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Abstract

Background: Colon cancer is a commonly worldwide cancer with high morbidity and mortality. Long non-coding
RNAs (lncRNAs) are involved in many biological processes and are closely related to the occurrence of colon cancer.
Identification of the prognostic signatures of lncRNAs in colon cancer has great significance for its treatment.

Methods: We first identified the colon cancer-related mRNAs and lncRNAs according to the differential analysis
methods using the expression data in TCGA. Then, we performed correlation analysis between the identified mRNAs
and lncRNAs by integrating their expression values and secondary structure information to estimate the co-regulatory
relationships between the cancer-related mRNAs and lncRNAs. Besides, the competing endogenous RNA regulation
network based on co-regulatory relationships was constructed to reveal cancer-related regulatory patterns.
Meanwhile, we used traditional regression analysis (univariate Cox analysis, random survival forest analysis, and lasso
regression analysis) to screen the cancer-related lncRNAs. Finally, by combining the identified colon cancer-related
lncRNAs according to the above analyses, we constructed a risk prognosis model for colon cancer through
multivariate Cox analysis and also validated the model in the colon cancer dataset in TCGA cohorts.

Results: Six lncRNAs were found highly correlated with the overall survival of colon cancer patients, and a risk
prognosis model based on them was constructed to predict the overall survival of colon cancer patients. In particular,
EVX1-AS, ZNF667-AS1, CTC-428G20.6, and CTC-297N7.9 were first reported to be related to colon cancer by using our
model, among which EVX1-AS and ZNF667-AS1 have been predicted to be related to colon cancer in LncRNADisease
database.

Conclusions: This study identified the potential regulatory relationships between lncRNAs and mRNAs by
integrating their expression values and secondary structure information and presented a significant 6-lncRNA risk
prognosis model to predict the overall survival of colon cancer patients.
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Background
Colon cancer is a common cancer with high incidence
and mortality worldwide [1, 2]. It can be divided into
different subtypes according to clinical molecular char-
acteristics [3]. The occurrence of colon cancer is closely
related tomany factors, such as age, lifestyle, diet, environ-
mental pollution, and disease history [4]. Some genes have
been found to be involved in the occurrence of colon can-
cer. For example, KRAS proto-oncogene and TP53 tumor
suppressor gene are related to the development and prog-
nosis of colon cancer [5, 6]. Likewise, INHBA plays an
immunomodulatory role in colon cancer [7], and BRIP1 is
related to the susceptibility of colon cancer [8]. At present,
although radical resection combined with chemotherapy
can improve the survival rate of colon cancer, the treat-
ment results are still unsatisfactory [9]. Therefore, it is
important to identify causal regulators at the genome
level for understanding the basic mechanism of cancer
occurrence, thus to improve the precision of cancer treat-
ments. In recent years, numerous studies have shown
that there are some potential relationships between the
abnormal expression of long non-coding RNA (lncRNA)
and the occurrence of cancer [10–14]. The detection of
cancer-associated lncRNA has proven to be a particularly
valuable method for effective cancer diagnosis [15, 16].
Because lncRNA can specifically bind to mRNA/miRNA
and cause their abnormal expression, it can be used as a
promising target for the diagnosis and treatment of colon
cancer [17]. To this end, it is necessary to reveal the regula-
tory mechanism of lncRNAs in colon cancer and develop
new therapies for human colon cancer.
Long noncoding RNA is defined as a transcript longer

than 200 nucleotides [18]. Comparing with mRNA and
other non-coding RNAs, lncRNA has relatively low con-
servation and low expression levels [19]. This is because
its sequence has a higher mutation rate than mRNA and
other non-coding RNAs during evolution, and it does not
have to participate in the translation process. Recently,
more and more lncRNAs have been identified, and 14826
lncRNAs have been annotated by the GENCODE (https://
www.gencodegenes.org/) consortium (v22). Many studies
have shown that lncRNAs are involved in somemajor reg-
ulatory processes and are closely related to the occurrence
of cancer [13, 14, 20–23]. Identifying lncRNAs related
to human diseases can help to understand the mecha-
nisms of human disease at the lncRNA level. On the one
hand, the secondary structure of lncRNA can provide
useful information for inferring the regulatory relation-
ships in the occurrence of human diseases [24]. On the
other hand, lncRNA is considered to be an important
part of the competing endogenous RNA (ceRNA) regu-
latory network, and the construction of lncRNA-related
ceRNA regulatory relationships helps to understand the
mechanism of lncRNA in colon cancer [25, 26]. Cur-

rently, several lncRNAs, such as HOTAIR, HOXB-AS3,
UCA1, andMALAT1, have been found to be related to the
occurrence of colon cancer [27–30].
Understanding the regulatory mechanism of lncRNA in

the occurrence and development of colon cancer can pro-
vide informative prognostic signatures for patients with
poor prognosis [10, 15]. Although experimental methods
can identify lncRNAs associated with colon cancer, they
are time-consuming and costly. For example, CEL-seq2
costs $2420 when sequencing 110 cells at a depth of 1 mil-
lion reads [31], Drop-seq costs $1110 when sequencing
254 cells at a depth of 1 million reads [31], and MARS-
seq costs 1380$ when sequencing 160 cells at a depth of 1
million reads [31]. Moreover, it takes several days to gen-
erate sequencing libraries and sequencing data. Therefore,
it is essential to develop computational methods to iden-
tify lncRNAs associated with colon cancer. Many studies
have been performed to use lncRNA signatures to esti-
mate the samples’ survival time (based on overall survival)
of colon cancer [32–35] and other cancers (gastric cancer
[36], clear cell renal cell carcinoma [37], and breast can-
cer [38]) through computational methods. These methods
have been proven to have good prognostic performance
on their own data sets, but they have a common limita-
tion that they only considered the expression information
of lncRNA and ignored the important role of lncRNA sec-
ondary structure in the regulation process. Therefore, it
is necessary to consider both the expression and structure
information to construct an effective prognostic model.
In this study, we performed an integrative analysis of

the correlation and survival of colon cancer and revealed
some significant lncRNA signatures that can be used
for the prognosis of colon cancer. Specifically, a risk
prognostic model based on the identified lncRNA sig-
natures was constructed and verified, which not only
can help to understand the mechanism of colon cancer
at the long non-coding RNA level but also provide the
promising lncRNA signatures candidates for the diagno-
sis of colon cancer. The contributions of this study can
be summarized as follows. (1) We predicted the regu-
latory relationships between lncRNAs and mRNAs by
integrating their expression values and secondary struc-
ture information. (2) Two new lncRNAs (CTC-428G20.6
and CTC-297N7.9) related to colon cancer were discov-
ered. (3) A significant six-lncRNA (RP11-798K3.2, RP11-
400N13.2, EVX1-AS, CTC-428G20.6, ZNF667-AS1, and
CTC-297N7.9) risk prognosis model was presented to
estimate the overall survival of colon cancer patients.
Among these six lncRNAs, EVX1-AS and ZNF667-AS1
have been predicted to be related to colon cancer in LncR-
NADisease V2.0 (http://www.rnanut.net/lncrnadisease/)
(the latter was verified in the correlation analysis); RP11-
798K3.2 and RP11-400N13.2 have been proven to be
related to colon cancer by previous studies [34, 35].

https://www.gencodegenes.org/
https://www.gencodegenes.org/
http://www.rnanut.net/lncrnadisease/
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Methods
The workflow of our study is shown in Fig. 1. There
are two modules in the framework, the first is the con-
struction of the prognostic model, and the second is the
analysis and validation of the model.

Data acquisition and preliminary analysis
The original RNA-seq expression data and clinical infor-
mation (race, ethnicity, vital status, days to death, age at
index, year of diagnosis, tumor stage, days to last follow
up, etc.) of colon adenocarcinoma (COAD) were down-
loaded from TCGA database (https://portal.gdc.cancer.
gov/) by using GDC Data Transfer Tool, which contained
451 tumor samples and 41 adjacent normal samples.
Among these samples, 447 had complete clinical infor-
mation. After excluding samples with too short overall
survival (less than 10 days), 411 were left (See Supplemen-
tary Table S1, Additional File 1). The expression profiles
of lncRNA and mRNA of colon cancer were obtained
through the annotation file of the GENCODE (v22: deter-
mined by the annotation information used in TCGA)
database. Finally, there were 14826 annotated lncRNAs
and 19814 annotated mRNAs for subsequent analysis.

To discover the lncRNAs and mRNAs related to colon
cancer, we conducted a preliminary differential analysis
on the expression profiles of colon cancer. The expres-
sion profiles of lncRNAs and mRNAs were normalized
before performing differential expression analysis by using
the edger package (https://bioconductor.org/packages/
release/bioc/html/edgeR.html) of R software. The nor-
malization method used was the trimmed mean of M
value (TMM). Specifically, the expression profiles were
divided into colon cancer and control group, and the
limma package [39] of R software was used to find out
the differentially expressed RNAs (lncRNAs and mRNAs)
between colon cancer and adjacent tissues. The expres-
sion differences were evaluated by the fold change (rep-
resent the range of changes from initial to final val-
ues) and the related adjusted p values. The p values of
lncRNAs and mRNAs were obtained by t test and cor-
rected by Benjamini-Hochberg (BH) [40]. Differentially
expressed lncRNAs and mRNAs were acquired by set-
ting the adjusted p value < 0.01 and the absolute value
of logFC > 1.5. The up/downregulation mRNAs and
lncRNAs were identified for subsequent co-expression
analysis.

Fig. 1 The flow chart of the analysis process. Secondary structure (SS) fusion refers to the combination of expression value correlation and
secondary structure correlation. Regression analysis is a combination of univariate Cox analysis, random survival forest (RSF) analysis, and lasso
regression analysis. Kaplan-Meier (KM) analysis refers to constructing the KM survival curve based on the risk prognosis model

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://bioconductor.org/packages/release/bioc/html/edgeR.html
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Co-expression analysis and secondary structure
information fusion
Co-expression analysis can be used to predict the cor-
relation between mRNA and lncRNA at the expression
level. By analyzing the correlation coefficient, we can find
the degree of correlation between lncRNA and mRNA.

Practically, a co-expression matrix C =
(
CLL CLM
CML CMM

)

was acquired by using the cor method of the stats
package in R software. CLL is the Spearman correlation
matrix between lncRNAs; CLM is the Spearman correla-
tion matrix between lncRNAs and mRNAs; CML is the
Spearman correlation matrix between mRNAs and lncR-
NAs; CMM is the Spearman correlation matrix between
mRNAs. Obviously, CLM is equal to CT

ML. Suppose that
C(m, l) is an element in the CML matrix, which represents
the Spearman’s rank correlation between mRNA m and
lncRNA l. Assuming there are p mRNAs and q lncRNAs,
the Spearman’s rank correlation coefficient [41] between
themth mRNA and the lth lncRNA is defined as follows:

C(m, l) = 1 − 6
∑

d2i
samp_no(samp_no2 − 1)

(1)

where di represents the difference between the rank of m
and l, and sampno is the number of colon cancer samples.
C(m, l) ranges from − 1 to 1, and the greater the abso-
lute value of C(m, l), the stronger the correlation between
mRNAm and lncRNA l. A correlation matrix with p rows
and q columns was obtained by setting the threshold of
the correlation coefficient to a specific threshold α from 0
to 1:

CML(α) =
⎡
⎢⎣
C(1, 1) · · · C(1, q)

...
. . .

...
C(p, 1) · · · C(p, q)

⎤
⎥⎦ (2)

where p denotes the number of mRNAs in the co-
expression relationship, and q denotes the number of
lncRNAs in the co-expression relationship. In general, we
suppose that the correlation is weak when α < 0.3; the
correlation is sensible when 0.3 ≤ α ≥ 0.7; the correla-
tion is stronger when α > 0.7. In each row and column
of the matrix CML(α), at least one number has an abso-
lute value greater than or equal to α. Nr(i) is the number
of C(m, l) ≥ α in the ith rows, Nc(j) is the number of
C(m, l) ≥ α in the jth columns, where Nr(i) ∈ {

1, · · · , q}
and Nc(j) ∈ {

1, · · · , p}.
In addition, in order to find the intrinsic and poten-

tial regulatory relationship between lncRNA and mRNA,
we also consider the secondary structure information of
lncRNA and mRNA to estimate the correlation between
them at the sequence structure level. We define the corre-
lation coefficient between mRNA m and lncRNA l on the
secondary structure as:

E(m, l) =
∑u(m)

s=1
∑v(l)

t=1
MFEst

LEN_Ms+LEN_Lt
u(m) · v(l) (3)

where E(m, l) denotes the secondary structure correlation
of mRNA m and lncRNA l, MFErs denotes the minimum
free energy (the minimum energy required to make the
RNA molecule have a stable secondary structure [42]) of
concatenation sequence of the transcript s of mRNA m
and the transcript t of lncRNA l.MFEst was calculated by
RNAcofold [43]. In formula (3), u(m) denotes the num-
ber of transcripts of mRNAm, v(l) denotes the number of
transcripts of lncRNA l, LEN_Mr denotes the length of the
transcript r of mRNA m, and LEN_Ls denotes the length
of the transcript s of lncRNA l . For each E(m, l) in matrix
EML(α), a corresponding E′(m, l) is defined as:

E′(m, l) = E(m, l) − minEML(α)

maxEML(α) − minEML(α)
(4)

The secondary structure correlation matrix EML(α) cor-
responding to the Spearman’s rank correlation matrix
CML(α) was obtained through E(m, l). After matrix
EML(α) was min-max normalized, matrix E′

ML(α) was
normalized to the range [0, 1]. The Spearman correlation
matrix and the secondary structure correlation matrix
were fused to obtain an adjusted correlation matrix com-
posed of differentially expressed lncRNAs and mRNAs.
The adjusted correlation matrix ACML(α) is defined as:

ACML(α) =
⎡
⎢⎣
AC(1, 1) · · · AC(1, q)

...
. . .

...
AC(p, 1) · · · AC(p, q)

⎤
⎥⎦ (5)

where p and q denote the number of mRNAs and lncR-
NAs, respectively. Each AC(m, l) in Matrix ACML(α) is
defined as:

AC(m, l) =
{

max(|C(m, l)|,E′(m, l)),C(m, l) ≥ 0
−max(|C(m, l)|,E′(m, l)),C(m, l) < 0 (6)

where AC(m, l) represents the adjusted correlation coeffi-
cient between mRNA m and lncRNA l, which was deter-
mined by C(m, l) and E′(m, l). AC(m, l) combines expres-
sion value information and secondary structure infor-
mation, which can fully reflect the correlation between
mRNA m and lncRNA l.
In order to further analyze the potential regulation

mode of lncRNA after the secondary structure correla-
tion fusion, we constructed a competing endogenous RNA
(ceRNA) regulation network based on the adjusted co-
regulation relationships. The ceRNA network plays an
important regulatory role in colon cancer, and the lncRNA
in it can be used as biomarkers for the prognosis of colon
cancer. In the process of post-transcriptional regulation,
lncRNA and mRNA compete for binding to miRNA to
form a ceRNA regulatory network. In our framework,
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the ceRNA regulation network was constructed based
on lncRNAs and mRNAs (both RNAs were differentially
expressed). Firstly, mRNA-targeted miRNAs were col-
lected from TargetScan database (http://www.targetscan.
org/vert_72/). Secondly, lncRNA-targeted miRNAs were
collected from miRcode database (http://www.mircode.
org/). Thirdly, common miRNAs found in the above two
steps were screened out. Finally, the ceRNA regulatory
network was built and visualized through the interaction
between mRNAs, lncRNAs, and their common miRNAs
by using Cytoscape v3.6.1 [44].
Furthermore, to comprehend the potential biological

effects of dysregulated mRNA related to lncRNA, func-
tion and pathway enrichment analyses were carried out
by using DAVID on line tools (version 6.8, https://
david.ncifcrf.gov/). Specifically, the detectedmRNAs were
enriched on GO (Molecular Function, Biological Process,
and Cellular Component) terms and KEGG pathways
respectively. Finally, the items with p value < 0.05 were
used to interpret the functions of the detected mRNAs in
colon cancer.

Traditional regression analysis
We used the survival package [45] to perform univari-
ate Cox analysis to detect the relationships between
dysregulated lncRNAs and the overall survival of colon
cancer patients (lncRNAs with log-rank p value <0.05
were considered significant). The random survival for-
est (RSF) analysis was performed to access the link
between differentially expressed lncRNAs and the over-
all survival of colon cancer patients by using ran-
domForestSRC package (https://cran.r-project.org/web/
packages/randomForestSRC/index.html) in R software.
The union of the outputs of univariate Cox analysis and
RSF analysis was used for lasso regression analysis to
detect cancer-related lncRNAs. Significant lncRNA sig-
natures were obtained by selecting items with non-zero
regression coefficients in the results of lasso analysis.

Comprehensive analysis and construction of risk prognosis
model
Considering the previous regression analysis may lose
some lncRNA features that have no obvious relation-
ships between expression level and survival time but may
affect survival time through coordination (based on over-
all survival), we further developed a new method to iden-
tify those survival-related lncRNAs. In detail, we found
these missing lncRNA features through the following: (a)
downloaded the pathogenic mRNAs of colon cancer from
the Cosmic (https://cancer.sanger.ac.uk/cosmic/) disease
database, (b) identified the related pathogenic mRNAs in
the co-regulatory network, and (c) identified the lncRNAs
related to the pathogenic mRNAs in the co-expression
network.

By combining the preliminarily identified lncRNAs
(from traditional regression analysis) with the lncRNAs
associated with the pathogenic mRNAs found above, mul-
tivariate Cox analysis was carried out to identify lncRNAs
associated with the prognosis of colon cancer. Specifi-
cally, we tried to identify k lncRNA signatures to estimate
the overall survival of colon cancer. A matrix PSL con-
taining g samples’ expression profile, overall survival, and
vital status is defined as PSL = (h1, h2, ..., hg). Here, hi is
a vector and the transposition of hi is defined as hTi =
(ei1, ...eik , vi, oi), where eij denotes the expression value of
the ith sample on the jth lncRNA, vi denotes the survival
status of the ith sample, and oi denotes the overall survival
of the ith sample. Through the regression coefficients and
expression values of k lncRNAs, the following predictive
formula for colon cancer sample i can be obtained:

R(i) =
k∑

j=1
βj · eij (7)

where R(i) denotes the risk score of the ith colon cancer
sample, and βj denotes the regression coefficient of the
jth lncRNA signature. A prognosis model of colon can-
cer samples based on lncRNA signatures was obtained
through the above formula. In particular, the model was
analyzed and verified on the TCGA data set.

Construction of Kaplan-Meier curve
We calculated the risk score of all colon cancer samples
based on the risk prognostic model. The risk scores were
divided into high-risk group and low-risk group by setting
a specific cutoff. The risk level is obtained as follows:

RL(i) =
{
low, R(i) < cut_off
high, R(i) ≥ cut_off (8)

where RL(i) denotes the risk level of the ith sample, and
the default cutt_off is the median risk score of all colon
cancer samples. Then, the Kaplan-Meier (KM) survival
curve based on the overall survival, vital status, and prog-
nostic risk of the samples was constructed as follows. (1)
The survival rate of high-risk samples was calculated. (2)
The survival rate of low-risk samples was calculated. (3)
The KM curve based on overall survival and survival rate
was constructed. Specifically, the construction of the KM
curve is achieved by the survival package [45] of the R soft-
ware. There are two lines in the KM survival curve, one is
for high-risk samples and the other is for low-risk samples.
Ideally, there should be a clear difference in the survival
rate of samples with high and low risks, that is, there is no
obvious crossover between the two lines.

Results
Dysregulated lncRNAs andmRNAs
The numbers of up/downregulated mRNAs and lncRNAs

http://www.targetscan.org/vert_72/
http://www.targetscan.org/vert_72/
http://www.mircode.org/
http://www.mircode.org/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
https://cran.r-project.org/web/packages/randomForestSRC/index.html
https://cran.r-project.org/web/packages/randomForestSRC/index.html
https://cancer.sanger.ac.uk/cosmic/
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Fig. 2 The number of up/downregulated mRNAs and lncRNAs. a The number of up/downregulated mRNAs (adjusted p value <0.01). b The number
of up/downregulated lncRNAs (adjusted p value <0.01)

based upon three distinct thresholds of fold change are
shown in Fig. 2. When the absolute value of logFC (loga-
rithm of fold change) >= 1.5, a total of 2414 dysregulated
mRNAs (683 were up-regulated and 1731 were downreg-
ulated) and 420 dysregulated lncRNAs (138 were upregu-
lated and 282 were down-regulated) were identified. The
volcano plot and heatmap of the differentially expressed
lncRNAs are shown in Fig. 3a and b, respectively. It can
be discovered that there is a significant dysregulation

in the expression of lncRNAs in colon cancer, and the
downregulation rate is greater than the upregulation rate.

Correlation and gene function
In the co-expression analysis, 115 mRNA and 27 lncRNA
were retained by setting α = 0.8. This means that
the order of the matrix CML(0.8) was 115 ∗ 27. Then,
a regulatory network based on these 115 lncRNAs and
27 mRNAs were constructed (220 interactions, Fig. 4).

Fig. 3 The results of difference analysis and lasso regression analysis. a The volcano plot of differentially expressed lncRNAs. b The heatmap of
differentially expressed lncRNAs. c Lasso regression coefficients. d The partial likelihood deviance of lasso regression coefficients
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Fig. 4 Co-regulatory network of mRNAs and lncRNAs. The red and green nodes represent mRNAs and lncRNAs, respectively. The size of the node is
proportional to the degree of the node. The thickness of the edge is proportional to the strength of the correlation

As shown in Fig. 4, it can be found that 9 of these 27
lncRNAs have a high degree in the regulatory network.
The top-3 lncRNAs with the highest degrees are MAGI2-
AS3, RP11-166D19.1, and C14orf132 (degrees are 42, 38,
and 35 respectively). Actually, MAGI2-AS3 is found to
promote colon cancer progression by regulating the miR-
3163/TMEM106B axis [46]. There were 42 differentially

expressed mRNAs related to MAGI2-AS3. The differen-
tial expression of these mRNAs may be related to the
regulatory relationship between MAGI2-AS3 and miR-
3163.
The correlation coefficients before and after the sec-

ondary structure correlation adjustment are shown in
Table 1, Table 2 respectively (α = 0.9). Especially, some

Table 1 Spearman’s rank correlation (threshold=0.9)

CASC21 FEZF1.AS1 KIAA0125 RP11.25K19.1 MAGI2.AS3 DLX6.AS1

POU5F1B 0.921046 − 0.272906 − 0.198371 − 0.335172 − 0.083741 0.207652

DDR2 − 0.055541 − 0.145469 0.295115 0.056139 0.901414 − 0.019750

FEZF1 − 0.214465 0.905106 0.078724 0.249223 − 0.129703 − 0.090882

MZB1 − 0.156008 0.047820 0.901879 0.169155 0.262776 − 0.068253

TOX − 0.398056 0.234735 0.209269 0.915596 0.112641 0.030225

CACNA2D1 0.014141 − 0.193714 0.247710 0.047105 0.906147 0.024552

FCRL5 − 0.167879 0.054787 0.917191 0.154289 0.363034 − 0.087492

DLX6 0.219619 − 0.153076 − 0.088336 − 0.009765 − 0.046828 0.905186
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Table 2 Adjusted correlation (threshold = 0.9)

CASC21 FEZF1.AS1 KIAA0125 RP11.25K19.1 MAGI2.AS3 DLX6.AS1

POU5F1B 0.921046 − 0.382356 − 0.411440 − 0.335172 − 0.304581 0.296538

DDR2 − 0.366222 − 0.561156 0.613738 0.427867 0.901414 − 0.261861

FEZF1 − 0.656697 1.000000 0.819006 0.626732 − 0.598957 − 0.365746

MZB1 − 0.769841 0.847173 0.952822 0.716688 0.719770 − 0.398660

TOX − 0.398056 0.234735 0.209269 0.915596 0.112640 0.074103

CACNA2D1 0.160565 − 0.354152 0.368323 0.246121 0.906147 0.164745

FCRL5 − 0.474429 0.557145 0.917191 0.479419 0.466437 − 0.362183

DLX6 0.381330 − 0.574835 − 0.615991 − 0.441327 − 0.387686 0.905186

potential correlations are discovered through secondary
structure correlation adjustment. Among the 48 interac-
tion coefficients, 11 are unchanged and 37 are adjusted
through secondary structure correlation. These 37 num-
bers vary from 0.043878052 to 0.799352838 based on the
original value.

The results of GO terms and KEGG pathway enrich-
ment analysis show that these mRNAs are related to some
regulation of system processes (Fig. 5). It can be found
that the target mRNAs are mainly enriched in the signal
transduction of the biological process. (Fig. 5a). Disor-
ders of signal transduction pathways in normal cells can

Fig. 5 Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. a GO analysis of biological process. The
term1-5 represents positive regulation of transcription, transcription from RNA polymerase II promoter, signal transduction,inflammatory response,
and cell adhesion, respectively. b GO analysis of cellular component. The term6-10 represents integral component of membrane, extracellular
exosome, extracellular region, plasma membrane, and integral component of plasma membrane, respectively. c GO analysis of molecular function.
The term11-15 represents sequence-specific DNA binding,transcriptional activator activity, calcium ion binding, receptor activity, and heparin
binding, respectively. d KEGG pathway analysis. The term16-25 represents Vascular smooth muscle contraction, platelet activation, cell adhesion
molecules (CAMs), Rap1 signaling pathway, Ras signaling pathway, cytokine-cytokine receptor interaction, neuroactive ligand-receptor, interaction
focal adhesion, calcium signaling pathway, and PI3K-Akt signaling pathway, respectively
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cause cancers. As for the cellular component process, it
can be found that the target mRNAs are mainly enriched
in the integral component of membrane (Fig. 5b). The
oligosaccharides on the cell membrane are the markers
of recognition between cells. The behavior of tumor cells
is related to changes in cell membrane oligosaccharides.
When it comes to the molecular function process, it can
be found that the target mRNAs are mainly enriched in
the calcium ion binding (Fig. 5c). The calcium ions play
a considerable role in the process of cell carcinogenesis,
and the binding of calcium ions may be related to the
occurrence of cancer. The KEGG pathways are chiefly
enriched in the PI3K-Akt signaling pathway (Fig. 5d).
PI3K-Akt signaling pathway is a principal intracellular sig-
nal transduction pathway, which plays a critical role in cell
apoptosis and survival, and is high correlated with tumor
occurrence. It has been reported that the activity of PI3K-
Akt signaling pathway is increased in colon cancer [47].
The enrichment of PI3K-Akt signaling pathway makes the
signals about cell survival, cell growth and cell cycle acti-

vated frequently, which leads to the occurrence of colon
cancer.

ceRNA regulatory network
A strongly related ceRNA network was constructed by
uniting the lncRNA-miRNA interactions and the miRNA-
mRNA interactions (Fig. 6). As shown in Fig. 6, there
are 4 lncRNAs, 8 mRNAs, and 36 miRNAs in this
ceRNA regulatory network. The degrees of lncRNARP11-
25K19.1, KIAA0125, MAGI2-AS3, and DLX6-AS1 are 7,
19, 32, and 36, respectively. Interestingly, KIAA0125 is
found to have a tumor suppressor effect that regulates
the development and metastasis of colon cancer [48].
The function of MAGI2-AS3 was verified in the corre-
lation analysis. DLX6-AS1 is found to act as a ceRNA
of miR-577 to accelerate the malignant development of
colon cancer [49]. As for RP11-25K19.1, it has been
found to be differentially expressed in diffuse large-B-
cell lymphoma and has a good prognostic effect on the
tumor [50].

Fig. 6 CeRNA regulatory network. The orange, green, and purple nodes represent mRNA, lncRNA, and miRNA, respectively. The orange and green
edges represent mRNA-miRNA interaction and lncRNA-miRNA interaction, respectively. The size of the node is proportional to the degree of the
node. The thickness of the edge is proportional to the strength of the correlation
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Screening of lncRNA signatures
In univariate Cox regression analysis, 30 lncRNAs were
obtained by setting p value less than 0.05 (See Supple-
mentary Table S2, Additional File 1). In RSF analysis, 13
lncRNAs were obtained by screening the lncRNAs with a
score greater than or equal to 9 (See Supplementary Table
S3, Additional File 1). Lasso regression analysis was per-
formed after taking a union of the results of univariate
Cox analysis and RSF analysis. Specifically, 34 lncRNAs
were used as input for lasso regression analysis, and 14
lncRNAs with lasso regression coefficients were obtained
(Fig. 3c and d). Finally, 14 lncRNAs were preliminarily
screened through the above three regression analyses.
There were 379 mRNAs and 68 lncRNAs obtained

when we set α = 0.7 in the co-regulatory net-
work (the order of matrix CML(0.7) was 379 ∗ 68).
There were 65 mRNAs related to colon cancer in
the cosmic database. By comparing with these 65
mRNAs, RSPO3 (ENSG00000146374.12) and SFRP4
(ENSG00000106483.10) in matrix CML(0.7) were found
to be related to the occurrence of colon cancer.
More importantly, 5 lncRNAs (ENSG00000237125.7,
ENSG00000166770.9, ENSG00000227051.5, ENSG000-
00234456.6, and ENSG00000255248.5) were found to be
related to these two mRNAs. Subsequently, multivariate
Cox analysis was fulfilled by taking the union of the lncR-
NAs obtained from lasso analysis and these 5 lncRNAs. A
total of 19 lncRNAs were used for multivariate Cox anal-
ysis. Three lncRNAs with high p values were deleted, and
16 lncRNAs were left for the final analysis. Six lncRNAs
were found to be significantly correlated with the overall
survival of colon cancer samples (p<0.05), and the uni-
variate andmultivariate Cox analysis results of these lncR-
NAs are shown in Table 3 (ENSG00000166770.9 comes
from correlation analysis).

Model analysis and validation
The six lncRNAs in Table 3 were subjected to survival
analysis in the training, testing, and total set (See Sup-
plementary Table S1, Additional File 1). The risk scores
of the samples in these three sets were calculated as
follows: risk score = (0.0126948 × expression level of

ENSG00000259347.4) + (0.0011064 × expression level of
ENSG00000228437.4) + (0.0018182 × expression level of
ENSG00000253405.1) + (− 0.0342018 × expression level
of ENSG00000271797.1)+ (0.0061149 × expression level
of ENSG00000166770.9) + (− 0.0299009 × expression
level of ENSG00000264016.2). We first analyzed the dis-
tribution of risk scores and the relationship between risk
level and overall survival (Fig. 7a–f). From the scatter
plot (Fig. 7d–f), it is found that the risk level can signif-
icantly fit the overall survival of colon cancer patients in
the training, testing, and total set. Then, three groups of
Kaplan-Meier (KM) survival curves were constructed, as
shown in Fig. 7g–i. It can be found that these six lncR-
NAs can clearly distinguish the high and low levels of the
survival rate.
In order to further analyze and validate our prognostic

model, we obtained six sample sets (early-stage samples
in the training set, late-stage samples in the training set,
early-stage samples in the testing set, late-stage samples
in the testing set, early-stage samples in the total set, and
late-stage samples in the total set) through collecting the
colon cancer samples by their stages. Among them, sam-
ples from stage I/II belong to the early-stage group and
samples from stage III/IV belong to the late-stage group.
Then, we performed survival analysis on these six sets
(Fig. 8). The results show that our model has good prog-
nostic performance in both the early-stage and late-stage
groups. We also analyzed the risk score distribution and
overall survival of the samples in these 6 sets (See Sup-
plementary Figure S1, Additional File 1). We found that
samples with high risk levels were more likely to die than
those with low risk levels in these sets, which is consistent
with the expected results.
In summary, these six lncRNA signatures can signifi-

cantly fit the overall survival of the sample, and the prog-
nostic model composed of them can provide an effective
prognosis for patients with colon cancer.

Independence of the prognostic model
In order to analyze the relationship between the the prog-
nostic signatures of lncRNA and other clinical factors,
we performed univariate and multivariate Cox regression

Table 3 Univariate and multivariate Cox analysis

Ensembl ID Univariate Multivariate

HR (95% CI for HR) p value Coef z p

ENSG00000259347.4 1 (1–1) 0.0032 0.0126948 3.341 0.000833

ENSG00000228437.4 1 (1–1) 1.40E−05 0.0011064 3.045 0.002331

ENSG00000253405.1 1 (1–1) 3.30E−05 0.0018182 2.907 0.003647

ENSG00000271797.1 0.97 (0.95–0.99) 0.0018 − 0.0342018 − 2.291 0.021966

ENSG00000166770.9 – – 0.0061149 2.087 0.03691

ENSG00000264016.2 0.97 (0.95–0.99) 0.0072 − 0.0299009 − 2 0.045526
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Fig. 7 The risk score distribution, sample survival time, and Kaplan-Meier (KM) curve in the training, testing, and total set. a The risk score distribution
in the training set. b The risk score distribution in the testing set. c The risk score distribution in the total set. d The sample survival time in the
training set. e The sample survival time in the testing set. f The sample survival time in the total set. g The KM curve in the training set. h The KM
curve in the testing set. i The KM curve in the total set

analysis on the risk score and 6 other clinical character-
istics (age, gender, tumor stage, tumor invasion, lymph
node, and metastasis) (Table 4). We found that in the
three sets, only the risk score <= 0.05 in both univariate
and multivariate Cox analysis. This indicates that the six
lncRNAs we identified are independent prognostic factors
for colon cancer patients, that is, our prognostic model
can predict the overall survival of colon cancer patients
independently of other clinically relevant characteristics.

Discussion
Studies have shown that abnormal transcription of
lncRNA is related to the occurrence of colon cancer [11,
12, 14]. LncRNA has become a promising prognostic
biomarker candidate for colon cancer. It is necessary to
find significant lncRNA signatures to predict the overall
survival of colon cancer patients. In this study, we con-

ducted a comprehensive analysis of secondary structure
correlation fusion, construction of ceRNA regulatory net-
work, and identification lncRNA prognostic signatures.
Finally, a risk prognosis model for colon cancer samples
based on 6 lncRNA signatures was proposed, which pro-
vides further insights into the prognosis of lncRNAs in
colon cancer.
Four hub-lncRNAs (RP11-25K19.1, KIAA0125, MA-

GI2-AS3, and DLX6-AS1) were identified in the ceRNA
regulatory network. We speculate that these lncRNAs
may play important regulatory roles in colon cancer.
KIAA0125 has been found to have a tumor suppres-
sor effect that regulates the development and metastasis
of colon cancer [48]. As for MAGI2-AS3, it has been
found to promote the progression of colon cancer by
regulating the miR-3163/TMEM106B axis [46]. DLX6-
AS1 has been found to act as a ceRNA of miR-577 to
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Fig. 8 The Kaplan-Meier (KM) curves of early-stage (I/II) and late-stage (III/IV) samples. a The KM curve of early-stage samples in the training set. b
The KM curve of early-stage samples in the testing set. c The KM curve of early-stage samples in the total set. d The KM curve of late-stage samples
in the training set. e The KM curve of late-stage samples in the testing set. f The KM curve of late-stage samples in the total set

accelerate the malignant development of colon cancer
[49]. Therefore, based on the above results, we can infer
that RP11-25K19.1 also plays an important regulatory
role in colon cancer, and this regulatory mechanism is
achieved through the ceRNA network.
Subsequently, through gene function analysis of the tar-

get mRNAs in the co-regulated relationship, we found
that these colon cancer-related mRNAs are related to
GO terms such as signal transduction, integral compo-
nent of membrane, and calcium ion binding. And these
mRNAs are mainly enriched in the PI3K-Akt signaling
pathway through KEGG pathway enrichment analysis.
These enrichedGO terms and KEGGpathways are related
to the life cycle of colon cancer cells, and it is reported that
the signal transduction, integral component of membrane,
and calcium ion binding are related to cell growth, divi-
sion, and death [51]. The activation of the signal transduc-
tion can lead to the occurrence of colon cancer [52]. The
PI3K-Akt signaling pathway is related to the regulation of
cell growth cycle, and it has been found to be mutated
in cancers [53]. Besides, it has also been reported that

the activity of PI3K-Akt signaling pathway is increased in
colon cancer [47]. It is possible to induce apoptosis of can-
cer cells by studying targeted drugs related to PI3K-Akt to
achieve the purpose of cancer treatment [53].
Finally, 6 lncRNAs related to the overall survival of colon

cancer were found. The sources of these lncRNAs are
shown in Table 5. Especially, the EVX1-AS, ZNF667-AS1,
CTC-428G20.6, and CTC-297N7.9 were first found to be
related to colon cancer, where the EVX1-AS and ZNF667-
AS1 have been predicted to be related to colon cancer in
LncRNADisease (V2.0) (the latter was verified in the cor-
relation analysis). The RP11-798K3.2 and RP11-400N13.2
have been proven to be related to colon cancer by previ-
ous studies [34, 35]. We further explored the performance
of the prognostic model on drug treatment and radiother-
apy samples(See Supplementary Figure S2 and Figure S3,
Additional File 1). The results show that the lncRNA sig-
natures we found can prognosticate the survival risk of
colon cancer patients independently of the type of treat-
ment, and there is no significant difference in the overall
survival of samples with different treatments. In addition,
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Table 4 Univariate and multivariate Cox analysis of clinical characteristics on three sets

Variables Univariate Multivariate

HR (95% CI for HR) p value Coef z p

Training set

Age 1 (1–1.1) 0.016 0.0442637 3.290 0.0010

Gender 0.92 (0.54–1.6) 0.75 0.0004572 0.002 0.9987

Tumor stage 2.2 (1.6–3) 3.3e−07 0.4570372 1.739 0.0820

Tumor invasion (T) 2.9 (1.8–4.8) 1.8e-05 0.6198692 1.871 0.0614

Lymph node (N) 2.2 (1.6–2.9) 9.5e−07 0.2121219 0.860 0.3895

Metastasis (M) 1.7 (1.2–2.3) 0.001 0.2204375 1.065 0.2869

Risk score 2 (1.6–2.6) 6.4e−08 0.6528934 4.518 6.24e−06

Testing set

Age 1 (0.98–1) 0.82 0.02209 1.359 0.17421

Gender 0.76 (0.36–1.6) 0.49 −0.19816 −0.454 0.65005

Tumor stage 2.8 (1.7–4.7) 6.2e−05 0.94479 2.720 0.00653

Tumor invasion (T) 1.8 (0.86–3.8) 0.12 −0.10185 −0.203 0.83914

Lymph node (N) 2.1 (1.3–3.4) 0.0034 −0.10574 −0.287 0.77424

Metastasis (M) 1.6 (1–2.5) 0.031 0.51952 1.630 0.10307

Risk score 1.4 (1–1.8) 0.027 0.34615 2.071 0.03837

Total set

Age 1 (1–1) 0.041 0.03938 3.833 0.000127

Gender 0.89 (0.58–1.4) 0.6 −0.02656 −0.115 0.908684

Tumor stage 2.3 (1.8–2.9) 1.5e−10 0.59692 2.802 0.005076

Tumor invasion (T) 2.6 (1.7–4) 5e−06 0.45556 1.691 0.090824

Lymph node (N) 2.1 (1.6–2.7) 2.1e−08 0.08203 0.394 0.693225

Metastasis (M) 1.6 (1.3–2.1) 0.00012 0.31324 1.870 0.061471

Risk score 1.6 (1.4–2) 2.8e−08 0.49875 4.845 1.27e−06

we compared the prognostic model composed of these six
lncRNA features with four other models related to colon
cancer (See Supplementary Table S4, Additional File 1). It
can be found that only our prognostic method considers
both structural information and expression value infor-
mation, which is of great significance for the discovery of
potential lncRNA characteristics in colon cancer.
Although our method has a good performance in the

prognosis of colon cancer, it still needs to be improved

from the following two aspects. One is that our prog-
nostic model was trained based on colon cancer samples,
and there is no guarantee that it can still achieve good
results on other cancer data sets. The other is that we
only considered the sequence information and secondary
structure information of lncRNA, but other information
such as tertiary structure information may also affect its
expression. In future work, we plan to add more inter-
esting information to identify prognostic-related lncRNA

Table 5 Source of lncRNAs in risk prognosis model

Ensembl ID Gene name Source

ENSG00000259347.4 RP11-798K3.2 PMID: 29227531

ENSG00000228437.4 RP11-400N13.2 PMID: 31516583

ENSG00000253405.1 EVX1-AS LncRNADisease

ENSG00000166770.9 ZNF667-AS1 LncRNADisease, Correlation

ENSG00000264016.2 CTC-297N7.9 –

ENSG00000271797.1 CTC-428G20.6 –
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signature. Besides, If conditions permit, we will con-
duct experimental verification on the newly discovered
lncRNA signatures related to colon cancer.

Conclusions
This study identified the potential regulatory relation-
ships between lncRNAs and mRNAs by integrating their
expression values and secondary structure information.
Six lncRNA signatures were found to be related to the
prognosis of colon cancer, two of which were found to be
associated with colon cancer for the first time. A risk prog-
nostic model based on these six lncRNAs was proposed.
This model not only helps to comprehend the mecha-
nism of colon cancer at the long-noncoding level, but also
provides a reference for the prognosis of colon cancer
patients.
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