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Abstract

Background: Integrating phenotypic and genotypic information to improve prognostic prediction is under active
investigation for lung adenocarcinoma (LUAD). In this study, we developed a new prognostic model for event-free
survival (EFS) and recurrence-free survival (RFS) based on the combination of clinicopathologic variables, gene
expression, and mutation data.

Methods: We enrolled a total of 408 patients from the Cancer Genome Atlas Lung Adenocarcinoma (TCGA-
LUAD) project for the study. We pre-selected gene expression or mutation features and constructed 14
different input feature sets for predictive model development. We assessed model performance with multiple
evaluation metrics including the distribution of C-index on testing dataset, risk score significance, and time-
dependent AUC under competing risks scenario. We stratified patients into higher- and lower-risk subgroups
by the final risk score and further investigated underlying immune phenotyping variations associated with the
differential risk.

Results: The model integrating all three types of data achieved the best prediction performance. The
resultant risk score provided a higher-resolution risk stratification than other models within pathologically
defined subgroups. The score could account for extra EFS-related variations that were not captured by
clinicopathologic scores. Being validated for RFS prediction under a competing risks modeling framework, the
score achieved a significantly higher time-dependent AUC as compared to that of the conventional
clinicopathologic variables-based model (0.772 vs. 0.646, p value < 0.001). The higher-risk patients were
characterized with transcriptional aberrations of multiple immune-related genes, and a significant depletion of
mast cells and natural killer cells.
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significant predictor of both EFS and RFS.

retrospectively registered.

Conclusions: We developed a novel prognostic risk score with improved prediction accuracy, using
clinicopathologic variables, gene expression and mutation profiles as input, for LUAD. Such score was a

Trial registration: This study was based on public open data from TCGA and hence the study objects were

Keywords: Prognosis, Gene expression profiles, Lung adenocarcinoma, Competing risks analysis, Risk
stratification, Event-free survival, Recurrence-free survival, Integrative analysis

Background

Lung cancer is the most frequently diagnosed cancer
and the leading cause of cancer death, with a total of 2,
093,876 new cases (11.6% of all cancers) and 1,761,007
deaths (18.4% of all cancers) reported worldwide in 2018
[1]. LUAD is a major type of primary lung cancer which
accounts for about 35% of all cases [2]. Improving sur-
vival of lung cancer is of high importance since the 5-
year survival rate remains < 15% and 10-year survival
rate < 7% [3]. Currently, clinicopathologic factors includ-
ing American Joint Committee on Cancer (AJCC) tumor
stage, tobacco smoking history and radiation therapy are
used for prognostic analysis. However, whether the pre-
diction performance of these clinicopathologic factors
can be improved with phenotypic and genotypic profiles
at gene level is still under investigation.

The high-throughput sequencing technology has made
it possible a comprehensive interrogation of whole tran-
scriptome and genome of tumor tissues at an increas-
ingly reasonable cost [4, 5]. Previous studies focused on
finding prognostic signatures based on gene expressio
n[6-9] or mutation [10-12] for LUAD patients. For ex-
ample, Li et al. [7] reported gene expression-based
models with an average C-index of 0.604 on testing
datasets from TCGA-LUAD in predicting overall sur-
vival (OS). Other studies using multiple types of input
data made statistical inference on the significance of po-
tential individual prognostic factors [13-16]. Two of
these studies [15, 16] had shown clear benefit of com-
bining genetic mutations and expression profiles in pre-
dicting OS and RFS at cross-validation level. In
particular, they inferred that the genotype and expres-
sion data made around 5% and 50% relative contribu-
tions to explained variance of survival outcomes [16].

In this study, we aimed to improve prognostic pre-
diction for LUAD by extensively integrating clinico-
pathologic variables, gene expression and mutation
profiles as the input. We focused on the analysis of
recurrence and death events as there exists minimal
ambiguity in the database about the derivation of
these outcomes [17]. We believe that our work will
be informative for those who want to improve the
precision treatment of LUAD.

Methods

Data

The study enrolled from the Cancer Genome Atlas lung
adenocarcinoma (TCGA-LUAD) project [18] a total of 408
patients with relatively complete information in high-
throughput DNA and RNA sequencing data, major clini-
copathologic variables (at most 10 missing values was
allowed), and follow-up data for recurrence or death
events. The RNA expression was measured on a total of
60,483 genes and the somatic mutation was detected
among 16,980 genes for each patient. The study cohort in-
cluded a total of eight clinicopathologic variables: age of
initial diagnosis, gender, tobacco smoking status, AJCC
tumor stage, adjuvant radiation treatment, adjuvant
pharmaceutical treatment, history of other malignancies,
and the anatomic position of tumor (Table S1). For miss-
ing value imputation, we used the mean estimate for con-
tinuous variables and multinomial random sampling for
categorical variables. The follow-up data included three
types of events: recurrence, death and last follow-up, where
the recurrence and death were defined as the composite
event of interest in the EFS analysis. The last follow-up oc-
curred before the events of interest were considered as the
censoring event. In this cohort, 164 recurrence events, 45
dead events, and 199 censoring events were observed.

Analysis

As shown in Fig. 1, the workflow in this study can be
sketched in four parts: (1) data preprocessing, (2) feature
integration and model development using the training
set, (3) prediction and model evaluation using the testing
set, and (4) exploration of molecular mechanisms related
to differential prognostic risk.

Data preprocessing

We downloaded the gene expression and somatic muta-
tion detection data generated by TCGA group [18] for this
study. We used the fragments per kilobase of transcript
per Million mapped reads (FPKM) value to represent gene
expression level. We restricted our analysis to genes with
a FPKM summed across all samples greater than 500 and
with non-zero expression in at least 200 patients. These
genes were further filtered based on variance, in which
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Fig. 1 Workflow used in this study

genes with a standard error of log-transformed FPKM
across samples greater than 0.4 were retained. This re-
sulted in a total of 7401 genes for model development. For
gene mutation, we pooled single nucleotide variations
(SNVs) and indels for analysis. We filtered out mutated
genes, defined as those with at least one somatic mutation,
occurred in fewer than 30 samples. A total of 271 genes
passed such filtering. The distribution of the included clin-
icopathologic variables and genes with top 10 mutation
frequencies were summarized in Table S1.

Model development

We applied univariate Cox regression model for feature
pre-selection of the gene expression or mutation data.
The model was fitted between each feature and EFS, and
the importance of feature was determined by their ward
test p value. We set the p value (unadjusted for multiple
testing) cutoff as 3e-04 and 0.08 for gene expression

and mutation, respectively. We then used lasso Cox re-
gression [19] to develop the predictive model, using the
pre-selected features as the input.

For model development, we randomly split the study
cohort into training (285 patients) and testing (123 pa-
tients) sets. The input data for prediction model were
prepared in following ways (Fig. 1 and Table S2). In the
first way, the features processed as described above were
simply used as the input data without any further modi-
fication. In the second way, we used the univariate Cox
model to narrow down the searching scope of gene ex-
pression and mutation data, respectively. These pre-
selected genes were used as the input for prediction
model development. In the third way, we performed a
pairwise combination between the three types of predic-
tors. We also included a combination that uses all three
types of data as the input. Only the genes pre-selected in
the second way were used here. In the fourth way, we
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added interaction terms to those prepared in the third
way. The interaction features were generated by multi-
plication of any two or three types of features from the
input. An interaction feature was included in predictive
modeling only when its distribution is not severely un-
balanced. A total of 14 different model input feature sets
were constructed.

We used the one-standard-error rule [20] and the 3-
fold cross validation method to find an optimized L1
penalty value for every input set using the training data-
set. This penalty was finally used to develop a lasso Cox
model using all training dataset.

Model evaluation

We used the C-index [21] as one criteria to evaluate the
predictive performance of models on the testing dataset.
We performed 1000 repetitions of model development
and evaluation to mitigate the bias caused by data split-
ting. The score XS was computed by multiplying the
model coefficients and the features in testing dataset.
This newly generated variable was analyzed in the Cox
models to evaluate its significance related to EFS. Fur-
thermore, we calculated XS as the risk score to stratify
patients within specifically defined subgroups. The
Kaplan-Meier method was then used to analyze their
event-free survival distribution.

We also used competing risks modeling to evaluate
the significance of the risk score as a univariate predictor
for RES events. As sketched in Fig. 3a, after initial treat-
ment, one may progressed to recurrence (from 1 to 2) or
to death (from 1 to 3). The death event would stop pa-
tients from having a recurrence, and thus posed a com-
peting risk to recurrence. The competing risks model
applied the cumulative incidence function (CIF) [(¢) to
calculating the cumulative probability of each cause. The
computational formula of CIF is given by

I(t) = Pr(T<t,D=k) = /OtAk(t)S(s)ds

where Ai(f) is the hazard of cause k at time t, S(¢)
= exp[- Yk, s Ax(s)ds] is the survival function. To
incorporate covariates information, we used Fine and
Gray method [22] to impose a proportional hazards as-
sumption on the subdistribution hazard:

M(t1Z) = dio(t) exp(B{ Z)

where B is a vector of coefficients and Z is a matrix of
covariates. Individuals who fail from another cause are
remained in the risk set for A;(¢) estimation [23]. The
time-dependent AUC [24] was computed to evaluate the
model fitting. The confidence interval was computed
based on Blanche et al. [25]. All analyses were performed
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by R version 3.6 and packages including survival, glmnet,
caret, cmprsk, and riskRegression.

Exploration of underlying mechanisms

For differential gene expression analysis, we used the
negative binomial generalized linear model with tag-wise
dispersion in R package edgeR [26]. The raw count data
was normalized by the TMM (the trimmed mean of M
values) [27]. Only genes whose mean of counts was
more than 15 reads and with non-zero count in every
sample were retained for normalization. This resulted in
a total of 15,507 genes used for downstream analysis.
We performed gene sets enrichment analyses using mul-
tiple algorithms including GOseq, Enrichr, and GSEA
[28-30].

We used CIBERSORT software to deconvolve the rela-
tive fractions of different immune cell types from the
RNA sequencing data [31]. To infer the significance of
enrichment of cell types between the higher and lower-
risk patient subgroups, we used Wilcoxon rank-sum test
to compute p values. All p values were corrected by
Benjamini-Hochberg procedure to control the false dis-
covery rate (FDR) and to obtain the adjusted p values
[32].

Result

Patient characteristics and feature processing

The study workflow was sketched in Fig. 1. We enrolled
a total of 408 patients with complete information in EFS
data, major relevant clinicopathologic variables, and gene
expression and mutation profiles. The median EFS time
was 809 days (Figure S1; 95% CI 692, 1018). We ran-
domly split the data into model development dataset
(285 patients) and testing dataset (123 patients) with a
comparable censoring ratio (48.9% vs. 48.6%) for 1000
times. The average median EFS time for the develop-
ment and testing dataset were 822 and 834 days, re-
spectively. The distribution of included clinicopathologic
variables of the cohort was summarized in Table S1.
Only AJCC tumor stage and adjuvant treatment were
significantly associated with EFS.

For model input data integration, we prepared 5 sets of
features selected from single type of data (single type fea-
tures), 4 sets of features combined from different types of
data (combined features), and 5 sets of features incorpo-
rated with interaction terms generated within (intra-type)
each type of data or between (inter-type) different types of
data (combined and interaction features). The size of each
feature space was summarized in Table S2.

Comparison of integrated prognostic models

We first compared the prediction accuracy of models
developed based on single type of input features. The
performance of models based on clinicopathologic
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variables was the best with a C-index of 0.624 + 0.028
on the testing set (Figure S2A and Table S3). To assess
the effectiveness of feature pre-selection, we compared
models using features with or without univariate Cox
analysis. For gene expression, the mean of testing C-
index increased by 0.029 with univariate pre-selection (p
value < 0.001), while for mutation profiles, the mean of
prediction accuracy increased by 0.013 (p value < 0.001).
These indicated the benefit of feature pre-selection step.

We next compared prognostic models that integrate
different types of input data. The best prediction model
was the model combining three types of input data,
which achieved a significantly higher mean C-index
(0.639 £ 0.033) on the testing data as compared to the
clinicopathologic model (p value < 0.001; Figure S2B and
Table S3). We then assessed whether the inter-type and
intra-type interaction covariates can improve the predic-
tion accuracy. Adding interaction covariates had limited
benefits on prediction power (Figure S3C and Table S3).
The final data integration we presented in this study was
thus the one combining three types input variables with-
out interactions.

Assessment of significance of the prognostic risk score

A successful application of a prognostic model requires
a risk score that can be readily computed for clinical
use. We therefore selected an individual model with a C-
index (0.638) close to the mean of final data integration
as described above, and calculated the linear combin-
ation of coefficients and features from the model as the
event-risk score (or mathematically X5). We named this
score as the mul-score (Table S4).

To further evaluate the significance of mul-score as
compared to that of the cln-score (the risk score com-
puted by clinicopathologic variables-based model), we
fitted Cox proportional hazard models by setting the
score as the single covariate on the testing set. For a fair
comparison, we computed the cln-score from a model
with a C-index (0.622) also close to the mean of clinico-
pathologic variables-based data integration. The p value
of mul-score coefficient was more significant than that
of cln-score in such univariate modeling (Table S5).
When a multivariate Cox model was fitted using the two
scores as covariates, only the mul-score was still statisti-
cally significant (Table S5). This suggested that the mul-
score could capture extra EFS-related information that
was not considered by cln-score.

We then investigated the risk stratification effective-
ness of the two risk scores within specific groups of pa-
tients (Table S6). We found that the mul-score was not
only significantly associated with EFS in each group, but
also showed a higher level of relevance than that of the
cln-score, as reflected by the fitting p values. We set the
score median within each group as the threshold to
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stratify for the higher- and lower-risk subgroups. The
mul-score generated a more striking stratification within
each set of patients as compared to the cln-score (Fig. 2,
Figure S3, Table S6). For example, for stage IA sub-
group, the mul-score identified a higher-risk subgroup
with a median EFS time 18 months earlier than that of
the cln-score (702 vs. 1255 days). On the other hand, for
stage IIB, the mul-score revealed a significantly lower-
risk subgroup who would develop an event 19 months
later than that of the cln-score (1146 vs. 578 days).

RFS analysis

We next assessed the significance of proposed risk score
as a predictor for RFS. We used competing risks models
for the assessment because a total of 45 death events
without recurrence observed in the cohort can act as the
competing event for recurrence risk analysis (Fig. 3a). Ig-
noring the effect from such competing event could lead
to an over-estimation of recurrence risk (Fig. 3b) since
those who died without recurrence were still considered
as having possibility of developing recurrence. The cu-
mulative probabilities of these two types of events were
shown in Fig. 3c. Most failure events of both causes oc-
curred before about day 2000, and the failure rate be-
came lower after then for recurrence while unchanged
for direct death. The mean time-dependent AUC of
mul-score for RFS prediction was significantly higher
than that of the cln-score (Fig. 3d; 0.772 vs. 0.646, p
value < 0.001).

Differential risk-related immune phenotyping variations
To explore the variations of immune phenotyping asso-
ciated with differential prognostic risk, we performed
differential gene expression analysis between the higher-
risk (n = 204) and lower-risk (n = 204) patients as deter-
mined by mul-score. A total of 7250 genes was differen-
tially expressed, and 2 GOs were identified as
significantly enriched: extracellular matrix organization
(GO 0030198, adjusted p value < 0.001) and extracellular
structure organization (GO 0043062, adjusted p value =
0.001).

For the immune phenotyping analysis, a total of 519
differentially expressed genes described above was
immune-related according to a curated list generated
from the immunology database and analysis portal
(ImmPort) [33]. We further identified that five of them
were also on the list of differentially expressed genes de-
tected within stage IIB and within IITA subgroups (Fig. 2
and Table S7). As expected, the proto-oncogenes
PTPNI, JAKI, JAGI [34-36] were significantly upregu-
lated in the higher-risk patients. However, another gene
NENF, previously being reported as promoting cancer
development [37], was downregulated, suggesting the
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complexity of tumor immune microenvironment in a
high prognostic risk scenario.

We then used computational deconvolution methods
to investigate the variations of immune cell composi-
tions between the two risk subgroups. As shown in Fig-
ure S4, the inferred relative fractions of immune cell
compositions varied both within and across risk sub-
groups (Figure S4A). In higher-risk patients, we observed
a significant depletion of mast cells and activated natural
killer cells (Figure S4B), indicating a transformation of
innate immunity in LUAD tumor microenvironment
from activating to suppressive status.

Discussion

Our study developed and validated a new prognostic
model integrating clinicopathologic variables, gene ex-
pression, and mutation data as the input. We used test-
ing datasets to show that the model achieved a higher
level of accuracy of EFS prediction than models based
on any other input data integrations. Adding interaction
covariates to prognostic models showed limited benefits
on improving prediction power. We further compared at
the level of risk score computed from these models. The
univariate model fitting p values of the score indicated
that the one generated from the best combinatorial
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model captured a wider spectrum of EFS-related varia-
tions. Moreover, the proposed score provided a higher-
resolution EFS stratification for pathologically defined
subgroup of patients and showed superior time-varying
RFS prediction power than conventional clinicopatho-
logic methods (mean time-dependent AUC = 0.772 vs.
0.646, p value < 0.001). The higher-risk subgroup deter-
mined by the score was characterized with RNA expres-
sion aberration of multiple immune-associated genes
and depletion of activated natural killer cells and mast
cells.

Integrating different types of data is an effective
way to improve prognostic prediction. In this study,
the model integrating clinicopathologic variables, gene
expression, and mutation achieved the best perform-
ance in multiple evaluation metrics. Our conclusions
were consistent with previous studies. For example,
Chen et al. [13] integrated two micro-RNAs, two
mRNAs, and two DNA methylation sites as prognos-
tic factors associated with OS, and they achieved a
more significant risk stratification within pathologic-
ally defined subgroups. Song et.al showed that, by

integrating genetic mutations and expression profiles
with clinicopathologic variables, the prediction of both
OS and RFS showed the highest cross-validation ac-
curacy among all the models in the TCGA-LUAD
data [15]. Besides, Dong et al. [14] found that by add-
ing DNA methylation and gene expression biomarkers
to a model using only clinical data as the input, the
AUCs improved by 18.3% and 16.4% in discovery and
validation phases for early-stage LUAD patients, re-
spectively. We extended some of these studies by
introducing more types of input data integrations and
stricter evaluation criteria. The resultant model not
only showed improved prediction for EFS on the test-
ing dataset, but also demonstrated its significance as
a predictor for RFS under a bias-corrected competing
risks modeling framework.

Our study also suggested new therapeutic opportun-
ities for the higher-risk patients. For example, we discov-
ered that the exhaustion of innate immunity
components was correlated with prognostic risk. The
natural killer cells are lymphocytes that can recognize
transformed cells via surface receptor interaction. It has
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been shown in a recent publication [38] that the activa-
tion of natural killer cells promotes the efficacy of LUAD
immunotherapy in mouse model by enhancing the adap-
tive immune responses. The abundance of mast cells
was shown to be positively correlated with the survival
of early-stage LUAD patients, and mast cells-related
gene signatures can be used for predicting survival prob-
abilities [39]. Moreover, it has been reported that the
interaction between mast cells and natural killer cells is
critical for anti-viral defense [40]. Whether there exist
similar interactions important for anti-LUAD effect war-
rants experimental investigations.

Our proposed score included the expression profile of
13 genes and somatic mutation profile of 10 genes. We
recognized that this is a relatively large panel of testing
which involves both expression and mutation measure-
ments. However, there already exists multi-panel testing
technologies that can be readily translated for the score.
For example, a 21-gene expression panel (Oncotype DX)
based on qRT-PCR platform has already been made for
clinical use to inform breast cancer treatment [41]. For
mutational testing, a 324 gene panel (FoundationOne
CDx )[42] based on next-generation sequencing (NGS)
platform was approved for clinical genetic testing by
EDA recently. We thus think the score has potential to
be cost-effective with these multi-panel testing
technologies.

Our study has limitations. First, the combinatorial
models developed in this study were based on fea-
tures already selected by models based on individual
type of input data, using the same training dataset.
This introduced more overfitting and could possibly
cause the failure of selecting truly important com-
binatorial models. Second, the feature pre-selection
method remains to be improved. We performed uni-
variate Cox analysis to pre-select important features,
and this method only provided a slight improvement
for models based on single-type variables. Third, the
EFS outcome we defined in this study included death
from any causes. We recognized that including death
not related to lung cancer could bias EFS estimates,
but such detail information was not available from
TCGA clinical dataset. We mitigated this by further
evaluating the score on RFS analysis. Fourth, all ana-
lyses were performed on TCGA-LUAD dataset. More
external validations should be made before consider-
ing clinical translation of the score.

Conclusions

In summary, our study proposed a novel prognostic risk
score integrating clinicopathologic variables, gene ex-
pression, and mutation data for LUAD. The score was
useful for both EFS and RFS analyses.
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S2. Figure S3: Kaplan-Meier curve of higher- and lower-risk subgroups
stratified by cln-score within different sets of patients. The sets from A to
F are: A, all patients; B, testing set; C, patients in AJCC pathologic tumor
stage IA; D, patients in AJCC pathologic tumor stage IB; E, patients in
AJCC pathologic tumor stage IIB; F, patients in AJCC pathologic tumor
stage llIA. Figure S4: Barplot summary of inferred relative fractions of cell
types (A) and volcano plot summary for the significance of difference in
immune cellular compositions between the higher and lower-risk sub-
group patients (B).
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