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Abstract

Background: Dysregulation of the balance between proliferation and apoptosis is the basis for human
hepatocarcinogenesis. In many malignant tumors, such as hepatocellular carcinoma (HCC), there is a correlation
between apoptotic dysregulation and poor prognosis. However, the prognostic values of apoptosis-related genes
(ARGs) in HCC have not been elucidated.

Methods: To screen for differentially expressed ARGs, the expression levels of 161 ARGs from The Cancer Genome
Atlas (TCGA) database (https://cancergenome.nih.gov/) were analyzed. Gene Ontology (GO) enrichment and the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to evaluate the underlying
molecular mechanisms of differentially expressed ARGs in HCC. The prognostic values of ARGs were established
using Cox regression, and subsequently, a prognostic risk model for scoring patients was developed. Kaplan–Meier
(K-M) and receiver operating characteristic (ROC) curves were plotted to determine the prognostic value of the
model.

Results: Compared with normal tissues, 43 highly upregulated and 8 downregulated ARGs in HCC tissues were
screened. GO analysis results revealed that these 51 genes are indeed related to the apoptosis function. KEGG
analysis revealed that these 51 genes were correlated with MAPK, P53, TNF, and PI3K-AKT signaling pathways, while
Cox regression revealed that 5 ARGs (PPP2R5B, SQSTM1, TOP2A, BMF, and LGALS3) were associated with prognosis
and were, therefore, obtained to develop the prognostic model. Based on the median risk scores, patients were
categorized into high-risk and low-risk groups. Patients in the low-risk groups exhibited significantly elevated 2-year
or 5-year survival probabilities (p < 0.0001). The risk model had a better clinical potency than the other clinical
characteristics, with the area under the ROC curve (AUC = 0.741). The prognosis of HCC patients was established
from a plotted nomogram.

Conclusion: Based on the differential expression of ARGs, we established a novel risk model for predicting HCC
prognosis. This model can also be used to inform the individualized treatment of HCC patients.

Keywords: Apoptosis-related genes, Hepatocellular carcinoma, Prognostic model, The Cancer Genome Atlas,
Nomogram
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Introduction
Globally, liver cancer is the sixth most common tumor
and the fourth leading cause of cancer-associated mor-
talities [1]. Among the frequent primary liver cancers,
hepatocellular carcinoma (HCC) accounts for approxi-
mately 75% of all cases [1]. Despite advances in diagnos-
tic techniques and treatment, HCC is still associated
with poor survival outcomes due to the high rate of re-
currence and metastasis [2–4]. The TNM staging system
is a traditional method for prognostic prediction; how-
ever, it lacks performance accuracy due to substantive
variations in HCC clinical outcomes [5]. Over the past
decades, serum alpha-fetoprotein (AFP) has been the
only biomarker for detecting and predicting the progno-
sis of HCC; however, its low sensitivity limits its clinical
utility [6]. Therefore, the identification of a novel prog-
nostic biomarker and establishment of an advanced
prognostic model for HCC patients is of paramount
importance.
Bioinformatics analysis is important in elucidating the

functions of numerous differentially expressed genes as
well as evaluating the complexity of HCC occurrence
and development [7, 8]. Meng et al. used a series of bio-
informatics analyses to identify hub genes and pathways
associated with HCC pathogenesis and prognosis [9].
However, these studies usually ignore clinical informa-
tion such as sex, age, grade, and stage of tumors. It may
be very innovative, and informative to construct a prog-
nostic model that combines patient’s gene expression
level and clinical information. Hepatocarcinogenesis de-
velops following an imbalance between proliferation
and apoptosis [10]. It has been documented that the
overexpression of spindle and kinetochore-related com-
plex subunit 3 (SKAT3) in HCC inhibits P53 activation
by binding cyclin-dependent kinase 2 (CDK2), before
impeding cell apoptosis, and thereby promoting cancer
cell proliferation [11]. Besides, several biomolecules
may influence HCC prognosis by regulating
apoptosis-related genes (ARGs) or apoptosis-related
pathways [12–14]. Yu et al. evaluated the association
between the haplotype of the apoptosis-related gene
cyclin-dependent kinase inhibitor 1B (CDKN1B) and
the prognosis of HCC patients who were subjected
to surgical resection [15]. The CCT/ACT haplotype
patients were found to exhibit lower overall survival
rates than those with the more common ACT/CCT
haplotype. Therefore, ARGs can potentially be used
to assess HCC prognosis.
Based on the gene expression and clinical characteris-

tics data obtained from the Cancer Genome Atlas
(TCGA) database, we established the ARGs associated
with HCC prognosis and developed a prognostic predic-
tion model. The model calculates the risk score to pre-
dict and evaluate the HCC prognosis.

Materials and methods
Data collection
The mRNA expression data and clinical information of
HCC patients were obtained from the TCGA database
(https://cancergenome.nih.gov/). The obtained clinical
information included age, gender, TNM stage, T stage,
N stage, M stage, and histological grade. A total of 161
ARGs were acquired from the gene set “HALLMARK_
APOPTOSIS” in the Molecular Signatures Database v7.1
in GSEA [16].

Gene set enrichment analysis and differentially expressed
ARGs
Gene sets with significant differences between HCC and
normal samples were evaluated by GSEA. Subsequently,
using the mRNA expression profiles, the limma package
and the Wilcoxon signed-rank test in R software 3.6.2
(|log2FC| > 1, FDR < 0.05) were used to show the signifi-
cantly differently expressed ARGs in the HCC cohort.
The pheatmap and ggpubr packages in R software were
used to develop volcano plots, heatmaps, and box plots.

Functional enrichment, KEGG pathway, and PPI network
analysis
Gene ontology (GO) enrichment and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) path-
way analysis were performed to evaluate the poten-
tial biological functions of ARGs, after which they
were visualized through R software packages such as
ggplot2, DOSE, clusterProfiler, enrichplot, GOplot,
digest, etc. Interactions among the selected ARGs
were determined through protein–protein interaction
(PPI) networks from the STRING database (http://
www.string-db.org/) [17] and visualized by Cytoscape
software [18].

Establishment of a prognostic risk model based on ARGs
Univariate and multivariate Cox proportional hazard
regression analyses were performed to identify
prognosis-associated ARGs in HCC. Then, a
prognosis-associated prediction formula, acquired
from multivariate Cox regression analysis, was used to
construct a prognostic model using the “glmnet”
package in R. Using the prognostic model, Kaplan–
Meier (K-M) analysis was performed to evaluate the
survival rates of the high- and low-risk groups. Subse-
quently, the area under the receiver operating charac-
teristic (ROC) curve (AUC), and KEGG enrichment
analysis were used to assess the predictive value of
the prognostic model. Finally, the R package (rms)
was used to develop a risk model-based nomogram
for predicting the prognosis of HCC patients.
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Fig. 1 (See legend on next page.)
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Statistical analysis
The gene expression data were normalized by log2 trans-
formation. Thereafter, statistical analyses were performed,
while plots were constructed using the R software 3.6.2
(https://www.r-project.org/) and Perl language packages. p
≤ 0.05 was considered statistically significant.

Results
Acquisition of apoptosis-related genes set and GSE analysis
Following the search in the Molecular Signatures
Database v7.1 in GSEA, 161 ARGs were identified
from the gene set “HALLMARK_APOPTOSIS”, which
were listed in Additional file 1. Thereafter, the 161

(See figure on previous page.)
Fig. 1 Identification of differentially expressed 51 apoptosis-related genes (ARGs) in HCC. a GSE analysis of 161 ARGs. b Volcano plot of
differentially expressed ARGs. Red represents high expression, blue represents low expression, black represents no difference between HCC and
normal tissues. c The heatmap of 51 identified ARGs. d The boxplot of 51 identified ARGs. Red represents HCC tissues, while blue represents
normal tissues, respectively. ARGs apoptosis-related genes. HCC hepatocellular carcinoma

Fig. 2 GO enrichment, KEGG pathway, and PPI analysis of the 51 identified ARGs. Findings of the GO analysis are presented in the
bubble chart (a) and the circle plot (b). c Results from KEGG analysis are presented in the bar plot. d The PPI network of the 51
identified ARGs
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ARGs in this gene set were further assessed through
GSEA analysis to ascertain their biological significance
in HCC. Figure 1a shows that ARG set was signifi-
cantly differentially expressed between HCC and nor-
mal samples.

Identification of differentially expressed ARGs
The mRNA sequence data for 374 HCC tissue sam-
ples and 50 samples of normal tissue were obtained
from the TCGA database. The limma package and
the Wilcoxon signed-rank test in R (|log2FC| > 1,

FDR < 0.05) were used to screen differentially
expressed ARGs in HCC and non-tumor samples. In
this study, 43 and 8 ARGs were found to be signifi-
cantly upregulated and downregulated, respectively.
These findings are presented in a volcano plot, heat-
map, and box plot (Fig. 1b–d).

Functional enrichment and PPI network analysis of
differentially expressed ARGs
To establish the biological functions and significant
pathways of the 51 identified genes, GO enrichment

Fig. 3 Identification of ARGs associated with the prognosis of HCC. a The forest plot of univariate Cox regression results. b The heatmap of 5
identified prognostic ARGs screened out by multivariate Cox regression. c Expression levels of 5 screened ARGs in HCC and normal samples. d K-
M curve of the relationship between OS in HCC patients and expression levels of 5 screened ARGs. e Mutation data of 5 screened ARGs among
353 HCC specimens according to the cBioPortal database. OS overall survival rates
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and KEGG pathway enrichment analysis were per-
formed (Fig. 2). The 51 identified ARGs were found
to be involved in the pathways associated with cellu-
lar apoptosis (Fig. 2a and b). Furthermore, KEGG en-
richment analysis revealed that these ARGs are
involved in platinum drug resistance, transcriptional
dysregulation in cancer, and some oncogenic path-
ways such as MAPK, P53, TNF, and PI3K-AKT sig-
naling pathways (Fig. 2c). The STRING online tool
was used to establish a PPI network to evaluate the
interactions among ARG-coded proteins. Results were
observed using the Cytoscape software (Fig. 2d).

Association between ARGs and HCC patient’s survival and
prognosis
Univariate Cox regression analyses were performed
on both mRNA expression and the corresponding
clinical data for the 51 selected ARGs to identify
their prognosis-associated ARGs in HCC (Fig. 3a).
There were 20 upregulated ARGs and 1 downregu-
lated ARG which were statistically significant. These
21 genes were subsequently analyzed by multivariate
Cox regression (p < 0.05) to determine their associ-
ation with the prognosis of HCC patients and to ac-
quire the corresponding regression coefficients. Five
prognosis-related ARGs: Protein phosphatase 2 regu-
latory subunit B'beta (PPP2R5B), Sequestosome 1
(SQSTM1), DNA topoisomerase II alpha (TOP2A),
Bcl2 modifying factor (BMF), and Galectin 3 (LGAL
S3) were screened. Expression levels in normal and
HCC samples were further compared to establish a
prognostic value involving these 5 genes. Compared
to normal samples, the 5 identified ARGs in HCC

samples exhibited significantly elevated expression
levels than normal specimens as indicated by heat-
map and boxplot (Fig. 3b and c). Besides, the K-M
curve was constructed by utilizing the survival rate
differences in the high- and low-expressed groups of
the identified ARGs. Interestingly, the high expres-
sion levels of the 5 identified ARGs indicated a low
survival rate (Fig. 3d).
Furthermore, mutations in these 5 HCC genes

were analyzed through the cBioPortal database
(http://cbioportal.org). Data from 353 HCC patients
in this database revealed that 22 patients (6.3%) had
mutations. Among the 22 patients with the muta-
tion, 0.85% had missense mutations, 0.56% had am-
plifications, and 0.56% had deep deletions in the
PPP2R5B gene; 0.28% had missense mutations,
0.85% had amplifications, and 0.28% had deep dele-
tions in the SQSTM1 gene; while 0.85% had mis-
sense mutations, 0.28% had truncating mutations,
0.56% had amplifications, and 0.28% had deep dele-
tions in the TOP2A gene. Moreover, 0.28% had mis-
sense mutations, and 0.28% had deep deletions in
the BMF gene whereas 0.28% had amplifications in
the LGALS3 gene (Fig. 3e).
Immunohistochemical analysis of the Human Protein

Atlas (HPA) database revealed that these 5 genes were
significantly upregulated in HCC (Fig. 4).

Establishment of a prognostic risk signature based on
ARGs
We combined the expression levels of ARGs and the
regression coefficients of multiple Cox regression ana-
lyses to establish a risk scoring formula (Table 1).

Fig. 4 Boxplot and immunohistochemical results of the expression levels of 5 screened ARGs between HCC and para-carcinoma tissues according
to the Human Protein Atlas (HPA) database
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Risk score = (0.385327 × Expression value of
PPP2R5B) + (0.2787 × Expression value of SQSYM1)
+ (0.152062 × Expression value of TOP2A) +
(0.172177 × Expression value of BMF) + (0.110211 ×
Expression value of LGALS3). All genes had a

positive coefficient, implying that elevated expression
levels of the identified genes were negatively corre-
lated with prognosis. After calculating the risk score
in HCC patients, the median risk score was used as a
cutoff, and these patients were assigned into high-
and low-risk groups (Fig. 5). The plotted heatmap of
the 5 ARGs expression levels showed that patients in
the same group had distinct expression levels (Fig.
5a). Patient’s scores were ranked in ascending order
(Fig. 5b) and their survival time presented as a scat-
terplot (Fig. 5c). Low-risk patients had a longer sur-
vival time and higher survival rates than high-risk
patients.
Survival analyses of high- and low-risk groups

were performed to show the correlations between

Table 1 Multivariate Cox regression results of prognosis-related
ARGs in HCC

Gene ID Coefficient HR HR.95L HR.95H p value

PPP2R5B 0.3853266 1.4700944 1.0225253 2.1135688 0.0375054

SQSTM1 0.2786996 1.3214104 1.1163784 1.5640981 0.0011966

TOP2A 0.1520620 1.1642324 1.0033461 1.3509168 0.0450713

BMF 0.1721765 1.1878875 0.9781174 1.4426455 0.0824262

ARGs, apoptosis-related genes; HCC, hepatocellular carcinoma

Fig. 5 OS prediction in HCC patients by using the risk score which was established by 5 screened ARGs. a Expression heatmap of 5 prognostic
ARGs in high and low-risk groups. b Risk score distribution in HCC patients. c Overall survival and survival status of HCC patients in the
TCGA database
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risk scores and the prognosis of patients. First, we
evaluated the prognostic significance of the risk
scores using K-M curves and the log-rank method as
shown in Fig. 6. Compared with the high-risk group,
patients in the low-risk group had a significantly
high 2-year or 5-year survival probability (p <
0.0001; Fig. 6) revealing a worse prognosis for the
high-risk group.

Independent prediction of HCC prognosis by risk score
Both univariate and multivariate Cox regression ana-
lyses were used to compare the predictive value of
the prognostic model and other clinical prognostic
variables. The risk score was established as an inde-
pendent prognostic predictor for HCC patients (Fig.
7a and b). However, clinical variables were found
not to be independent prognostic predictors (p >
0.05; Fig. 7b). Moreover, the ROC curve was plotted
to validate the predictive value of the risk score (Fig.
7c). The AUC of the risk score was 0.741 as the
highest value, compared with that of the clinical var-
iables, implying that the risk score had a higher pre-
dictive value than the clinical variables.

KEGG enrichment analysis between different risk patients
KEGG analysis was used to evaluate to explore the
potential biological pathways that were associated

with 5 ARGs. The 5 majorly enriched pathways were
apoptosis, cell cycle, mechanistic target of rapamycin
kinase (mTOR) signaling, WNT signaling, and phos-
phatidylinositol signaling systems (Fig. 7d).

Construction of a nomogram to predict the prognosis of
HCC patients
To apply the risk score in predicting the prognosis of
HCC patients, we combined the risk score with the
corresponding clinical variables to construct a nomo-
gram to predict the OS of patients at 1, 2, and 3
years. Based on the risk scores and clinical variables,
an average point for a patient can be established and
extrapolated to determine the 1-, 2-, and 3-year OS
(Fig. 8).

The correlations between risk scores/ 5 ARGs and clinical
variables
Based on the gene expression and corresponding clinical
data obtained from the TCGA database, we analyzed the
correlations between these clinical variables and risk
scores of the 5 ARGs. Risk scores were correlated with
tumor stage; BMF was associated with age, gender,
grade, and stage; PPP2R5B and LGALS3 were correlated
with stage; SQSTM1 was associated with age and gen-
der; while TOP2A was correlated with grade and stage
(Fig. 9).

Fig. 6 Compared with the high-risk groups, patients in low-risk groups have significantly longer OS outcomes
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Discussion
HCC is the most common malignancy that is associated
with a high recurrence rate and poor prognosis [19, 20].
Several limitations have been attributed to the late
diagnosis and treatment of HCC [21]. Therefore,
identification of prognostic-related biomarkers and
the development of a prognostic model is of critical
importance for HCC patients. Currently, bioinformat-
ics analyses have been shown to play an increasingly
significant role in identifying therapeutic targets for
the diagnosis, treatment, and prognosis of numerous
tumors [22]. Apoptosis plays a crucial role in liver
tumor development and regeneration [12, 23]. Dysreg-
ulated apoptosis leads to the occurrence and develop-
ment of liver tumors [24].
In this study, we developed a novel prognostic-

predictive model for HCC based on ARGs expression.
Based on the list of 161 ARGs from the GSEA and
the data from the TCGA database, 43 significantly

upregulated ARGs and 8 significantly downregulated
ARGs in HCC samples were screened out. GO en-
richment analysis revealed that these 51 genes were
enriched in the pathways associated with cellular
apoptosis, while KEGG analysis revealed that the 51
genes were enriched in MAPK, P53, TNF, and PI3K-
Akt signaling pathways. Among the 51 genes we
screened, several genes have been reported to be re-
lated to the prognosis of HCC, such as apoptosis
regulator BCL2 associated X (BAX) [25], SQSTM1
[26], and CDK2 [27]. Therefore, it is feasible to
evaluate a prognostic model with these genes. Be-
sides, 5 prognosis-related ARGs (PPP2R5B, SQSTM1,
TOP2A, BMF, and LGALS3) were identified. Elevated
expression levels of these 5 ARGs were negatively
correlated with prognosis. Based on this, we designed
a risk model, and it was considered as an independ-
ent prognostic model of HCC according to the results
of multivariate regression analysis. The predictive

Fig. 7 a Prognostic effect analysis of risk score and clinical features in HCC with univariate Cox regression analysis. b Independent prognostic
effect analysis of risk score and traditional prognostic clinical features in HCC with multivariate Cox regression analysis. c The ROC
analysis of the risk score and other prognostic clinical features in HCC. d Pathways that the 5 screened ARGs are enriched in according
to KEGG analysis
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value of the model was confirmed by the K-M and
ROC curves, which showed the highest prognostic
predictive power of the model when combined with
other clinical features of HCC patients. Therefore, by
combining risk scores and clinical features as the
basis for developing the nomogram, its efficiency in
predicting the prognosis of HCC patients was
enhanced.
The potential impact of these 5 hub ARGs on the

progression of HCC were established. For example,
TOP2A was identified as a potential biomarker for
cancer therapy in ovarian cancer, colon cancer, pan-
creatic adenocarcinoma, and HCC [9, 22, 28, 29].
However, TOP2A was upregulated in HCC [30].
Overexpressed TOP2A in HCC leads to a worse
prognosis, and its inhibitors have a potential thera-
peutic effect in HCC patients [31]. Autophagy was
demonstrated to suppress spontaneous tumorigenesis
in the liver [32]. SQSTM1, an autophagy-related pro-
tein, participates in cell survival, growth, and death
through several pathways and degrades during au-
tophagy [33, 34]. Overexpression of SQSTM1 gene, or
abnormal aggregation and phosphorylation of SQST
M1 lead to disorder of glucose and glutamine metab-
olism and promote tumor development in HCV-
positive HCC through persistent activation of nuclear

factor erythroid 2-related factor 2 (Nrf2) [35]. More-
over, animal experiments showed that SQSTM1 was
necessary for hepatocarcinogenesis in mice [26]. BMF,
one of the Bcl-2 family members, promotes apoptosis
by inactivating pro-survival Bcl-2-like proteins
through the BH3 domain following its activation by
stress signals [36]. Gramantieri et al. and Xie et al.
[37, 38] revealed a close relationship between BMF
and activated caspase-3. Moreover, they found that
miR-221 inhibits apoptosis by targeting BMF in HCC
and ovarian cancer cells. Besides, BMF inhibition pro-
motes survival outcomes in multiple myeloma pa-
tients [39]. LGALS3 plays a significant role in the
progression and metastasis of colon cancer, acute
myeloid leukemia, melanoma, and pituitary tumors
[40–43]. In addition, LGALS3 enhances HCC cell
tumorigenesis and metastasis through the β-catenin
signaling [44]. A series of studies have demonstrated
that Galectin-3 can severe as a biomarker for progno-
sis predicting of HCC patients which are the same as
our results [45–47]. PPP2R5B (B56β) as the regula-
tory subunit of PP2A is involved in cell growth, sur-
vival, and metabolism [48]. It has been reported that
deleted PPP2R5B gene induced sensitivity to paclitaxel
in cervical cancer, and this sensitivity change was
supposed to be associated with apoptosis [49].

Fig. 8 Prediction of the 1-, 2-, and 3-year OS of HCC patients with the nomogram
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PPP2R5B mutations have been postulated to cause
human overgrowth [50], though its role in HCC pro-
gression has not been elucidated.
In summary, we established a 5-gene risk model

and constructed a nomogram for predicting HCC
outcomes in clinical practice. Moreover, we presented
an advanced survival prediction tool for HCC pa-
tients, and revealed the association between ARGs
and HCC that can further be confirmed by corre-
sponding experimental studies.
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