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Abstract

treatment.

Background: The prognosis of colon cancer (CC) is challenging to predict due to its highly heterogeneous nature.
Ferroptosis, an iron-dependent form of cell death, has roles in various cancers; however, the correlation between
ferroptosis-related genes (FRGs) and prognosis in CC remains unclear.

Methods: The expression profiles of FRGs and relevant clinical information were retrieved from the Cancer Genome
Atlas (TCGA) database. Cox regression analysis and the least absolute shrinkage and selection operator (LASSO)
regression model were performed to build a prognostic model in TCGA cohort.

Results: Ten FRGs, five of which had mutation rates = 3%, were found to be related to the overall survival (OS) of
patients with CC. Patients were divided into high- and low-risk groups based on the results of Cox regression and
LASSO analysis. Patients in the low-risk group had a significantly longer survival time than patients in the high-risk
group (P < 0.001). Enrichment analyses in different risk groups showed that the altered genes were associated with
the extracellular matrix, fatty acid metabolism, and peroxisome. Age, risk score, T stage, N stage, and M stage were
independent predictors of patient OS based on the results of Cox analysis. Finally, a nomogram was constructed to
predict 1-, 3-, and 5-year OS of patients with CC based on the above five independent factors.

Conclusion: A novel FRG model can be used for prognostic prediction in CC and may be helpful for individualized
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Introduction

Colorectal cancer (CC) is the third most commonly
diagnosed carcinoma and the second most common
cause of cancer death worldwide. Indeed, the latest glo-
bal cancer statistics has shown that CC still accounts for
over 1.85 million new cases per year and an estimated
880,792 deaths per year (equating to 1 in every 12 deaths
globally) [1]. Although continuous developments in early
detection and treatment have led to a decline in the
mortality and incidence of CC, 30-50% of patients
present with metastasis or recurrence within 5 years
after treatment [2, 3]. Meanwhile, it is still not possible
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to accurately predict the survival time of patients with
CC, largely due to tumor heterogeneity caused by both
genetic and environmental factors [4]. Therefore, a reli-
able prognosis assessment model is eagerly awaited to
predict the prognosis of patients with CC and to
optimize clinical treatment strategies. Furthermore, with
the development of next-generation sequencing technol-
ogy, the perception of the cancer molecular network and
transcriptomic analysis can provide better technical sup-
port for prediction of CC prognosis [5, 6].

Iron is a necessary element for both humans and micro-
organisms. However, iron overload can harm cells through
a variety of mechanisms, including the induction of cell
death. Ferroptosis is an iron-dependent form of cell death
caused by persistent membrane injury and continuous
lipid peroxidation [7]. Ferroptosis is regulated by a variety
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of metabolism-related genes. The enzyme glutathione per-
oxidase 4 (GPX4) is one of the key regulators of ferropto-
sis, which protects cells by neutralizing lipid peroxides,
and direct inhibition of GPX4 can trigger ferroptosis [8].
Numerous genes are known to influence cancer, especially
aggressive malignancies by triggering ferroptosis [9, 10].
For example, p53, a key cancer-suppressor gene, can
impede cancer development by inhibiting cystine up-
take and sensitizing cells to ferroptosis [11]. Moreover,
ferroptosis can affect chemosensitivity through import-
ant signaling pathways such as the B-catenin/Wnt sig-
naling pathways [12]. In line with this, ferroptosis
inducers are thought to represent a potential treatment
strategy for therapy-resistant cancers [13]. Previous
studies have shown that some genes such as SLC7A11
and ACADSB can attenuate the proliferation of CC
cells via triggering ferroptosis [14, 15]. In addition,
some drugs have been shown to suppress CC by stimu-
lating some level of ferroptosis [16]. However, whether
the expression of ferroptosis-related genes (FRGs) is re-
lated to the prognosis of patients with CC remains
unclear.

In this study, we explored the relationship between the
expression of FRGs and OS in patients with CC. To this
end, we built a nomogram model to predict the OS of
patients with CC.

Materials and methods

Data acquisition

The RNA sequencing data and relevant clinical informa-
tion of CC samples were downloaded from The Cancer
Genome Atlas (TCGA) database (https://portal.gdc.
cancer.gov). The dataset contained 41 adjacent normal
samples and 473 tumor samples. Samples without
complete survival and clinical data were removed, and
samples from patients with an OS < 60 days were ex-
cluded. Finally, 353 samples with complete clinical stage
data were included in the follow-up work. All processes
relating to the selection and analysis of data are shown
in Additional File 1. The gene expression was normal-
ized using log2 (fragments per kilobase of exon model
per million mapped fragments (FPKM) + 0.01). All data
from TCGA are publicly available according to the
TCGA data access policies. Thus, this study did not re-
quire Ethics Committee approval. A list of 259 FRGs
was constructed using the ferroptosis database (FerrDb;
http://www.zhounan.org/ferrdb) [17], a publicly available
database of ferroptosis regulators, markers, and disease
associations.

Construction of a prognostic FRG signature

The Wilcoxon test was performed to determine the
ferroptosis-related differentially expressed genes (DEGs)
between adjacent normal tissues and tumor tissues with
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P < 0.05 and a false discovery rate (FDR) < 0.05 in the
TCGA cohort. Univariate Cox analysis was used to
screen out FRGs with prognostic value. The mutation
rates of prognostic FRGs were analyzed by the cBioPor-
tal for Cancer Genomics online website (https://www.
cbioportal.org) [18]. Least absolute shrinkage and selec-
tion operator (LASSO) regression analysis, a common
method of performing regression analysis with high di-
mensional factors, was used to construct a prognostic
model to minimize the level of overfitting [19, 20].
Three-fold cross-validation was conducted to reduce the
potential instability of the results, and the optimal tuning
parameter A was identified based on a 1-SE (standard
error) standard. The “glmnet” R package was used for
the LASSO analysis to select the variables in this study.
The risk scores were analyzed on the basis of the expres-
sion level of each gene and its corresponding regression
coefficients. The risk scores were calculated using the
following formula: risk score = (gene expression level x
corresponding coefficient). Patients with CC were di-
vided into high- and low-risk groups according to the
median risk score. The distributional difference of differ-
ent groups was analyzed using t-distributed stochastic
neighbor embedding (t-SNE) and principal component
analysis (PCA) with the “Rtsne” and “stats” R packages.
The Kaplan—Meier plot and log-rank test were used to
evaluate survival differences between the high- and low-
risk groups. Receiver operator characteristic curves
(ROC) and area under the curves (AUC) were used to
evaluate the availability of the prognosis model via the
“survivalROC” R package. Decision-curve analysis (DCA)
was applied to evaluate the clinical applicability of the
constructed nomogram and to quantify the net im-
proved benefits at various thresholds.

Functional enrichment analysis

Gene ontology (GO) analysis and gene set enrichment
analysis (GSEA) were performed to determine the bio-
logical functions of DEGs between the two groups. GO
analysis was performed using the “org.Hs.eg.db” R pack-
age, with P-values and FDR values < 0.05. GSEA was
used to analyze the enrichment of DEGs in Kyoto
Encyclopedia of Genes and Genomes (KEGG) gene sets,
with P-values < 0.05 and FDR values < 0.25.

Statistical analysis

Categorical variables were presented as count (percent-
age) and analyzed by the chi-square test. Univariate and
multivariate Cox analyses were performed to identify in-
dependent prognostic factors, which were used to build
the nomogram model to predict the 1-, 3-, and 5-year
OS rates [21]. The Harrell C statistic and the calibration
plot were adopted to evaluate the discrimination and
calibration, respectively. All statistical analyses and plots
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were performed in R version 3.6.2. P-values < 0.05 were
considered significant.

Results

Identification of prognostic FRGs in the colon TCGA
cohort

Most of the FRGs were differentially expressed (FDR <
0.05) between adjacent normal tissues and tumor tissues,
and 16 of the DEGs were related to OS (Fig. 1a). Five
genes were downregulated in tumor samples, but the
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higher expression of these genes predicted poorer prog-
nosis. Meanwhile, MYB was upregulated in tumor tis-
sues, but its higher expression showed better prognosis.
Therefore, these 6 genes were excluded from further
study. The prognosis and differential expression of 10
FRGs are shown in Fig. 1a, b. Mutational information of
these 10 genes showed that amplifications, deep deletion,
and missense mutations were the most frequent muta-
tion types (Fig. 1d). Five FRGs had mutation rates > 3%,
and TFAP2C had the highest mutation rate.

b

DEGs Prognostic genes

pvalue Hazard ratio |

NOX4
SCP2
CARS1
ULK1
WIPI1
CDKN2A
BRD4
DRD4
SLC2A3
TFAP2C

0.041
0.033
0.028
0.022
0.008
0.004
0.047

<0.001

0.008
0.030
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Fig. 1 Identification of candidate FRGs in TCGA cohort. a Venn diagram to identify ferroptosis-related DEGs between tumor and adjacent normal
tissue that were correlated with OS. b Forest plots showing the results of univariate Cox regression analysis between the expression of 10
candidate FRGs and OS. ¢ Heat map showing the expression of 10 candidate FRGs in normal and tumor colon tissue. d Mutation information of
prognosis-related FRGs; TFAP2C was the most frequently mutated gene, and five genes had a mutation rate = 3%
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(See figure on previous page.)

Fig. 2 Establishment of a prognostic gene signature by LASSO regression analysis. a LASSO coefficient profiles of the 10 genes in colon cancer
samples. b A coefficient profile plot was generated against the log (lambda) sequence. Selection of the optimal parameter (lambda) in the LASSO
model for colon cancer. ¢ The distribution and median value of the risk scores in the Cancer Genome Atlas (TCGA) cohort. d PCA plot of the
TCGA cohort. e t-SNE analysis of the TCGA cohort. f OS status, OS, and risk score in the TCGA cohort. g Kaplan-Meier curves for the OS of
patients in the high- and low-risk groups in the TCGA cohort. h AUC of time-dependent ROC curves verified the prognostic performance of the
risk score in the TCGA cohort
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Table 1 Clinical characteristics of the colon patients between Construction of a risk score model

the high- and low-risk groups After filtering out the genes without prognostic sig-

Variables Group nificance, LASSO regression analysis was used to de-
High risk Low risk Pvalue Vvelop a risk score by analyzing the expression level of

Age 0071 the 10 FRGs mentioned above (Fig. 2a). Seven FRGs

were determined on account of the optimal value of

<65 61 (34.7%) 79 (44.6%) , } )
M\ (Fig. 2b), and a risk formula was constructed with
265 115 (65.3%) 98 (55.4%) . .
the expression levels of seven genes. The patients
Gender 0.221 were divided into high- and low-risk groups (Fig. 2c),
Female 87 (49.4%) 75 (424%) and PCA and t-SNE analysis demonstrated that the
Male 89 (50.6%) 102 (57.6%) two groups of patients distributed in two different di-
T stage 0002 mensions (Fig. 2d—e). As shown in Fig. 2f, patients in
D 22 (125%) 45 (25.4%) the high-risk‘group were more likely t9 fiie earlier
B 127 2299 118 (6679 than those in the low-risk group. Similarly, the
7 o Kaplan—Meier plot demonstrated that patients in the
T4 27.(153%) 14 (7.9%) high-risk group had a worse prognosis than those in
N stage 0.006 the low-risk group (Fig. 2g; P < 0.001). The ROC
NO 92 (52.3%) 118 (66.7%) curve was used to evaluate the predictive effect of the
N1 44 (25.0%) 39 (22.0%) risk score for OS, and the AUC was 0.792 at 1 vyear,
N2 40 (22.7%) 20 (113%) 0.746 at 3 years, and 0.730 at 5 years (Fig. 2h).
M stage 0011
MO 140 (79.5%) 159 (89.8%) Functional analyses in different risk groups
M1 36 (20.5%) 18 (10.2%) The DEGs between the two groups were used to analyze
Chemotherapy 0.549 the relationship between biological functions and risk
No/unknown 113 (64.2%) 120 (67.8%) score. As expec‘ted, GO analysi§ derr.lonstrated that the
Ves 63 (358%) 57 (32.2%) DEGs were mainly related to biological processes (BP),
. cellular components (CC), and molecular functions
Radiation (MF) of the extracellular matrix (Fig. 3a). Furthermore,
No/unknown 173 (98.3%) 172 (97.2%) 0727 the altered genes were significantly enriched in eight
Yes 3 (1.7%) 5 (2.8%) KEGG pathways by GSEA, with P < 0.05 and FDR <
0.25 (Fig. 3b). We found that DEGs were significantly
associated with the fatty acid metabolism and peroxi-
some (NES = 1.99, P < 0.001). The detailed results of
GO analysis and GSEA are shown in Additional Files 2
and 3.
a . p<0.05 b © p<0.05 c . p<0.05
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Fig. 4 Association between TNM stage and risk score. Violin plots showing the risk score at different a tumor infiltration depths, b lymph node
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Clinical features and prognostic value of the risk score

As shown in Table 1, the T stage, N stage, and M stage in
the high-risk group were more advanced than those in the
low-risk group. Furthermore, violin plots demonstrated
that the calculated risk score was positively related to the
tumor infiltration depth (Fig. 4a), lymph node metastasis
(Fig. 4b), and distant metastasis (Fig. 4c). Otherwise, age,
T stage, N stage, M stage, and risk score were independent
risk factors for OS (Fig. 5a—b). The risk score was also sig-
nificantly related to OS (univariate: hazard ratio [HR],
4.04; 95% CI, 2.31-7.06; P < 0.001; multivariate: HR, 3.05;
95% CI, 1.72-5.41; P < 0.001). In order to exclude the im-
pact of tumor stages on the prognosis of the risk group,
we analyzed the prognostic value of the risk score in
groups with different AJCC stages. The Kaplan—Meier
plots demonstrated that the prognosis of the high-risk
group was worse than that of the low-risk group in stage
11, stage III, and stage IV (Fig. 6a—c).

Nomogram model for CC patients

The nomogram was successfully built based on multi-
variate models (Fig. 7a). The C-index for the nomogram
was 0.838. Calibration plots demonstrated that the pre-
dicted 1-, 3-, and 5-year OS probabilities were similar to
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the actual observations, as shown in Fig. 7b—d. DCA
demonstrated that the net benefit of our prognosis
models was larger than that in the previous stage model
and the other two scenarios (all screening or none-
screening) in a wide range of threshold probabilities
(Fig. 8a—c).

Discussion
In this study, the expression level of 259 FRGs in CC
samples and their relationship with OS were analyzed.
To this end, a prognostic model containing 7 FRGs was
first constructed, following which, we established a
nomogram predictive model to predict OS accurately for
CC patients. Functional analyses revealed that DEGs be-
tween two groups were enriched in extracellular matrix,
fatty acid metabolism, and peroxisome-related pathways.
Previous studies have shown that ferroptosis has
important roles in various cancers [10, 11]. In the
current study, ten prognostic DEGs were identified by
analyzing the expression and prognostic effect of hu-
man ferroptosis-related genes in CC. However, given
the large number of variables, overfitting is a major
concern in this study and results in the inclusion of
some variables with little relevance to our research

-

a
Variables N HR(95%Cl) P Value
Age(Y)
<=65 140 reference
>65 213 1.96(1.153.34) = <0.05
Gender
Female 162 reference
Male 191 1.04(0.65,1.66) || 0.867
T stage
T1-2 67 reference
T3 245 12.2(1.68,88.5) b——> <005
T4 41 40.03(5.32,301.1) ——  <0.001
N stage
NO 210 reference
N1 83  1.95(1.08,3.55) |Hm] <0.05
N2 60  5.04(2.92,8.71) <0.001
M stage
MO 299 reference
M1 54  5.17(3.17,8.43) e <0.001
Chemotherapy
No/Unknow 233 reference
Yes 120 0.97(0.59,1.59) | 0.89
Radiotherapy
No/Unknown 345 reference
Yes 8  0.71(0.105.15) |@— 0.74
Risk score
Low 177 reference
High 176 4.04(2.31,7.06) ] <0.001

T TTTTrTITT1

012345678910

Multivariate Cox regression analyses regarding OS in the TCGA cohort

Fig. 5 The prognostic value of clinical features and the risk score. a Univariate Cox regression analyses regarding OS in the TCGA cohort. b

b

Variables N HR(95%Cl) P Value
Age(Y)

<=65 140 reference

>65 213 1.96(1.13,3.42) |-.—| <0.05
T stage

T1-2 67 reference

T3 245  6.18(0.84,40.70) |—.% 0.07

T4 41 14.14(1.80,110.89) I% <0.05
N stage

NO 210 reference

N1 83 1.30(0.68,2.49) |-I—| 0.44
N2 60  2.16(1.13,4.10) |—.—| <0.05
M stage

MO 299 reference

M1 54 2.87(1.58,5.22) |—-—| <0.001
Risk score

Low 177 reference

High 176 3.05(1.72,5.41) |—.—| <0.001
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question. Besides, the expression levels of different
genes are not strictly independent of each other be-
cause of the many regulatory relationships among
genes, which results in the multicollinearity problem
[22]. The LASSO is suitable for high-dimensional data
because the LASSO shrinks all regression coefficients
toward zero and automatically removes many of them
exactly to zero. In this case, shrinkage is desirable to
prevent overfitting, and strong variable selection is
desirable to obtain an interpretable prediction rule
[23]. Therefore, we identified 7 FRGs from 10 prog-
nostic FRGs to construct the risk score by using the
LASSO regression. The prognostic model in this
study was composed of 7 FRGs (NOX4, CARS, WIPII,
CDKN2A, DRD4, SLC2A3, and TFAP2C), most of
which modulate the progression of ferroptosis by in-
fluencing lipid oxidation and energy metabolism.
NOX4, the first identified nonphagocytic NADPH oxi-
dase, catalyzes the generation of reactive oxygen spe-
cies (ROS) from molecular oxygen to trigger
ferroptosis. Meanwhile, pharmacologic inhibition of
NOX4 enhances the effect of immunotherapy by con-
quering CAF-modulated CD8 T-cell escape [11, 24].
CARS is the rate-limiting factor for the synthesis of
glutathione, a key molecule in the regulation of fer-
roptosis and the oxidative environment of cells [25].
Knockdown of CARS inhibits erastin-induced death,
which is mediated by lipid ROS [26]. CDKN2A (also
known as ARF) sensitizes cells to ROS-induced ferroptosis
in a p53-independent manner, while CDKN2A depletion
protects cells from ROS-induced cell death [27]. A higher
expression of DRD4 has worse survival for most patients

[28]. Previous studies demonstrated that erastin could in-
duce ferroptosis through degradation of DRD4 protein,
and DRD4 could inhibit the generation of ROS; it is con-
ceivable that DRD4 might inhibit oxidative stress-induced
ferroptosis [29, 30]. SLC2A3 (also known as GLUT3) en-
codes the glucose transporter (GLUT) protein which in-
fluences the processes of energy metabolism and is related
to poor prognosis in various cancers. The downregulation
of GLUT induced by the knockdown of LSH results in the
generation of lipid ROS which leads to ferroptosis [31].
TFAP2C is a transcription activator that prevents ferrop-
tosis and ferroptosis-independent modes of cell death by
regulating anti-ferroptosis GPX4 expression [32]. Al-
though experimental evidence demonstrates how WIPI1
modulates ferroptosis is lacking, RNAi screening analysis
demonstrated that WIPI1 is a potential regulator of fer-
roptosis [33]. In summary, four of the abovementioned
genes (NOX4, CARS, WIPI1, CDKN2A) promote ferropto-
sis and ferroptosis-independent cell death, while the
remaining three genes (TFAP2c, SLC2A3, DRD4) have
roles in protecting cells from ferroptosis. Although the ex-
pression of these genes (with the exception of WIPII) are
higher in colon tumor and are related to poor prognosis,
whether these genes influence the survival of patients with
CC by regulating ferroptosis remains unknown. The
graphical abstract of FRGs in CC is showed in Fig. 9.
Seven FRGs were found to predict the prognosis of
patients with CC. In addition, T stage, N stage, and M
stage in the high-risk group were more advanced than
those in the low-risk group, and the prognosis of the
high-risk group was worse than that of the low-risk
group in stage II, stage III, and stage IV as shown by
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subgroup analysis. These results revealed that the calcu-
lated risk score was an independent predictor of
prognosis.

The nomogram was built based on multivariate
models and was compared with previous AJCC stage.
The results demonstrated that the new nomogram
model can predict 1-, 3-, and 5-year OS better than the
old staging. Thus, the new nomogram can be considered
a significant model by compensating for the shortness of
the previous AJCC stage prediction models for patients
with CC.

Although the association between tumor progression
and ferroptosis has been a key research question in
recent years, the mechanism by which genes regulate
colon tumor progression by influencing ferroptosis re-
mains unclear. Based on the DEGs between the two

groups, GO enrichment analysis showed that many
extracellular matrix structural constituent processes
were enriched. Previous studies have demonstrated
that extracellular matrix detachment led to the accu-
mulation of oxidative stress and ferroptosis [34]. Fur-
thermore, GSEA found that the functions of DEGs
were mainly enriched in fatty acid metabolism and
peroxisome-related pathways. Fatty acid metabolism is
dysregulated in cancer initiation and development,
and the depletion of polyunsaturated fatty acids is an
essential step in the process of ferroptosis [35]. More-
over, peroxisomes, which are oxidative organelles that
bind with the cell membrane, are involved in ferrop-
tosis via the synthesis of plasmalogens for lipid perox-
idation [36]. These previous studies were in
agreement with the results of GSEA outlined above.



Wang et al. World Journal of Surgical Oncology (2021) 19:135

There are several limitations of this study. First,
there are some research biases in this prognostic
model constructed from the TCGA databases. As a
result, more prospective data are necessary to verify
the clinical utility of the model. Second, further basic
biological experiments are needed to further explore
the mechanisms of FRGs in CC development. Finally,
because the data in our study were acquired from the
public database and the study was retrospective, there
was some information that we could not collect.

In this study, we identified a novel prognostic risk
score involving seven FRGs and a nomogram model in
CC. This model could be used to predict the prognosis
of patients with CC. Genes associated with lipid oxida-
tion and metabolism may offer a new research direction
for precise treatment strategies for CC patients.
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