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Abstract

Background: Tumor mutational burden (TMB) is a promising predictor, which could stratify colorectal cancer (CRC)
patients based on the response to immune checkpoint inhibitors (ICIs). MicroRNAs (miRNAs) act as the key
regulators of anti-cancer immune response. However, the relationship between TMB and miRNA expression profiles
is not elucidated in CRC.

Methods: Differentially expressed miRNAs (DE miRNAs) between the TMBhigh group and the TMBlow group were
identified for the CRC cohort of the TCGA database. In the training cohort, a miRNA-related expression signature for
predicting TMB level was developed by the least absolute shrinkage and selection operator (LASSO) method and
tested with reference to its discrimination, calibration, and decision curve analysis (DCA) in the validation cohort.
Functional enrichment analysis of these TMB-related miRNAs was performed. The correlation between this miRNA-
related expression signature and three immune checkpoints was analyzed.

Results: Twenty-one out of 43 DE miRNAs were identified as TMB-related miRNAs, which were used to develop a
miRNA-related expression signature. This TMB-related miRNA signature demonstrated great discrimination (AUCtest
set = 0.970), satisfactory calibration (P > 0.05), and clinical utility in the validation cohort. Functional enrichment
results revealed that these TMB-related miRNAs were mainly involved in biological processes associated with
immune response and signaling pathways related with cancer. This miRNA-related expression signature showed a
median positive correlation with PD-L1 (R = 0.47, P < 0.05) and CTLA4 (R = 0.39, P < 0.05) and a low positive
correlation with PD-1 (R = 0.16, P < 0.05).

Conclusion: This study presents a miRNA-related expression signature which could stratify CRC patients with
different TMB levels.
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Introduction
Colorectal cancer (CRC) is a commonly diagnosed
cancer, and its incidence and mortality rate rank the
third and second among all the malignant tumors, re-
spectively [1]. With the increasing incidence of CRC in
the young, there will be about 2.5 million newly diag-
nosed CRC cases in 2035 [2]. Although the current
treatment strategy of surgical resection combined with
radiotherapy and chemotherapy has extended survival
time for early-stage CRC patients, poor prognosis still
remains a serious problem for metastatic CRC [2, 3].
In recent years, several studies have identified that the

interaction between programmed death receptor (PD-1)
and its ligand, programmed death ligand (PD-L1), could
serve as the mechanism for tumors to evade an antigen-
specific T cell immunologic response [4]. Based on this
hypothesis, immunotherapy is introduced and has revo-
lutionized the approach to treatment for CRC [5]. Con-
ventional chemotherapy kills tumor cells by interfering
directly with DNA or targeting key proteins required for
cell proliferation [6]. By contrast, the immunotherapy
could induce cell death by restoring the dysfunctional
antitumor T cells [7]. The most widely used immuno-
therapy in CRC is the immune checkpoint inhibitors
(ICIs), which included PD-1/PD-L1 inhibitors and cyto-
toxic T-lymphocyte antigen 4 (CTLA-4) inhibitors. At
present, PD-L1 expression by immunohistochemistry
test has been used to identify CRC patients who can
benefit from ICIs [8]. However, the PD-L1 expression
could be regulated by the tumor microenvironment, and
the correlation between PD-L1 expression and immuno-
therapy efficacy is not clear. Microsatellite instability
(MSI) is also an established biomarker for predicting re-
sponse to ICIs [9]. However, the response rate of ICIs is
variable among CRC patients with high microsatellite in-
stability (MSI-H), and responders have more somatic
mutations and neoantigen loads than non-responders
[10], indicating that additional predictive biomarkers are
required.
Tumor mutational burden (TMB) is a promising inde-

pendent predictor, which could stratify patients based
on the response to ICIs [11, 12]. The definition of TMB
is the number of somatic variants in the coding region
of tumor genes. A recent study reveals that the response
rate to ICIs in patients with TMBhigh level is higher than
that in patients with TMBlow level, suggesting that
TMBhigh level is positively correlated with immunother-
apy efficacy [13]. However, TMB has not been widely
used in clinical practice, mainly due to the non-
standardization of TMB detection [14]. A large number
of genetic mutations in TMB could produce “non-self”
neoantigen proteins which could activate anti-tumor im-
mune response [15, 16]. The post-transcriptional regula-
tion is essential in the translation of these mutated genes

into neoantigen proteins, and microRNAs (miRNAs) are
involved in this process.
miRNA is one type of endogenous non-coding RNAs

consisting of approximately 21–25 nucleotides that par-
ticipates in the post-transcriptional modification process,
and abnormal miRNA expression is involved in the
pathogenesis of various types of cancer [17]. Some re-
search has reported that miRNAs could serve as promis-
ing predictors for TMB levels and are involved in the
regulation of anti-cancer immune response [18, 19]. For
example, Lv et al. revealed that the expression profiles of
miRNAs were related with TMB levels, and a miRNA-
related signature classifier was developed to predict
TMB level in lung adenocarcinoma [20]. Zhao et al. re-
ported that miR-138-5p could bind to 3′ untranslated
region (UTR) of immune checkpoint PD-L1, conse-
quently leading to the inhibition of its translation [21].
However, the relationship between TMB and miRNA
expression patterns is not elucidated in CRC. Thus, the
purpose of this research lies in the development of a
miRNA-related expression signature, which could iden-
tify CRC patients with different TMB levels.

Materials and methods
Data acquisition
Both somatic mutation data and miRNA expression profiles
of the CRC cohort were downloaded from The Cancer
Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/),
which provided comprehensive genomic information in
various types of cancer. For somatic mutation data, the
workflow type used in this research was VarScan2 Variant
Aggregation and Masking. We measured the TMB of each
sample based on the number of somatic mutations per
DNA megabase [22]. Thirty-eight megabase was used to
estimate the exome size [23]. We selected 10 mutations per
megabase as a cutoff point, which separated CRC patients
into TMBhigh samples and TMBlow samples [24, 25]. The
data type for miRNA expression profiles in our study was
isoform expression quantification, which contained prepro-
cessed mature miRNAs in 539 CRC samples and 9 control
samples. A total of 457 samples with both somatic muta-
tion data and miRNA expression profiles were extracted as
the overall cohort. We then randomly assigned CRC sam-
ples in the overall cohort to either the training cohort
(60%) or the validation cohort (40%).

Identification of differentially expressed miRNAs
In the training cohort, we removed the miRNAs which
contained missing values in more than 10% of the CRC
samples. Differentially expressed miRNAs (DE miRNAs)
between the TMBhigh group and the TMBlow group were
determined by the limma package in the R software. The
|log2 fold change (FC)| > 1.5 and false discovery rate
(FDR) < 0.01 were chosen as the threshold criteria. To
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visualize the expression patterns of these DE miRNAs,
the heatmap was plotted using the pheatmap package in
the R software.

miRNA-related expression signature building and
enrichment analysis of TMB-related miRNAs
The expression values of the above DE miRNAs for each
CRC sample were extracted from the training cohort.
The least absolute shrinkage and selection operator
(LASSO) method, which could select optimal features
from high-dimensional data [26], was used to screen the
most useful predictive miRNAs for TMB level. The miR-
NAs, whose regression coefficients were non-zero in the
LASSO regression analysis, were identified as TMB-
related miRNAs. The miRNA-related expression signa-
ture was developed based on these TMB-related miRNA
expression value multiplied by their corresponding
LASSO regression coefficient. To further understand the
biological significance and essential pathways of these
TMB-related miRNAs, Gene Ontology (GO) term for
biological process (BP) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis were per-
formed in DIANA-mirPath web tool [27]. To provide
visual information, the enriched results for GO and

KEGG analysis were presented as the bubble plot by the
ggplot2 R package.

Principal component analysis of DE miRNAs and TMB-
related miRNAs and validation of the miRNA-related
expression signature
To evaluate whether miRNAs could make a distinction
between TMBhigh samples and TMBlow ones, PCA was
conducted based on the expression profiles of DE miR-
NAs and TMB-related miRNAs. Two PCA plots were
displayed by the ggplot2 R package, in which the correla-
tions among all CRC samples were converted into a
two-dimensional graph. The validation cohort was then
used to evaluate the robustness of this miRNA-related
expression signature. First, the area under the receiver
operating characteristic curve (AUC) was measured to
assess the discrimination ability of this expression signa-
ture by the pROC R package [28]. Generally, AUC above
90% means that this signature is almost perfect. Then,
the calibration performance of this expression signature
was assessed using the “rms” package in the R software
[29]. The calibration plot was presented accompanied
with the unreliability test, in which P value > 0.05 means
that this classifier calibrated perfectly with the ideal sig-
nature. Finally, we performed decision curve analysis

Table 1 Baseline characteristics of patients in the total, training, and validation cohort

Characteristics Total cohort (N = 457) Training cohort, (N = 275) Validation cohort (N = 182) P value

Age

≤ 65 205 (44.86%) 128 (46.55%) 77 (42.31%) 0.4262

> 65 252 (55.14%) 147 (53.45%) 105 (57.69%)

Gender

Female 221 (48.36%) 138 (50.18%) 83 (45.6%) 0.3882

Male 236 (51.64%) 137 (49.82%) 99 (54.4%)

Stage

Stages I–II 246 (53.83%) 144 (52.36%) 102 (56.04%) 0.3331

Stages III–IV 196 (42.89%) 124 (45.09%) 72 (39.56%)

Not available 15 (3.28%) 7 (2.55%) 8 (4.4%)

T

T1–2 89 (19.47%) 52 (18.91%) 37 (20.33%) 0.6735

T3–4 367 (80.31%) 222 (80.73%) 145 (79.67%)

Tis 1 (0.22%) 1 (0.36%) 0 (0%)

M

M0 326 (71.33%) 194 (70.55%) 132 (72.53%) 0.8493

M1 68 (14.88%) 43 (15.64%) 25 (13.74%)

MX/not available 63 (13.79%) 38 (13.82%) 25 (13.74%)

N

N0 261 (57.11%) 149 (54.18%) 112 (61.54%) 0.2282

N1–2 195 (42.67%) 125 (45.45%) 70 (38.46%)

NX 1 (0.22%) 1 (0.36%) 0 (0%)
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Fig. 1 (See legend on next page.)
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(DCA) to assess the clinical utility of this expression sig-
nature, and net benefit at different threshold probabil-
ities was calculated by the rmda R package [30].

The correlation analysis between the miRNA-related
expression signature and three immune checkpoints
The expression profiles of three immune checkpoints
(PD-1, PD-L1, and CTLA-4) in RNA sequencing were
downloaded from TCGA. Log2 (count+1) transform-
ation was used to normalize the expression profiles of
these three immune checkpoints. In the overall cohort,
the expression signature value of each sample was calcu-
lated, and the correlation between the miRNA-related
expression signature and three immune checkpoints was
analyzed. Besides, we used the TargetScan webserver to
identify which immune checkpoint could serve as a po-
tential target gene of these TMB-related miRNAs [31].

Statistical analysis
The clinical information between the training cohort
and validation cohort was displayed as categorical data
and analyzed by the χ2 test in the R software. The Wil-
coxon test was used to analyze the miRNA expression
levels between the TMBhigh group and the TMBlow

group and was applied using the R software. A P value
< 0.05 was regarded as a statistical difference.

Results
Identification of DE miRNAs
As was shown in Table 1, no statistical difference was
found in baseline characteristics between the training
and validation cohort, including the clinical stage and
TNM stage. There were 226 TMBlow samples and 49
TMBhigh samples in the training cohort, among which
43 DE miRNAs were obtained with threshold criteria of
|log2 FC| > 1.5 and FDR < 0.01. To visualize the expres-
sion patterns of these DE miRNAs, a heatmap was dis-
played, in which 26 upregulated miRNAs and 17
downregulated miRNAs were identified (Fig. 1a).

miRNA-related expression signature building and
enrichment analysis of these TMB-related miRNAs
Based on the expression profiles of DE miRNAs in the
training cohort, we used LASSO method to identify the
most useful predictive miRNAs for TMB level. 21 miR-
NAs, whose coefficients were non-zero under the biggest
AUC, were regarded as optimal features and used to

develop a miRNA-related expression signature (Fig. 1b).
The formula for this miRNA-related expression signa-
ture was as follows: formula = − 5.14131584 + [hsa-miR-
92b-3p expression × (0.26483929)] + [hsa-miR-942-5p ×
(0.43196635)] + [hsa-miR-452-5p × (− 0.29214023)] +
[hsa-miR-223-3p × (0.00493161)] + [hsa-miR-1247-3p ×
(− 0.08271914)] + [hsa-miR-4746-5p × (0.09968608)] +
[hsa-miR-592 × (− 0.23263551)] + [hsa-miR-1180-3p ×
(0.08740547)] + [hsa-miR-1266-5p × (0.13386031)] +
[hsa-miR-155-5p × (0.32834847)] + [hsa-miR-552-3p ×
(− 0.06864561)] + [hsa-miR-146b-5p × (0.31452767)] +
[hsa-miR-552-5p × (− 0.31677114)] + [hsa-miR-375-3p ×
(0.00911625)] + [hsa-miR-224-5p × (− 0.27275485)] +
[hsa-miR-452-3p × (− 0.35895800)] + [hsa-miR-582-5p ×
(0.53131818)] + [hsa-miR-330-5p × (0.16353677)] +
[hsa-miR-582-3p × (0.32472284)] + [hsa-miR-92a-3p ×
(− 0.46113762)] + [hsa-miR-625-3p × (0.30478831)]. As
was shown in Fig. 2a, the GO enrichment terms for BP
were mainly associated with immune response, such as
the innate immune response, leukocyte migration, and
toll-like receptor signaling pathway, and the like. Be-
sides, the KEGG results revealed that these miRNAs
were related with cancer-related pathways, such as
the colorectal cancer pathway, Ras signaling pathway,
TGF-beta signaling pathway, and Wnt signaling path-
way (Fig. 2b).

PCA and validation of the miRNA-related expression
signature
As was shown in Fig. 3, the PCA results for either DE
miRNAs or TMB-related miRNAs revealed that the
above two types of miRNAs could obviously make a dis-
tinction between TMBhigh samples and TMBlow ones.
The AUC of this miRNA-related expression signature
was 0.991, 0.970, and 0.984 in the training, validation,
and overall cohort, respectively (Fig. 4). Besides, the spe-
cificity (SP), negative predictive value (NPV), sensitivity
(SE), positive predictive value (PPV), and accuracy values
were very high (Table 2), indicating that this signature
could perfectly discriminate patients with different TMB
levels. The calibration plot revealed this signature had
no departure from perfect fit, and no statistical differ-
ence was found between this signature and ideal signa-
ture (P > 0.05) (Fig. 5a). DCA demonstrated that
whatever the threshold probability was, this signature
could produce more benefit than either treating-no-one

(See figure on previous page.)
Fig. 1 Identification of TMB-related miRNAs. a The heatmap of differentially expressed miRNAs (DE miRNAs). Each column represented each
sample. The red dots in the heatmap represented upregulation, the green dots represented downregulation, and black dots represented miRNAs
without differential expression. b Development of a TMB-related miRNA expression signature by the least absolute shrinkage and selection
operator (LASSO) method. The optimal miRNAs with non-zero regression coefficients (λ) was selected by 10-fold cross-validation and “AUC”
measure type
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Fig. 2 Functional enrichment analysis of TMB-related miRNAs. a GO term for BP of DE miRNAs. b KEGG pathway of DE miRNAs
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curve or treating-everyone curve, suggesting this was a
perfect signature (Fig. 5b).

Positive correlation between the expression signature
and three immune checkpoints
Not surprisingly, this miRNA-related expression signa-
ture, which could assess TMB level for CRC patients,
showed a median positive correlation with TMB (R =
0.48, P < 2.2e−16). Besides, for three immune check-
points, this signature was moderately correlated with
PD-L1 (R = 0.47, P < 2.2e−16) and CTLA4 (R = 0.39, P
< 2.2e−16), and not significantly correlated with PD-1
(R = 0.16, P = 0.00058) (Fig. 6). Interestingly, based on
the results of miRNA-mRNA in TargetScan, PD-L1,

CTLA4, and PD-1 were targeted by 2 (hsa-miR-155-5p,
hsa-miR-552-5p), 3 (hsa-miR-942-5p, hsa-miR-155-5p,
hsa-miR-582-3p), and 4 (hsa-miR-223-3p, hsa-miR-
1247-3p, hsa-miR-592, hsa-miR-552-5p) miRNAs,

Fig. 3 PCA of DE miRNAs and TMB-related miRNAs

Fig. 4 The AUC in the training, validation, and overall cohort

Table 2 Predictive performance of miRNA-based expression
signature for tumor mutational burden in CRC

Cohort SE SP PPV NPV Accuracy AUC

Total 0.8434 0.9866 0.9333 0.966 0.9606 0.9839

Training 0.8776 0.9956 0.9773 0.974 0.9745 0.9913

Validation 0.7941 0.973 0.871 0.9536 0.9396 0.9704

SE sensitivity, SP specificity, PPV positive predictive value, NPV negative
predictive value, AUC area under the receiver operating characteristic curve
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respectively. Finally, in order to help clinicians more
conveniently apply this miRNA-related expression sig-
nature, we transformed this signature into a visual
nomogram (Fig. 7).

Discussion
Though PD-L1 expression and MSI-H are established bio-
markers for predicting response to ICIs in CRC [8, 9], the
response rate to ICIs among CRC patients with high PD-
L1 expression or MSI-H is variable. TMB is an emerging
independent biomarker for predicting response to ICIs in
CRC [11]. However, the current TMB assessment has not
been standardized, affecting its wide application in clinical
practice [14]. Considering that miRNAs were found in-
volved in the regulation of anti-cancer immune response
[21, 32–36], we developed a miRNA-related expression
signature, which could be a good addition to PD-L1 or
MSI-H and help identify CRC patients with different
TMB levels. The relationship between TMB and miRNA
expression profile was not analyzed in previous studies. In
this study, DE miRNAs between the TMBhigh group and

the TMBlow group were identified and then incorporated
into the LASSO regression analysis. Some miRNAs with
non-zero coefficients in the LASSO method as TMB-
related miRNAs were used to develop a miRNA-related
expression signature. In the validation cohort, this signa-
ture demonstrated satisfactory discrimination, great cali-
bration, and more benefit in clinical utility, indicating that
this signature was a robust classifier for TMB levels. In
particular, the SP, NPV, SE, and PPV of this signature
were very high, suggesting that this signature had great
recognition ability for TMBlow samples and TMBhigh

samples, respectively.
Previous researches revealed that TMBhigh patients

could produce more somatic mutations and neoantigen
loads which could activate anti-cancer immune response
[10]. Interestingly, functional enrichment analysis for
TMB-related miRNAs revealed that these miRNAs were
mainly involved in biological processes related with im-
mune response and signaling pathways associated with
cancer. Besides, the miRNA-related expression signature
showed a median positive correlation with TMB,

Fig. 5 Calibration and DCA for this expression signature
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Fig. 6 The correlation analysis between this miRNA-related expression signature and three immune checkpoints. a This expression signature is
moderately correlated with TMB. b This expression signature is low correlated with PD-1. c, d This expression signature is moderately correlated
with PD-L1 and CTLA-4
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indicating that this miRNA-related expression signature
predicted the TMB level from a biological perspective of
the anti-cancer immune response.
Several studies have revealed that miRNAs could de-

crease PD-L1 expression by binding to 3′ UTR of PD-
L1, suggesting that miRNAs were negatively related with
PD-L1 expression [21, 33, 34]. However, in our research,
this miRNA expression signature was positively related
with three immune checkpoints, especially for PD-L1 ex-
pression. Thus, future researches are required to explore
the underlying mechanism between these TMB-related
miRNAs and PD-L1 expression.
Some limitations should be acknowledged in our re-

search. First, the cutoff point to separate samples into
the TMBhigh group and the TMBlow group may vary for
different TMB detection methods. Second, a larger inde-
pendent cohort is required to validate the robustness of
this miRNA-related expression signature. Finally, the po-
tential mechanisms between TMB-related miRNAs and
CRC immune response are not elucidated. Future stud-
ies are required to explore the underlying mechanisms.

Conclusion
In summary, we developed a miRNA-related expression
signature, which could stratify CRC patients with differ-
ent TMB levels and further help clinicians evaluate the
efficacy of ICIs. This signature was well-validated with
reference to its discrimination, calibration, and DCA.
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