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Abstract

Background: The aim of this study is to investigate the composition of microbiota in biliary tract cancer patients
and healthy adults by metagenome analysis and evaluate its potential values as biomarkers for biliary tract cancer.

Methods: Patients who were diagnosed with biliary tract cancer or benign inflammation were enrolled in this
study. The control group consisted of healthy adults who presented with no history of significant medical issues.
We isolated bacteria-derived extracellular vesicles in the plasma. The microbiome composition was investigated
with 16S rDNA metagenome analysis. We evaluated each microbiome to ensure suitability for the biliary tract
cancer prediction model.

Results: A total of 155 patients were included in this study: 24 patients with diagnosed biliary tract cancers, 43
diagnosed with cholecystitis or cholangitis, and 88 healthy adults. The microbiome composition pattern of the
biliary tract cancer differed from the microbiome composition pattern seen in healthy adult group in beta diversity
analysis. The percent composition of microbiota was found to be different from the phylum to genus level.
Differences in the composition of the Bifidobacteriaceae and Pseudomonaceae families and Corynebacteriaceae
Corynebacterium, Oxalobacteraceae Ralstonia and Comamonadaceae Comamonas species may be used to develop
predictive models for biliary tract cancer.

Conclusion: Biliary tract cancer patients have altered microbiome composition, which represents a promising
biomarker to differentiate malignant biliary tract disease from normal control group.
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Introduction
Malignancy of the biliary tract is uncommon. However,
it has poor prognosis for long-term survival. The prog-
nosis differs depending upon the location and extent of
disease [1]. For the treatment of biliary tract cancer, rad-
ical resection is necessary to improve survival outcomes
[2]. However, the actual pathogenesis is not well under-
stood. The chronic inflammation and liver fluke or ty-
phoid fever have been thought to be a major cause of
malignancy [3–7]. Recent reports suggest that certain
bacteria, such as helicobacter, are associated with the de-
velopment of gallbladder cancer [8, 9]. Nevertheless, it is

unclear how the biliary tract cancer is related to the nor-
mal flora of our body. The microenvironments from
normal flora can influence each other and even contrib-
ute to biliary tract cancer. Recently, techniques for
meta-genome analysis have been rapidly developed. We
can now analyze the microbiome from normal flora,
which is considered to be important risk factors for gen-
etic alteration of human [4, 5, 10–12].
Previous studies were focused on parasite or viral in-

fection for hepatobiliary malignancies. However, recent
studies emphasize the fact that there exists another
element of human development, arising from human-
microbiome interaction. The microbiota constantly in-
fluences human cells and even provides opportunities to
refine prenatal and postnatal growth [13]. The micro-
biome produces fluent of bacteria-derived extracellular
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vesicles (EV). Bacteria can communicate with each other
and human cell by the EVs, and it can be detected in the
blood, urine, bile, and stool [14–16]. However, there is much
room for error in performing genome analysis, and the qual-
ity of sample is important [12]. The EVs can maintain its
shape for a long time and preserve bacteria-derived ge-
nomes. We can effectively analyze the composition of
microbiota by filtering EVs [17]. In an in vivo study, EVs of
P. panacis could infiltrated the gut barrier and moved to the
target organs. Moreover, gut microbes influence host meta-
bolic homeostasis and contribute to the pathogenesis of type
2 diabetes, which is characterized by insulin resistance [16].

Microbiome composition as a novel biomarker
Microbe-derived EVs might be causative factors of vari-
ous diseases. Recently, it has been determined that the
EVs can even penetrate the blood-brain barrier. And
there are documented differences in microbiome com-
position between autism spectrum disorder patients and
the control group [18]. Moreover, there are studies to
substantiate that microbiota is associated with colorectal
cancer [19]. However, microbiome from bacteria-derived
EVs was not investigated for biliary tract malignancy.
The aim of this study is to compare the differences of
composition of microbiota by metagenome analysis from
bacteria-derived EVs. We expect that the composition of
individual microbiome might be a novel biomarker to
predict biliary tract cancer.

Methods
Subjects and plasma sample preparation
Inclusion and exclusion criteria
The patients were enrolled from a single tertiary hos-
pital. This study complied with the Declaration of
Helsinki and was approved by the Institutional Review
Board of Ewha Womans University Mokdong Hospital
(2017-07-031). Written informed consent was obtained
from all patients before surgery including genetic ana-
lysis. The control group consisted of normal healthy
adults who agreed with informed consent during health
checkup. The control subjects had no history of malig-
nant disease, nor any clinical findings suggestive of
gastrointestinal problems or neuropsychiatric disorders.
The control subjects of this study had not taken antibi-
otics, probiotics, or prebiotics in the 3 months immedi-
ately antedating the sample collection.
Patients undergoing surgery for benign inflammation or

malignant biliary tract disease were assessed for the study.
Patients were included if they were 20 or more years of age
and had no history of cognitive dysfunction to interfere
with informed consent. If any patient was found to
have a previous history of cancer or a Karnofsky per-
formance scale of less than 70, that patient would be
automatically excluded [20].

The patients were divided into three groups: biliary tract
cancer, benign inflammation, and a control group. The
patients who are diagnosed with cholecystitis or cholan-
gitis, based upon documented evidence of pathology, were
classified into the benign inflammation group.

Sample collection
A trained and well-qualified data manager reviewed the
pathologic diagnosis, which was confirmed by hepatobiliary
pathologist. The blood samples were obtained using stand-
ard protocols. Blood samples were collected from the me-
dian cubital vein into Vacutainer tubes that contained
EDTA tubes (BD, Franklin Lakes, NJ, USA). Then, the sam-
ple was centrifuged at 1500g for 10 min. The plasma was
isolated and immediately preserved in a freezer.

Metagenome pattern analysis
EVs isolation and DNA extraction from human plasma
samples
EVs in human plasma were isolated using the differential
centrifugation method as described previously [21]. For
the extraction of DNA in isolated EVs, 1 μg (based on
the protein amount) of the EVs was boiled at 100 °C for
15 min, and then it was centrifuged at 10000g for 20
min. The quality and quantity of the DNA were mea-
sured using the QIAxpert (QIAGEN, Germany).
DNA was extracted from EVs in human plasma using a

PowerSoil DNA Isolation kit (MOBIO, USA). Bacterial
genomic DNA was amplified with 16S_V3_F (5′-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGC
CTACGGGNGGCWGCAG-3′) and 16S_V4_R (5′-
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG
GACTACHVGGGTATCTAATCC-3′) primers, which
are specific for V3-V4 hypervariable regions of 16S rDNA
gene [22]. The libraries were prepared using polymerase
chain reaction (PCR) products according to MiSeq System
guide (Illumina, USA) and quantified using a QIAxpert
(QIAGEN, Germany). After PCR products were extracted
and quantified, equimolar ratios from each mixture were
pooled and sequenced on a MiSeq (Illumina, USA) ac-
cording to the manufacturer’s recommendations.

Taxonomic assignment
Raw pyrosequencing reads obtained from the sequencer
were filtered according to the barcode and primer se-
quences using MiSeq (Illumina, USA). Taxonomic as-
signment was performed by profiling program MDx-Pro
ver.1 (MD Healthcare, Korea). To select 16S rDNAs, all
the sequence reads were compared to the GREEN-
GENES. Sequence reads that had a similar sequence
with more than 100 bit score and less than 1.0 E value
were admitted as partial 16S rDNA sequences.
Taxonomy-based analyses were performed using
GREENGENES database [23, 24].
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Sample size estimation and statistical analysis
This is the first study for metagenome analysis to compare
the differences of composition of microbiome between the
microbiome of patients afflicted with diagnosed biliary tract
cancer and those suffering from benign biliary tract disease.
Therefore, we cannot estimate the exact sample size. A previ-
ous study, which investigated microbiome composition,
enrolled 20 patients in the patient group [18]. The initial goal
of this study was to enroll more than 20 patients with diag-
nosed biliary tract cancer, as well as in excess of 40 benign
inflammation cases. The control group was matched to the
biliary tract cancer group and benign inflammation group
with regard to chronologic age and sex. We performed
logistic regression analysis with a randomized sampling of
30% of patients from each group. In the univariate analysis,
we selected the top 5 microbiomes which were statistically
associated with biliary tract cancer. Also, we performed
multivariate analysis and tried to derive a prediction model.
And we tried to validate the model with validation set.
The categorical variables are presented as number

(percentage) and compared with χ2 test. The continuous
variables are presented as the mean ± SD and were
compared using a Kruskal-Wallis test or ANOVA test. A
p value < 0.05 was considered statistically significant.

Biliary tract cancer prediction model development
To reduce the selection bias, patients in the model develop-
ment set were randomly allocated into “training” and “valid-
ation” sets. Four fifth of cases were assigned to the training
set, and the other cases were assigned for test set [25].
We sorted the individual microbiome in the order of

proportion and investigated the differences between the
biliary tract cancer group and control group to find out
potential markers with microbiome percent composition
analysis. Significant microbiome was evaluated from
phylum to family level. For the selection of the bio-
markers, we considered relative abundances of operational
taxonomic units (OTUs) at genus level. All prediction
models include age and sex as covariates. First, we selected
the candidate biomarkers with p value < 0.01, fold change
> 2-fold, and the average of relative abundances as > 0.1%.
Next, we used the Akaike Information Criteria (AIC) to
infer a microbiome that is likely to be a biomarker candi-
date as a step-by-step selection method that compares
predictive models with variable numbers of variables. Fi-
nally, the diagnostics model was calculated with the logis-
tic regression. The regression coefficient (b) of the logistic
regression model was regarded as the log odds ratio (OR).

p ¼ eβ0þβ1x1þ⋯þβ7x7

1þ eβ0þβ1x1þ⋯þβ7x7:

We developed the biliary tract prediction model with
the coefficients based on the training set. It was

validated by receiver operating characteristic (ROC)
curve and calculation of the area under the ROC curve
(AUC) with the validation set.

Results
Patient demographics
An aggregate 25 samples of biliary tract cancer were inves-
tigated, and one case was excluded after quality control
testing. And 45 samples of benign inflammation group
were evaluated, and two cases were excluded due to con-
tamination. For the control group, 88 normal healthy
adults were matched to the benign inflammation and bil-
iary tract cancer group. Within the biliary tract cancer
group, there were seven cases of diagnosed gallbladder
cancers, nine intrahepatic cholangiocarcinoma, and eight
extrahepatic cholangiocarcinoma. The average age of the
biliary tract group, benign inflammation group, and con-
trol group were 69.8 ± 10.7 years, 55.4 ± 15.5 years, and
54.4 ± 12.8 years old, respectively (Table 1).

Differences of microbiome composition in bacteria-
derived EVs
We isolated the bacteria-derived EVs. Then, variable re-
gions of the 16S rRNA genes were amplified by PCR.
We were able to identify over 7000 OTUs by subsequent
DNA sequencing analysis in each biliary tract cancer pa-
tient, benign inflammation patient, and each individual
in the control group. Among the identified OTUs, we
assigned 41 OTUs at the phylum level, 102 OTUs at the
class level, 203 OTUs at the order level, 384 OTUs at
the family level, and 939 OTUs at the genus level. There
were no differences in the alpha diversity. Therefore, we
could perform further quantitative analysis and compare
the microbiome composition (Fig. 1).
According to the taxonomy-based analysis, there

were differences in the microbiome composition in
beta diversity. We performed the principal component
analysis of microbiota diversity based on the weighted
UniFrac distance and Bray-Curtis dissimilarity. Ac-
cording to the dot pattern, we were able to roughly
categorize the groups. As a result of the dot pattern,
the microbiome pattern of the biliary tract cancer
group was different from that of the normal healthy

Table 1 Characteristics of patients

Characteristics Biliary tract
cancer
(n = 24) (%)

Benign
inflammation
(n = 43) (%)

Control
(n = 88) (%)

p value*

Sex Male 15 (63) 15 (35) 37 (42) 0.086

Female 9 (37) 28 (65) 51 (58)

Age (years)
(mean ± SD)

69.8 ± 10.7 55.4 ± 15.5 54.4 ± 12.8 < 0.001

SD standard deviation
*Chi-square test or Kruskal-Wallis test
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group, but similar to that of the cholecystitis group
(Fig. 2). We analyzed the percent composition of
individual microbiome from phylum to family level.
Sequence readings of EVs-based 16S rDNA indicated
that the top five members of the phyla p_Proteobac-
teria, p_Firmicutes, p_Actinobacteria, p_Bacteroidetes,
and p_Cyanobacteria comprised 94.7% of the identi-
fied OTUs in healthy subjects, whereas these

members covered 93.8% of the total OTUs in the bil-
iary tract cancer individuals. In the benign
inflammation group, the proportion of top five phyla
was 88.1% and lower than the other two groups. We
could therefore surmise that the patients with cholecystitis
or cholangitis have altered phyla composition. The occu-
pancy of p_Proteobacteria of the biliary tract cancer pa-
tients, benign inflammation patients, and in the control

Fig. 1 a The alpha diversity curves. Rarefication curves representing the mean operational taxonomic units over the identified sequences of
variable regions of 16S rDNA gene in the biliary tract cancer, benign inflammation, and control group. b Microbiome composition analysis in
phylum level. c Microbiome composition analysis in genus level
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group was 38.4%, 30.0%, and 43.9%, respectively. On the
other hand, the proportion of p_Firmicutes was 33.1%,
39.1%, and 28.2%, respectively.

In class level analysis, the proportion of c_Clostridia of
biliary tract cancer, benign inflammation, and the control
group was 30.1%, 19.9%, and 15.1%, respectively, although

Fig. 2 The beta diversity sheet of metagenome pattern from the phylum to family level. Principal component analysis of microbiota diversity
based on the weighted UniFrac distance and Bray-Curtis dissimilarity. Biliary tract cancer (red), benign inflammation (green), and control (blue). a
Phylum level, b Class level, c Order level, d Family level
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Fig. 3 The percent composition of microbiota from phylum to family level. Overall composition of microbiota was compared. The top five
subjects in phylum level and top ten subjects from class to family level are presented. a Phylum level, b Class level, c Order level, d Family level
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the proportion of c_Gammaproteobacteria was 10.4%,
15.1%, and 33.8%, respectively (Fig. 3).

Biliary tract cancer prediction model
We could identify five important microbiomes that the
occupancy rate was significantly increased or decreased
on the percent composition analysis. The compositional
differences of Bifidobacteriaceae family and Oxalobacter-
aceae Ralstonia was found to be a significant positive
marker, and the Pseudomonaceae family, Corynebacter-
iaceae Corynebacterium, and Comamonadaceae Coma-
monas species were found to be significant negative
markers to differentiate biliary tract cancer patients from
the individuals in the control group. We developed the
biliary tract cancer prediction model with these five vari-
ables in company with chronologic age and sex based on
the training set (Table 2).
We validated the prediction model with ROC curve, and

the AUC was one. The composition of these five markers
was obviously different upon comparison made between
the biliary tract cancer patient and the control group. The
accuracy was 1.0000 (confidence interval, 0.8518 to 1.0000),
kappa value was 1.0000, and p value was 0.0035. The sensi-
tivity of the model was 1.0000, and the specificity was
1.0000. The positive prediction value was 1.0000, and the
negative prediction value was 1.0000. The balance accuracy
was 1.0000 (Fig. 4a).
We compared the microbiome composition between the

biliary tract cancer and cholecystitis groups. The compos-
ition of Bacillus and Bifidobacterium genus were different.
In order level, Anaeroplasmatales, Erysipelotrichales, and
Bacteroidales were different. However, there was no statisti-
cally significant difference in ROC curve analysis (Fig. 4b).

Discussion
The microbiota is thought to be a component of the hu-
man body and a source of genetic diversity and modifier
of disease [11, 26]. Moreover, recent studies investigated
and revealed that there is extremely active interaction
and synergistic effect between the microbiota and

human host cells by EVs. This mechanism has been re-
cently spotlighted as a pathogenetic mechanism of vari-
ous diseases [14, 15, 27–29].
To the best of our knowledge, this study is the first at-

tempt to analyze the composition of microbiome from EVs
in patients with biliary tract cancer. Ultimately, we were
able to successfully analyze the composition of microbiome
in biliary tract cancer and benign inflammation patients
compared with normal healthy adult group. We deter-
mined that specific families or species were extremely in-
creased or decreased in the biliary tract cancer group,
when compared to the control group. The compositional
differences of Bifidobacteriaceae and Pseudomonaceae
families and Corynebacteriaceae Corynebacterium,
Oxalobacteraceae Ralstonia, and Comamonadaceae
Comamonas species were found to be significant
markers to make a biliary tract prediction model. In this
study, however, the microbiome composition was similar
between patients with cholecystitis and biliary tract can-
cer. Chronic inflammation such as chronic cholecystitis or
cholangitis is also associated with cancer development.
Previous studies have reported that Helicobacter species
are associated with the development of both gallstones
and gallbladder cancer [9, 30, 31]. Based on these results,
it will be possible to use the microbiome pattern as a
marker of cancer diagnosis in the future.
Traditionally, chronic cholecystitis or cholangitis is

thought to be associated with malignant transformation
[32]. In previous studies, certain bacteria were reported
to be associated with the development of gallstone and
biliary tract cancer [8, 9, 30, 31]. However, the actual
mechanism of transformation has not yet been identified.
We believe that the metagenome analysis helps us to ex-
plain the actual pathogenesis by which inflammatory
changes transform to progressive malignancy. The meta-
genome analysis from blood sample represents the al-
tered microbiota composition. Previous studies have
demonstrated, from the blood and urine, EVs which were
partially consistent with the results from fecal samples
[18, 33]. We can explore and investigate the alteration of

Table 2 The biliary tract cancer prediction model. The compositional differences of Bifidobacteriaceae and Pseudomonaceae families
and Corynebacteriaceae Corynebacterium, Oxalobacteraceae Ralstonia, and Comamonadaceae Comamonas species were significant
positive or negative markers to differentiate biliary tract cancer from control group

X Variables B

X1 Age 1.376

X2 Sex − 12.98

X3 p_Actinobacteria; c_Actinobacteria; o_Bifidobacteriales; f_Bifidobacteriaceae 567,500

X4 p_Proteobacteria; c_Gammaproteobacteria; o_Pseudomonadales; f_Pseudomonadaceae − 58,450

X5 p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Corynebacteriaceae; g_Corynebacterium − 1943

X6 p_Proteobacteria; c_Betaproteobacteria; o_Burkholderiales; f_Oxalobacteraceae; g_Ralstonia 2881

X7 p_Proteobacteria; c_Betaproteobacteria; o_Burkholderiales; f_Comamonadaceae; g_Comamonas − 39,210

Intercept − 18.35
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gut microbiota by analyzing the metagenome analysis
from the blood or urine samples, indirectly. The compos-
ition alteration may have role in the manifestation of
various types of pathology. Microbiome is greatly affected
by dietary habits, BMI, and blood lipid level [34]. How-
ever, the variables were not analyzed nor matched in this
study. Therefore, further study is necessary to overcome
the limitations of this study.
There are many published studies addressing the issue

of genetic mutations associated with biliary tract cancer.
Numerous kinds of genetic mutations had been investi-
gated, and the KRAS, BRAF, TP53, SMAD, and p 16
(INK4) mutations are well known factors for cholangio-
carcinoma pathogenesis. And the inflammatory cyto-
kines such as interleukin-6, transforming growth factor-
beta, tumor necrosis factor-alpha, and platelet-derived
growth factors are also an important factors of cancer
pathogenesis [35–38]. Although we were unable to iden-
tify the precise genetic mutations associated with the
composition of microbiome, the subject was, and re-
mains, very much worthy of the effort because the
microbiome is now thought to be the major cause of
genetic diversity. As more and more pathophysiological
roles for EVs are recognized, it is considered for poten-
tial novel targets for treatment. Moreover, modified and
engineered extracellular vesicles are likely to have appli-
cations in macromolecular drug delivery [15, 17, 39].
Although the results of this study confirm the encour-

aging results, further studies are needed. In this study,
random sampling was performed to construct a test set
and a validation set. However, since only internal valid-
ation has been performed, external validation is needed
in the future. The results of the study showed that the

AUC converged to 1, which may be a statistically over-
fitting error. In this study, the number of cases was rela-
tively small. More cases will need to be analyzed in order
to find out the proper bacteria that have diagnostic value
among numerous strains. Nevertheless, this study is of
great significance in finding hopeful clues about the
diagnostic value of microbiomes in the future.

Conclusion
The microbiome composition of the biliary tract cancer pa-
tients and normal healthy adults is found to be different
when compared. We were able to develop a biliary tract
cancer prediction model from the compositional differences
of Bifidobacteriaceae and Pseudomonaceae families and
Corynebacteriaceae Corynebacterium, Oxalobacteraceae
Ralstonia, and Comamonadaceae Comamonas. Biliary tract
cancer patients seem to have altered gut microbiota, which
is promising biomarker to differentiate malignancy from
the physiology of the normal control group. However, there
was no significant difference in microbiome composition
between the cholecystitis patients and gallbladder cancer
patients. Therefore, further study is necessary to confirm
the differences of microbiome composition between biliary
tract cancer and benign inflammation. Moreover, the gen-
etic mutation of cancer cells warrant investigation, to con-
firm the cause and effect.
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