighbors (5), weights (uniform). For SVM: kernel (rbf),
C (1), gamma (auto), class_weight (balanced), decision_
function_shape (ovr), random_state. For XGBoost: Eta

Table 2 Radiomics features selected for quantifying the heterogeneity differences

Radiomics  Associated Number of Radiomics features

group filter features

First-order None 126 Energy, total energy, entropy, minimum, 10 percentile, 90 percentile, maximum, mean, median,

statistics interquartile range, range, mean absolute deviation, robust mean absolute deviation, root mean square,
standard deviation, skewness, kurtosis, variance

Shape None 14 Volume, surface area, surface volume ratio, spherical disproportion, maximum 3D diameter, maximum
2D diameter column, maximum 2D diameter row, elongation

Texture GLCM 525 Autocorrelation, average intensity, cluster prominence, cluster shade, cluster tendency, contrast,

features difference average, difference entropy, difference variance, dissimilarity, entropy, sum average, sum
entropy, sum variance, sum squares

Texture GLSZM Large area emphasis, gray level non-uniformity, size zone non-uniformity, gray-level variance, zone en-

features tropy, high gray-level zone emphasis, small area high gray-level emphasis, large area high gray-level
emphasis

Texture GLRLM Gray-level non-uniformity, run length non-uniformity, gray level variance, run entropy, high gray-level

features run emphasis, short run high gray-level emphasis, long run high level emphasis

GLCM gray-level co-occurrence matrix, GLSZM gray-level size zone matrix, GLRLM gray-level run length matrix
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Fig. 3 The SelectkBest method was used to further select the
radiomics features; 30 features were selected

(0.3), max_depth (6). For RF: n_estimators (10), class_
weight (None). For LR: penalty (L2), C(1), solver (lib-
linear), class_weight (None), multi_class (ovr), random_
state. For DT: splitter (best), criterion (gini).

The receiver operating characteristic (ROC) curve and
the area under the curve (AUC) were used to assess the
predictive performance of the training and validation
datasets, respectively. The four indicators were P (preci-
sion = true positives/(true positives + false positives)), R
(recall = true positives/(true positives + false negatives)),
fl-score (fl-score = P x R x 2/(P + R)), and support
(total number in test set) to evaluate the performance of
the classifier.

Results

Table 1 lists patient characteristics. The low-risk group in-
cluded 51 patients (type A 10, type AB 19, type Bl 22), and
the high-risk group included 32 patients (type B2 14, type B3
18). No significant differences were observed between the
low-risk and high-risk groups in either the training cohort (1
= 66 cases) or the validation cohort (# = 17) (Table 1).
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First, 459 features were selected from the 1409 total
features using the variance threshold method, and 30
features were determined with the SelectKBest method
(Fig. 3). Finally, four optimal features were defined with
the Lasso algorithm (Fig. 4).

Figure 3 presents the ROC curve analysis results for
the training and validation datasets to differentiate be-
tween the low-risk and high-risk groups of thymomas.

The AUC of XGBoost, RF, and DT machine learning
methods was the highest at 0.998-1 for the training data
while KNN and LR were highest for the validation data.
Table 3 lists the results of the machine-learning classi-
fiers of the validation set. The KNN scores were AUC =
0.943 for the low-risk group and AUC = 0.943 for the
high-risk group. The LR scores were the same (AUC =
0.943) for both groups of thymomas. The KNN and LR
classifiers were the best methods in the validation data-
set in terms of differentiating between the low- and
high-risk groups. Table 4 lists the diagnostic perform-
ance according to the four indicators. The ranges for the
low-risk group were precision (0.5-0.9), recall (0.3-0.9),
Fl-score (0.37-0.9), and support (10), while the ranges
for the high-risk group were precision (0.36—0.86), recall
(0.57-0.86), F1-score (0.44—0.86), and support (7). The
highest scores were achieved with the KNN machine-
learning method (Fig. 5).

Four radiomics features were identified that differenti-
ated the low-risk group from the high-risk group of
thymomas using machine learning, including Energy,
Zone Entropy, Long Run Low Gray Level Emphasis, and
Large Dependence Low Gray Level Emphasis (Fig. 4c).

Table 5 lists the details of the confusion matrix in the
low-risk and high-risk thymoma groups using the best
MLP learning classifier (KNN).

Discussion

Radiomics has the potential to detect specific character-
istics of a disease that cannot be visualized by current
medical imaging modalities by quantitatively analyzing
digital images. Recent studies have reported promising
radiomics results in oncological practice. This method
may supplement traditional imaging analysis and assist
in providing personalized medicine for patients.
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Table 3 ROC results with six machine-learning classifiers of validation set

Risk groups Statistical measures KNN SVM XGBoost RF LR DT

Low AUC 0.943 0.857 0.8 0.693 0.943 0436
95% Cl 0.85-1 0.66-1 0.58-1 045-0.93 0.74-1 0.18-0.69
Sensitivity 09 038 0.7 08 038 03
Specificity 0.86 0.86 0.71 043 0.86 0.57

High AUC 0.943 0.857 038 0.693 0.943 0436
95% Cl 0.85-1 0.66-1 0.58-1 0.45-0.93 0.74-1.00 0.18-0.69
Sensitivity 0.86 0.86 0.71 043 0.86 0.57
Specificity 09 038 0.7 08 038 03

KNN k-nearest neighbor, SVM support vector machine, XGBoost eXtreme Gradient Boosting, RF random forest, LR logistic regression, DT decision tree

Publications on applications of thoracic tumors have in-
creased in recent years. In the present study, a radiomics
platform was used to analyze both imaging and clinical
data, and to perform a statistical analysis. Radiomics
platforms have the potential to reveal distinct imaging
algorithms that can be used to quantify the status of a
disease, providing valuable knowledge for personalized
medicine. They can also measure features in an imaging
examination; shape, intensity, texture, wavelet, and
Laplacian of Gaussian (LoG) features can be used to
build predictive or prognostic non-invasive biomarkers
or imaging modalities [18, 19].

This kind of platform can be used to extract radiomics
features from two-dimensional (2D) and/or three dimen-
sional (3D) images and dual masks on different imaging
modalities, such as CT and MRI, which is why it was
preferred for this study.

Thoracic oncology surgical information obtained from
standard imaging modalities such as CT, MRI, and posi-
tron emission tomography scans usually refers to simple
traits, such as gross shape, contrast enhancement, and
size. However, imaging information is now much richer,
and increased resolution quality has led to 3D image ac-
quisitions containing millions of voxels available for ana-
lysis, making the development of radiomics a natural
progression. Soon, data obtained from radiomics studies

Table 4 The results of four indicators—precision, recall, F1-
score, support in validation set

Risk groups Indicators KNN SVM XGBoost RF LR DT

Low Precision 0.9 089 078 067 089 05
Recall 09 0.8 0.7 08 08 03
F1-score 09 084 074 073 084 037
Support 0 10 10 10 10 10

High Precision 086 075 062 06 075 036
Recall 086 086 071 043 086 057
F1-score 086 08 0.67 05 08 044
Support 7 7 7 7 7 7

KNN k-nearest neighbor, SVYM support vector machine, XGBoost eXtreme
Gradient Boosting, RF random forest, LR logistic regression, DT decision tree

will be used to inform the diagnosis and treatment algo-
rithms of thoracic malignancies.

Csutak et al. [18] in a recent study used textural ana-
lysis to quantify the fluid properties on computed tom-
ography (CT) images of intraperitoneal effusions and
evaluate its utility in differentiating benign from malig-
nant collections. Similar to this textural studies, radio-
mics models have already been used to stage tumors and
predict lymph node metastasis and prognosis [20-23]. A
few studies have used radiomics models to predict the
pathological invasiveness of TETs [24]. Although some
previous studies have demonstrated that a textural ana-
lysis based on CT images can be used to differentiate
high-risk TETs from low-risk TETs, they only analyzed
2D textural features, and their sample sizes were small
[25, 26]. TETSs are a heterogeneous group with different
radiological appearances, histopathological features, and
prognoses. They include thymomas, thymic carcinomas,
and thymic neuroendocrine tumors, with a wide variety
of histological features. Thymomas are the most com-
mon TETs and are subdivided into five groups (A, AB,
B1, B2, and B3). These can resemble spindle cell tumors,
lymphomas, or carcinomas depending on the tumor
type. Interestingly, some recent studies have included
thymic carcinomas as type C thymomas, which has not
been used in the WHO classification since 2004, al-
though thymic carcinomas have a heterogeneous morph-
ology. Types A, AB, and Bl thymomas have a thymus-
like architecture, whereas thymic carcinomas exhibit fea-
tures that are encountered by other organs and are a
heterogeneous group of tumors, such as squamous cell
carcinoma, adenocarcinoma, and undifferentiated carcin-
oma [8]. For these reasons, thymic carcinomas and
thymomas should not be analyzed together in a radio-
mics study.

CT and MRI are common imaging modalities to pre-
operatively assess thymomas. However, they have limited
value for predicting the histological subtypes of TETs
[14]. Jeong et al. reported that the contour of the tumor,
mediastinal fat, and large vessel invasion are useful CT
features to distinguish between the WHO classification
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validation dataset

subgroups [12]. CT and/or MR imaging findings can
help differentiate between low-risk and high-risk thym-
omas among thymic carcinomas, but they are insuffi-
cient to distinguish between the different histological
subtypes of the WHO thymoma classification.

Few studies have used a machine-learning system as
an artificial intelligence approach with the application of
radiomics features to analyze thymomas. This study ad-
dressed this research gap by developing a radiomics-
based model incorporating machine learning to predict
low- and high-risk thymomas.

Different machine-learning strategies, such as KNN,
SVM, or RF decision trees, can be applied to construct
the map of a given training set and a given set of fea-
tures. During training, the parameters that define the
mapping (whose representation depends on the chosen
learning strategy) are iteratively refined such that estima-
tion performance is maximized on the training set itself.
Then, the difference between the given “ground truth”
for each image and in the training set can be evaluated.
The KNN classifier is a popular image classification al-
gorithm that directly calculates image-to-image distances
compared with other classifiers that need a training
phase to calculate the distance between an image and a
class [27]. RFs or random decision forests are ensemble
learning methods for classification, regression, and other
tasks that operate by constructing a multitude of deci-
sion trees at training time and outputting mode (classifi-
cation) of the class or the mean prediction (regression)
of the individual trees [28].

Wang et al. developed and compared the performance
of radiomics signatures using textural features extracted
from non-contrast-enhanced CT and contrast-enhanced
CT scans [29]. They found that radiomics signatures
performed better than radiologists with a high AUC, and
that radiomics signatures based on a textural analysis ex-
tracted from a CT scan can be utilized as noninvasive
biomarkers to differentiate high-risk thymomas from
low-risk thymomas and advanced-stage thymomas from

Table 5 The details of confusion matrix in low-risk and high-risk
thymoma groups

KNN

Risk groups Accuracy (%)
Low 100

High 88

Accuracy (%) 943

KNN k-nearest neighbor
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early-stage thymomas. They concluded that as a quanti-
tative method, a radiomics signature provides comple-
mentary diagnostic information and informs plans for
personalized treatment for patients with thymomas.
Yang et al. studied a preoperative staging tool that differ-
entiates Masaoka-Koga (MK) stage I patients from stage
II patients using CT images of thymoma patients [30].
They used an artificial neural network (ANN) deep-
learning model, namely, the 3D-DenseNet model, to dis-
tinguish the MK stage I and stage II thymomas. They
found that deep learning has great potential to preopera-
tively stage thymomas, which dramatically improves
identification between MK stage I and stage II thym-
omas compared with visual observations. They con-
cluded that deep learning models can help guide surgical
treatment and improve outcomes compared to trad-
itional methods. Our findings are consistent with the
previous results: a deep learning-supported radiomics
model, such as an ANN, can help distinguish between
low- and high-risk group thymomas. Similar findings
have been reported elsewhere [31, 32]. A previous study
detected correlations between preoperative CT imaging
features and the biological behavior of thymomas [33].
Similarly, we found that myasthenia gravis, lactate de-
hydrogenase, and the largest tumor dimension size on
CT (mm) were predictors of the prognosis. A previous
retrospective study developed a radiomics model using
LR analysis and realized high diagnostic performance
[26]; it reported that the AUCs for differentiating high-
risk thymomas from low-risk thymomas were 0.89 for
meanOc and 0.87 for a combination of meanOu and en-
tropy. Similarly, we found that the AUC of the radiomics
signatures was 0.943 for KNN, the best MLP classifier.
The International Association for the Study of Lung
Cancer and the International Thymic Malignancy Inter-
est Group concluded that the WHO histological classifi-
cation, the completeness of tumor resection, the MK
stage, and the 8th edition of the TNM staging system
are independent prognostic factors for TETs [34-36].
Similar relationships have been reported between thym-
omas and histological classification, completeness of
tumor resection, and staging, but these relationships are
not as strong as in some solid tumors, so the optimal
staging system for TETs has not been defined. There-
fore, histological classification and resectability are more
useful determinants than staging systems, for both treat-
ment decisions and predicting prognosis. An important
element in thymoma surgical treatment planning is
knowing the preoperative risk group, whether the thym-
oma is in the low- or high-risk group, may affect deci-
sions about the surgical approach, which is one of the
main determinants of the completeness of the resection.
The low-risk group of thymomas is more likely to
achieve complete resection with a MIS method; this may
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be less possible in the high-risk group. In the present
study, we predicted thymoma risk groups by combining
clinical and specific CT-based radiomics features with
image variables, and this distinction may inform surgical
treatment planning for thymomas. The most important
advantage of this method is that it does not require a bi-
opsy, which wastes time, and is costly, and can lead to
complications.

Our study had some limitations. First, it was a retro-
spective study of thymomas from a single center, which
may have caused selection bias. Second, it had a small
sample size. A multicenter study with a larger sample
size will be required to validate these results.

Conclusion

The results of this study demonstrated that a machine-
learning model and MLP classifier analysis can be used
with CT images to predict low-risk and high-risk thym-
omas. The results also demonstrated that the combin-
ation of clinical and specific CT-based radiomics
features and image variables can be used to predict
thymoma risk groups. This method can be used as a pre-
operative technique to inform decisions about surgical
approaches for treating thymoma.
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