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Abstract

Background: The role of hypoxia-inducible factor-1α (HIF-1α) in primary colorectal cancer (CRC) and colorectal liver
metastasis (CRLM) has remained unclear. The aim of this study was to investigate HIF-1α expression and its association
with prognosis in patients with CRLM with a focus on hepatic stellate cells (HSCs).

Methods: Colon cancer cells were cultured in HSC-conditioned medium (CM), and HIF-1α expression and cell
migration were analyzed. Seventy-five patients with CRLM who underwent an initial curative hepatectomy were
enrolled. We examined HIF-1α expressions and patient prognosis between primary CRCs and the matched liver
metastatic specimens.

Results: Activated HSCs induced HIF-1α mRNA and protein expression in colon cancer cells (p < 0.01) and promoted
cell migration (p < 0.01). The positive rates of HIF-1α expression in primary CRCs and liver metastases were 68.0 and
72.0%, respectively. There were no differences in overall (OS) and disease-free survival (DFS) of HIF-1α expression in
primary CRC. However, HIF-1α expression in liver metastasis correlated to poor prognosis in both OS and DFS.
Furthermore, patients with HIF-1α positive expression in liver metastasis had poor prognosis.

Conclusion: HIF-1α expression in liver metastasis determines poor prognosis of CRLM patients. HSCs might play a key
role in aggressive phenotypes of tumor cells.
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Background
In patients with colorectal liver metastasis (CRLM), sur-
gical resection improves patient prognosis and is recom-
mended if the resection will be curative [1–5]. On the
other hand, with the implementation of “targeted” mo-
lecular therapies against epidermal growth factor recep-
tor (EGFR) and vascular endothelial growth factor

(VEGF), the median overall survival (OS) of patients
with metastatic colorectal cancer (CRC) has progres-
sively improved, surpassing 30 months [6–8]. The
monoclonal antibodies like cetuximab, panitumumab,
and bevacizumab have demonstrated effectiveness, both
in terms of better response and improved survival. A
comparison of various markers between primary and
metastatic tumors have been recently reported [9–13].
Previous studies reported that while the immune micro-
environment in the primary CRC tumor and liver metas-
tasis is different, hypoxia-inducible factor-1α (HIF-1α)
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expression in primary CRC was comparable to that in
corresponding metastases and HIF-1α expression is con-
sistent in primary CRC and matched metastatic tissues
[9, 10]. However, whether primary CRC and the associ-
ated metastases have similar molecular features remains
unknown. A comparative analysis between primary CRC
and metastatic tumors may improve understanding of
the various molecular alterations in metastatic tumors
and facilitate research and development of novel tar-
geted drugs for CRC.
Once cancer cells in the primary tumor site migrate to

distant metastatic sites, some cells around the tumor
cells, such as sinusoidal endothelial cells, macrophages,
or fibroblasts, can increase tumor malignancy [14]. In
the liver microenvironment, hepatocytes, Kupffer cells,
and hepatic stellate cells (HSCs) play an important role
[15–17]. In the liver cancer microenvironment, Kupffer
cells and HSCs are activated by cancer cells, and tumor-
associated macrophages (TAMs) and activated HSCs
regulate tumor malignant behavior [17]. HSCs play a key
role in the development of aggressive phenotypes of
tumor cells. We previously reported that activated HSCs
promoted cancer cell progression through paracrine or
autocrine interleukin-6 (IL-6) [18]. However, there are
few reports about the relationship between activated
HSCs, which are considered cancer-associated fibro-
blasts, and metastatic cancer cells in CRLM. We specu-
late that the characteristics of metastatic cancer cells
could be modified by cancer-associated fibroblasts in the
cancer microenvironment of liver.
The HIF-1α transcription factor [19–23] plays a cen-

tral role in biologic processes under hypoxic conditions
including angiogenesis [24, 25], tumor growth [26], and
epithelial mesenchymal transition [27] in several cancer
types. A previous report showed that high HIF-1α ex-
pression correlated to tumor malignancy in liver com-
pared with some metastatic organs such as bone and
lung [28]. Moreover, another report showed that HIF-1α
expression was altered from primary sites to metastatic
sites, and high expression of HIF-1α in the metastatic
site correlated to poor prognosis [29]. Therefore, HIF-1α
expression might serve a critical role to regulate tumor
malignancy in CRLM.
The aim of this study was to elucidate a possible

mechanism of activated HSCs on augmenting tumor
malignancy and to investigate the association of HIF-1α
expression between primary CRC and liver metastasis on
CRLM patient prognosis.

Methods
In vitro study
Cell culture
The HCT116 colon cancer cell line was obtained from
the Riken Cell Bank, and the hepatic stellate cell line

LX2 was obtained from Cellular Engineering Technolo-
gies Inc. HCT116 cells were cultured in McCoy’s 5A
Modified Medium (Life Technologies Ltd., Tokyo, Japan)
with 10% fetal bovine serum (FBS) (Life Technologies
Ltd.). LX2 cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM) (Life Technologies Ltd.) with
10% FBS. Both cell lines were cultured under 37 °C in
5% CO2.

HSC conditioned (CM) medium preparation
HCT116 cells (3.0 × 106 cells) were cultured in McCoy
medium in a 10-cm dish until cell numbers reached 3.0
× 105 cells. The cell culture media was then changed to
CM from cancer cells for 24 h of culture. The medium
of HCT116 (3.0 × 106 cells) changed to activated HSCs
conditioned medium (HSC-CM) or DMEM (control) for
24 h culture. After that, the FBS-free medium culture
was followed. After 24 h, HCT116 cells were collected
for experimental analyses.

Scratch assays
Cells were plated in 6-cm dishes at 3.0 × 106 cells/dish.
The medium was replaced with activated HSC-CM or
DMEM (control) for 24 h. After the cells had reached
confluency, a plastic pipette tip was drawn across the
center of the plate to produce a scratch that was 1 mm
in width. After 24 h of culture in medium with 1% FBS,
a phase contrast microscope was used to examine cell
movement into the wound area.

Polymerase chain reaction (PCR) analysis
RNA was extracted from samples using the RNeasy Mini
Kit (Qiagen, Hilden, Germany) according to the manu-
facturer’s instructions. cDNA was synthesized using a re-
verse transcription kit (Applied Biosystems, Foster City,
CA, USA). The HIF-1α TaqMan gene expression assay
(Hs00153153_m1, Applied Biosystems) was used, and
GAPDH (4326317E, Applied Biosystems) was selected as
an internal control. The StepOnePlus Real-Time PCR
System (Applied Biosystems) was used to perform qRT-
PCR.

Western blotting
RIPA buffer (Thermo Fisher Scientific Inc.) containing
both protease inhibitor cocktail (Sigma-Aldrich, St
Louis, MO, USA) and the PhosSTOP phosphatase in-
hibitor cocktail (Roche, Tokyo, Japan) was used to lyse
cells. Protein concentrations were measured with the
BCA kit (Thermo Fisher Scientific Inc.), and equal
amounts of extracted proteins were separated on 10%
SDS-PAGE gels and transferred onto PVDF membranes
(Bio-Rad Inc., Hercules, CA, USA). The membranes
were incubated with the indicated primary antibody,
followed by the appropriate HRP-conjugated secondary

Wada et al. World Journal of Surgical Oncology          (2020) 18:241 Page 2 of 10



antibody. The bands were detected by chemilumines-
cence (Thermo Fisher Scientific Inc.). Primary antibody
against HIF-1α (diluted 1:1000; HPA001275) was pur-
chased from Sigma-Aldrich, and primary antibody
against β-actin was obtained from Sigma Chemical (St
Louis, MO, USA).

Clinicopathological study
Patient selection
Seventy-five CRLM patients who underwent an initial
hepatectomy at our institute from 1994 to 2015 with
available surgical specimens of primary CRCs and the
matched liver metastases were enrolled in this study.
This study was authorized in advance by the Institu-
tional Review Board of the University of Tokushima
Graduate School (approval ID number: 2392), and all pa-
tients provided written informed consent. The partici-
pants in this study included 47 males and 28 females
with a mean age of 66.5 years, ranging from 33 to 90
years in age. The numbers of patients with synchronous
and metachronous liver metastases were 32 (43%) and
43 (57%), respectively. Staging and curability was defined
according to the Classification of Primary Colorectal
Cancer by the Colorectal Cancer Study Group of Japan
[30]. T-factor was determined by tumor number, size,
and vascular infiltration. Tumor stage was determined
by T-, N-, and M-factors. We defined H class as the fol-
lowing classification: H0 class, No metastasis to liver; H1
class, ≦ 4 lesions and ≦ 5 cm; H2 class, other than H1
and H3; H3 class, > 5 lesions and > 5cm [31]. We divided
surgical procedure into minor and major hepatectomy,
and major hepatectomy was defined as resection of four
or more liver segments [32]. All patients had not re-
ceived neoadjuvant chemotherapy and follow-up period
had started after hepatectomy. The mean follow-up
period was 41.3 months (range 4.4–191.3 months). We
examined clinicopathological features, prognosis, mo-
lecular biological malignancy, 5-year overall survival
(OS), and disease-free survival (DFS).

Immunohistochemical assessment of HIF-1α
Paraffin sections (4 μm) were cut from archival
formalin-fixed paraffin-embedded tissue blocks. The
samples were deparaffinized and dehydrated using a
graded series of ethanol solutions. Endogenous peroxid-
ase activity was stopped through the administration of
0.3% hydrogen peroxidase and methanol for 20 min.
After rinsing in phosphate-buffered saline (PBS; Fisher
Scientific, Pittsburgh, PA, USA), the tissue sections were
processed in a 0.01 M citrate buffer (pH 6.0) inside a
heat-resistance plastic container. The sections were irra-
diated in a microwave oven for 25 min and then allowed
to cool at room temperature. The sections were incu-
bated with primary mouse monoclonal antibody against

HIF-1α (1:500; HPA001275, Sigma-Aldrich, MO, USA)
overnight at 4 °C in a humidified chamber. The sections
were incubated using Daco REALTM EnvisionTM/HRP,
Rabbit/Mouse (ENV), for 45 min followed by three
washes in PBS. Peroxidase labeling was developed by in-
cubating the section in 3,3′-diaminobenzidine tetrahy-
drochloride (DAB) for 5 min. Nuclear counterstaining
was completed using Mayer’s hematoxylin solution. Cell
counts were performed using a Nikon Digital Camera
DXM 1200F photomicroscope at a magnification of ×
200 (× 20 objective and × 10 eyepiece). The area counted
in each section was randomly selected from the repre-
sentative tumor field. For each section, eight areas were
assessed. The staining score for HIF-1α was determined
based on staining intensity (0 negative, 1 low, 2 medium,
3 high) and staining area (0, 0%; 1, 0–25%; 2, 26–50%; 3,
≥ 51%). Scores over 4 points were defined as positive ex-
pression (Fig. 1).

Statistics
All statistical analyses were performed using statistical
software (JMP software, version 11; SAS Campus Drive,
Cary, NC, USA). Data are expressed as the mean ± SD.
Survival curves were calculated using the Kaplan–Meier
method and compared using the log-rank test. Compari-
sons between two groups were performed by Mann–
Whitney U test. Comparisons between more than three
groups were calculated using one-way ANOVA with
Turkey–Kramer’s test. p < 0.05 was considered to indi-
cate statistical significance.

Results
Tumor malignancy is enhanced in the liver by HSCs
We first examined the impact of HSC-CM on HIF-1α
expression in HCT116 colorectal cancer cells. We found
that HSC-CM induced both HIF-1α mRNA and protein
expression in HCT116 cells (p < 0.01) (Fig. 2a, b). More-
over, HSC-CM induced migration of HCT116 cancer
cells in scratch assays (p < 0.01) (Fig. 2c). Together,
these results suggest the possibility that cells in the can-
cer microenvironment such as HSCs may alter tumor
malignancy in liver metastasis.

HIF-1α expression in liver metastasis determines patient
prognosis
We next examined HIF-1α expression in 75 CRLM pa-
tients with primary CRC and matched liver metastasis
specimens. Positive HIF-1α expression was detected in
51 (68.0%) primary CRCs and 54 (72.0%) liver metasta-
ses. We observed the following trends of HIF-1α expres-
sion from primary CRC to liver metastasis: positive to
positive expression, 37 (49.3%); positive to negative ex-
pression, 14 (18.7%); negative to positive expression, 17
(22.7%); and negative to negative expression, 7 (9.3%).
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Tables 1 and 2 show the patient clinicopathological fac-
tors according to HIF-1α expression in primary and
metastatic sites. There were no significant relationships
between HIF-1α high and low expression groups in both
primary and metastatic sites. The adjuvant chemother-
apy was introduced in 45 cases (60%) of all patients.
According to detail regimen of the chemotherapy, we
performed 5-FU-based chemotherapy in most of patients
and showed the detail as follows: FOLFOX, 8 cases; LV/
UFT, 8 cases; LV/5FU, 7 cases; MMC/5FU, 7 cases; IRIS,
7 cases; arterial injection. 3 cases; oral 5FU, 2 cases; and
other, 3 cases.
Regarding survival, there were no differences in OS

and DFS according to HIF-1α expression in the primary
site (p = 0.64 (95%CI 0.55–2.85), p = 0.91 (95%CI 0.56–
1.83), respectively) (Fig. 3a, b). The percentage of pa-
tients according to HIF-1α expression (Low/High) in the
primary site were 67.2/69.7% and 60.4/54.6% for 3 and 5
years in OS, and 45.8/62.2%, 33.3/31.2% for 1 and 3
years in DFS, respectively. In contrast, HIF-1α expres-
sion in the metastatic site significantly correlated with
poor prognosis in both OS and DFS (p = 0.02 (95%CI
1.24–11.17), p < 0.01 (95%CI 1.30–5.16), respectively)
(Fig. 4a, b). The percentage of patients according to
HIF-1α expression (Low/High) in the metastatic site
were 95.2/58.6% and 75.8/54.9% for 3 and 5 years in OS
and 71.4/51.1% and 52.2/19.6% for 1 and 3 years in DFS.
More importantly, in 41.3% of patients, HIF-1α expres-
sion was altered from primary CRC to liver metastasis,

and the patients with positive HIF-1α expression in liver
metastasis had significantly poor prognosis (Fig. 5a, b).
Univariate analysis of OS revealed that differentiation

type (undifferentiated type, p < 0.0001) in primary tu-
mors and H class (2.3, p = 0.0400), grade (B.C, p =
0.0119), and HIF-1α expression (positive, p = 0.0220) in
metastatic tumors were significant prognostic factors
(Table 3). In multivariate analysis, undifferentiated type
(HR 20.873, p = 0.0013) in primary tumors and high
HIF-1α expression (HR 2.850, p = 0.0422) in metastatic
tumors were independent prognostic factors (Table 3).
Univariate analysis of DFS revealed that differenti-

ation type (undifferentiated type, p = 0.0466) and
lymph node metastases (positive, p = 0.0146) in pri-
mary tumors and grade (B.C, p = 0.0119) and HIF-1α
expression (positive, p = 0.0073) in metastatic tumors
were significant recurrent factors (Table 4). In multi-
variate analysis, lymph node metastases (HR 2.03, p =
0.0186) in primary tumors and grade B.C (HR 2.21, p
= 0.0057) and high HIF-1α expression (HR 2.40, p =
0.0079) in metastatic tumors were independent recur-
rent factors (Table 4).

Discussion
The present study revealed that activated HSCs in-
creased HIF-1α expression at the mRNA and protein
levels and promoted tumor cell activities. The positive
rate of HIF-1α expression was similar in primary CRC
(68.0%) and liver metastasis (72.0%). Nevertheless, in

Fig. 1 Immunohistochemical staining of HIF-1α. a High expression of HIF-1α in a primary tumor, b low expression of HIF-1α in a primary tumor, c
high expression of HIF-1α in a liver metastasis, and d low expression of HIF-1α in a liver metastasis. Scale bar, 100 μm. Magnification, × 400
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41.3% of patients, HIF-1α expression was altered from
primary CRC to liver metastasis, and the patients with
positive HIF-1α expression in liver metastasis had sig-
nificantly poor prognosis. HIF-1α expression in primary
CRC did not influence any malignant behavior including
prognostic outcome.
Previous studies reported differences in the immune

microenvironment between the primary CRC and liver
metastasis, and more CD33+ cells and CD8+ cells, but
not CD8+ T cells in liver metastases; these results sug-
gested that increased numbers of immunosuppressing
cells in the liver may contribute to the poor response to
immunotherapy [9]. The presence of liver metastases
was associated with fewer infiltrating CD8+ T cells and
poor response to PD-1 therapy in other cancer types
[33]. CRC-associated DNA hypomethylation undergoes
hypermethylation in liver metastases [11]. Therefore, im-
mune cells and epigenetic modifications might correlate
to the alteration of positive HIF-1 expression in liver

metastasis and poor prognosis of patients with positive
HIF-1 expression in liver metastasis.
In the present study, undifferentiated type in primary

tumors and HIF-1α high expression in metastatic tu-
mors were the independent prognostic factors in OS. As
the independent recurrent factor, lymph node metasta-
ses in primary factors and synchronous, grade B.C, and
high HIF-1α expression in metastatic tumors were
observed. Previous studies reported that lymph node
metastases, lymphovascular invasion, and poorly differ-
entiated type in primary tumors and the number of liver
metastases were independent poor prognostic factors for
progression-free survival and OS in CRLM patients [34–
36]. The incidence of synchronous metastasis remains
high with poor survival outcomes compared with pa-
tients of metachronous metastasis [37].
Hepatocytes, Kupffer cells, and HSCs are important

cells in the microenvironment of liver. In CRLM, Kupf-
fer cells and HSCs are activated by cancer cells, and

Fig. 2 Hepatic stellate cells (HSCs) increased HIF-1α expression in HCT116 colorectal cancer cells. HSCs promoted cancer cell migration. HCT116
colorectal cancer cells were co-cultured with HSC conditioned medium (HSC-CM). a PCR analysis for HIF-1α mRNA expression in cancer cells and
b western blot analysis for HIF-1α expression in cancer cells (n = 4). c Scratch assays were performed and cells were examined after 24 h (n = 4).
*P < 0.01 compared with controls
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Table 1 Clinicopathological factors according to HIF-1α expression in metastatic site

Factors Low expression (n = 21) High expression (n = 54) p value

Primary factors

Location Colon/rectum 12/9 34/20 0.6433

Depth < SS/≥ SS 2/19 5/49 0.9718

Diff. Diff/undiff 20/1 51/3 0.8896

Lymphatic invasion −/+ 9/12 20/33 0.6614

Vessel invasion −/+ 5/16 17/37 0.5068

LN metastasis −/+ 8/13 24/30 0.6165

Metastatic factors

Meta. period Meta/syn 10/11 22/32 0.5895

Tumor size (cm) < 5/≥ 5 15/6 42/12 0.5678

Tumor number < 5/≥ 5 17/4 43/11 0.8973

H class H1/H2.3 12/9 34/20 0.6433

Grade A/B.C 12/9 26/28 0.4836

Adjuvant therapy −/+ 8/13 22/32 0.8337

Hepatectomy Minor/major 16/5 46/8 0.3555

CA19-9a < 100/≥ 100 16/4 43/4 0.2014

CEAa < 10/≥ 10 12/8 27/20 0.8461

Diff differentiated type, undiff undifferentiated type, LN lymph node, SS subserous, Meta metachronous, Syn synchronous
a8 patients are not available

Table 2 Clinicopathological factors according to HIF-1α expression in primary site

Factors Low expression (n = 24) High expression (n = 51) p value

Primary factors

Location Colon/rectum 16/8 30/21 0.5130

Depth < SS/≥ SS 1/23 6/45 0.2601

Diff. Diff/undiff 23/1 48/3 0.7528

Lymphatic invasion −/+ 10/14 19/31 0.6476

Vessel invasion −/+ 6/18 16/35 0.5684

LN metastasis −/+ 9/15 23/28 0.5334

Metastatic factors

Meta. period Meta/syn 7/17 25/26 0.1005

Tumor size (cm) < 5≥ 5 18/6 39/12 0.8896

Tumor number < 5/≥ 5 19/5 41/10 0.9018

H class H1/H2.3 14/10 32/19 0.7150

Grade A/B.C 11/13 27/24 0.5656

Adjuvant therapy −/+ 8/16 22/29 0.4188

Hepatectomy Minor/major 17/7 45/6 0.1633

CA19-9a < 100/≥ 100 19/1 40/7 0.2196

CEAa < 10/≥ 10 10/10 29/18 0.3758

Diff differentiated type, undiff undifferentiated type, LN lymph node, SS subserous, Meta metachronous, Syn synchronous
a8 patients are not available
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these activated stromal cells interact with metastatic
cancer cells and promote tumor invasion [17]. As we
previously reported that activated HSCs promote cancer
cell progression through paracrine or autocrine IL-6
[18], it is known that activated HSC regulate down-
stream pathways and promote tumor growth [38, 39].

Our further research revealed a correlation between IL-6
expression and HIF-1α expression, but there is no sig-
nificantly difference (data not shown). As our supportive
opinion, other reports showed that exosomes from acti-
vated HSCs induce HIF-1α expression and affect the
metabolic switch of liver nonparenchymal cells [40].

Fig. 3 Kaplan–Meier curves according to HIF-1α expression in primary site of CRLM. a Overall survival curves according to HIF-1α expression and
b disease-free survival curves according to HIF-1α expression

Fig. 4 Kaplan–Meier curves according to HIF-1α expression in metastatic site of CRLM. a Overall survival curves according to HIF-1α expression
and b disease-free survival curves according to HIF-1α expression
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Fig. 5 Kaplan–Meier curves according to the alteration of HIF-1α expression from primary CRC to liver metastasis in CRLM. a Overall survival
curves according to the alteration of HIF-1α expression and b disease-free survival curves according to the alteration of HIF-1α expression

Table 3 Prognostic factors of overall survival

Factors 5-year survival (%) Univariate Multivariate

HR (95% CI) p value HR (95% CI) p value

Primary factors

Location Colon/rectum 56.0/58.0 1.03 (0.46–2.24) 0.9357

Depth < SS/> SS 65.6/58.9 0.93 (0.28–5.81) 0.9242

Diff. Diff/undiff 59.1/0 23.90 (4.58–112.20) < 0.0001 20.87 (3.78–107.13) 0.0013

Lymphatic invasion −/+ 66.5/53.7 0.93 (0.43–2.13) 0.9569

Vessel invasion −/+ 59.9/56.7 1.16 (0.53–2.75) 0.7172

LN metastasis −/+ 70.3/48.7 1.53 (0.70–3.59) 0.3019

HIF-1α −/+ 60.4/54.6 1.21 (0.55–2.85) 0.6424

Metastatic factors

Meta. period Meta/syn 69.0/49.8 1.79 (0.79–4.59) 0.1826

Tumor size (cm) < 5/> 5 60.5/47.2 1.85 (0.81–4.04) 0.1213

Tumor number < 5/> 5 58.4/51.1 1.67 (0.68–3.72) 0.2231

H class H1/H2.3 63.8/46.0 2.22 (1.02–4.96) 0.0400 1.19 (0.41–4.31) 0.7591

Grade A/B.C 72.7/44.2 2.89 (1.27–7.42) 0.0119 2.37 (0.20-0.61) 0.1996

Adjuvant therapy −/+ 68.3/54.4 1.22 (0.53–3.13) 0.6514

Hepatectomy Minor/major 52.6/64.7 0.68 (0.20–1.79) 0.4832

HIF-1α −/+ 75.8/54.9 3.26 (1.24–11.17) 0.0220 2.85 (1.04–10.01) 0.0422

CA19-9 < 100/> 100 28.2/37.5 0.73 (0.27–2.53) 0.2557

CEA < 10/> 10 57.4/55.1 1.45 (0.60–3.84) 0.4164

Diff differentiated type, undiff undifferentiated type, LN lymph node, SS subserous, Meta metachronous, Syn synchronous, HR hazard ratio, CI confidence interval
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Another report showed that tamoxifen decreases the
levels of HIF-1α expression by suppressing activated
HSC [41]. However, as it is still unknown how activated
HSC induced HIF-1α expression in cancer cell, further
studies on the relationship of HSC and HIF-1α are
required.
To our knowledge, this is the first study focusing on

HSCs in the microenvironment and comparing HIF-1α
expression between primary CRC and liver metastases.
However, this study had some limitations, including its
retrospective design and the small sample size. Further-
more, as we do not have the data of period from surgery
to the beginning of adjuvant chemotherapy, we were not
able to compare chemotherapy response with the alter-
ations of HIF-1α expression. Our results only demon-
strated a relationship between HSCs and cancer cells.
Since other important cells are present in the cancer
microenvironment such as TAMs and immune cells, fur-
ther research on these cells is required. Our results sug-
gest that HIF-1α expression in liver metastasis is not
associated with the primary CRC and may be a useful
prognostic marker. These findings should be confirmed
in future studies.

Conclusions
HIF-1α expression in liver metastasis, but not primary
CRC, is correlated with poor prognosis of patients with

CRLM, and HSCs might play a key role in the aggressive
phenotype of tumor cells. These findings may improve
our understanding of various molecular alterations in
metastatic tumors and guide the development of novel
targeted drugs.
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Meta. period Meta/syn 39.6/23.8 1.71 (0.97–3.13) 0.0693

Tumor size (cm) < 5/> 5 26.1/41.7 0.95 (0.52–1.86) 0.8708

Tumor number < 5/> 5 30.8/27.8 1.58 (0.79–2.94) 0.1647

H class H1/H2.3 31.3/27.9 1.55 (0.88–2.70) 0.1224

Grade A/B.C 37.6/22.7 2.02 (1.16–3.58) 0.0119 2.21 (1.26–3.94) 0.0057

Adjuvant therapy −/+ 30.2/23.8 1.54 (0.96–3.34) 0.1681

Hepatectomy Minor/major 28.8/46.2 0.97 (0.44–1.92) 0.9361

HIF-1α −/+ 52.2/19.6 2.48 (1.30–5.16) 0.0073 2.40 (1.25–5.01) 0.0079

CA19-9 < 100/> 100 63.5/37.5 1.71 (0.74–4.98) 0.5631

CEA < 10/> 10 27.6/30.1 1.19 (0.66–2.20) 0.5739

Diff differentiated type, undiff undifferentiated type, LN lymph node, SS subserous, Meta metachronous, Syn synchronous, HR hazard ratio, CI confidence interval
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