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Abstract

Background: Although RNA-binding proteins play an essential role in a variety of different tumours, there are still
limited efforts made to systematically analyse the role of RNA-binding proteins (RBPs) in the survival of colorectal
cancer (CRC) patients.

Methods: Analysis of CRC transcriptome data collected from the TCGA database was conducted, and RBPs were
extracted from CRC. R software was applied to analyse the differentially expressed genes (DEGs) of RBPs. To identify
related pathways and perform functional annotation of RBP DEGs, Gene Ontology (GO) function and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out using the database for
annotation, visualization and integrated discovery. Protein-protein interactions (PPIs) of these DEGs were analysed
based on the Search Tool for the Retrieval of Interacting Genes (STRING) database and visualized by Cytoscape
software. Based on the Cox regression analysis of the prognostic value of RBPs (from the PPI network) with survival
time, the RBPs related to survival were identified, and a prognostic model was constructed. To verify the model, the
data stored in the TCGA database were designated as the training set, while the chip data obtained from the GEO
database were treated as the test set. Then, both survival analysis and ROC curve verification were conducted.
Finally, the risk curves and nomograms of the two groups were generated to predict the survival period.

Results: Among RBP DEGs, 314 genes were upregulated while 155 were downregulated, of which twelve RBPs
(NOP14, MRPS23, MAK16, TDRD6, POP1, TDRD5, TDRD7, PPARGC1A, LIN28B, CELF4, LRRFIP2, MSI2) with prognostic
value were obtained.

Conclusions: The twelve identified genes may be promising predictors of CRC and play an essential role in the
pathogenesis of CRC. However, further investigation of the underlying mechanism is needed.

Keywords: Colorectal cancer (CRC), RNA-binding protein (RBP), Prognostic model construction, Survival analysis

Introduction
As a significant class of cellular proteins, RNA-binding
proteins (RBPs) can interact with RNA by recognizing
special RNA-binding domains and are widely involved in
multiple posttranscriptional regulatory processes, such
as RNA shearing, transport, sequence editing, intracellu-
lar localization and translation control [1]. It is estimated
that there are up to 1500 different proteins that have the

potential to bind RNA in the human genome [2]. RBPs
are characterized by the presence of an RNA-binding
domain (RBD) that contains 60–100 residues and usually
adopts an αβ topology. Found in single or multiple cop-
ies, these domains usually bind to RNA depending on
the exact sequence or structure [3]. To date, RBPs have
been reported to be associated with various human dis-
eases, such as spinal muscular atrophy and myotonic
dystrophy [4]. There are various RBPs involved in
tumourigenesis. SRC associated with 68 kDa mitosis
(SAM68) is a member of the STAR (signal transduction
and RNA metabolism activation) family of RBPs. It is
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involved in several steps of mRNA metabolism, such as
transcription, alternative splicing and nuclear export. In
addition, SAM68 is associated with the signal transduc-
tion pathways required for the response of cells to stim-
uli, cell cycle transition and viral infection [5]. TARBP2
is overexpressed in metastatic cells and metastatic
human breast tumours, and its abnormal activation can
promote the progression of breast carcinomas by affect-
ing the stability of its target mRNA [6].
Colorectal cancer (CRC), which includes colon and

rectal cancer, is a common digestive tract tumour. The
molecular pathogenesis of CRC is a complex multistep
process involving multiple acquired genetic and epigen-
etic abnormalities [7]. Some RBPs are known to be asso-
ciated with colorectal cancer. According to some studies,
muscleblind-like 1 (MBNL1), an RBP implicated in de-
velopmental control, can significantly suppress CRC cell
metastasis in vitro. MBNL1 destabilizes snail transcripts
and thus inhibits the epithelial-mesenchymal transition
(EMT) of CRC cells through the snail/E-cadherin axis
in vitro. RAS oncogene activation mutations are
commonly seen in colon cancer [8].
In this study, an analysis was conducted of RBP-

related genes in CRC patients through differential gene
expression and protein molecule interactions. In
addition, a prognostic model was adopted to identify
twelve genes associated with the survival of CRC pa-
tients. We verified the model and performed survival
analysis and risk assessment. These results will help elu-
cidate the underlying mechanism related to the survival
of CRC at the molecular level, thus providing a new dir-
ection for the prognosis of CRC and clinical treatment.

Methods
Data source
The FPKM transcriptome data of CRC were obtained
from the TCGA database website (https://portal.gdc.can-
cer.gov/). The total number of samples is 521, of which
there are 479 samples in the tumour group and 42 sam-
ples in the normal group. Then, the RBP gene was ob-
tained from the GOA database website (https://www.ebi.
ac.uk/GOA/). Combined with the CRC transcriptome se-
quencing map, CRC RBPs were obtained. The data on
gene expression (GSE17536) in colorectal patients were
obtained from the GEO database website (https://www.
ncbi.nlm.nih.gov/geo/), involving a total of 177 cases. All
the data were publicly available online. This study requires
no experiments to be conducted by any author on humans
or animals. The flowchart of it is shown in Fig. 1.

Data processing of differentially expressed genes (DEGs)
The RBPs were analysed using R software to identify the
difference between the tumour group and the sample
group. Wilcoxon test was carried out to identify DEGs

between the two groups, with the adjusted P < 0.05 and
|logFC| > 0.5

GO and KEGG pathway analysis of DEGs
GO analysis represents a common method applied to
conduct large-scale functional enrichment study. Gene
functions can be categorized into biological processes
(BP), molecular functions (MF) and cellular components
(CC). KEGG is known as a commonly used database
where a large amount of data on genomes, biological
pathways, diseases, chemicals and drugs is stored.
Through GO and KEGG analysis of DEGs, barplot and
bubble were drawn respectively. All of the GO and path-
way terms were ranked by their −log10 (q value).

Protein-protein interaction (PPI) network
The Search Tool for the Retrieval of Interacting Genes
(STRING) database (https://string-db.org/) is designed
to analyse the PPI information. DEGs were input into
the STRING database to obtain PPI information. Subse-
quently, the Cytoscape software was applied to visualize
the PPI network, the Cytoscape plug-in MCODE was
used to obtain the most relevant sub-network module
and then the hub genes of the four modules were
enriched for GO and KEGG analysis.

Construction and analysis of prognostic models
Cox regression analysis was conducted on the prognostic
value of 442 RBPs (from the PPI network) with survival
time, the RBPs related to survival were identified and a
forest map was generated. Then, the samples of the
TCGA database were designated as the training set, and
the samples of the GEO database were treated as the test
set to construct the best prognostic model based on the
training set. Twelve survival-related genes were identi-
fied by the model, based on which the correlation coeffi-
cient of each gene was obtained. Then, the risk score of
each patient in the training set and test set was calcu-
lated according to gene expression. In addition, the
patients were classified into high-risk and low-risk
groups by the median value of the risk score. The pa-
tients in the training set and the test set were catego-
rized into either the high-risk group or low-risk group.
A survival analysis was conducted, an ROC curve was
generated and then the risk curves were constructed for
the training and test sets. Furthermore, with univariate
and multivariate analyses, nomograms based on the
genes obtained from the prognostic model were gener-
ated to predict the length of survival for the patients.

Results
Identification of RBPs DEGs
Transcriptome sequencing data of 1493 RBPs of CRC
was obtained from the TCGA database. The differential
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expression analysis was conducted to find out that there
were 314 upregulated genes and 155 downregulated
genes, based on which volcano and heat maps were
drawn as shown in Fig. 2.

Functional enrichment analyses of DEGs
The up- and downregulated genes of DEGS were ana-
lysed for GO function and KEGG pathway enrichment,
while both barplot and bubble were plotted. The
enriched GO terms were divided into CC, BP and MF

ontologies. The top 10 most relevant items were
selected, as shown in Fig. 3. With regard to the upregu-
lated genome, the results of GO analysis indicated that
DEGs were mainly enriched in BPs, including ncRNA
metabolic process, ncRNA processing, ribonucleoprotein
complex biogenesis and ribosome biogenesis and so on.
CC analysis revealed that the DEGs were significantly
enriched in preribosome, t-UTP complex, small-subunit
processome and cytoplasmic ribonucleoprotein granule
and so on. As for the MF, the DEGs were enriched in

Fig. 1 Flowchart of systemic analysis of RNA-binding protein in patients with CRC
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catalytic activity, thus influencing RNA and ribonuclease
activity. In the downregulated genome, BP analysis
demonstrated that the DEGs were significantly enriched,
as reflected in the regulation of translation, RNA spli-
cing, the regulation of cellular amide metabolic process
and so on. CC analysis showed that the DEGs were
significantly enriched in cytoplasmic ribonucleoprotein
granule, ribonucleoprotein granule, cytoplasmic stress
granule, etc. As for the MF, the DEGs were enriched in
translation regulator activity, mRNA 3′-UTR binding
and so on. Regarding the results of KEGG pathway
analysis as shown in Fig. 4, the DEGs in the upregulated
genome were primarily enriched in the pathways in
Ribosome biogenesis in eukaryotes and RNA transport,
etc. In the downregulated genome, the DEGs were
largely enriched in the pathways in Spliceosome and
RNA transport, etc.

PPI network construction
The protein interactions among the DEGs were pre-
dicted using STRING tools. A total of 442 nodes and
6233 edges in the PPI network were obtained, as shown
in Fig. 5a. Then, Cytoscape software was applied to draw
a network diagram of 442 genes, as shown in Fig. 5b.
Besides, four key sub-networks with the MCODE plug-
in were extracted. GO was performed (Table 1) and
KEGG enrichment analysis was conducted (Table 2) on
the genes of the four sub-networks, respectively. Finally,

the four sub-networks were visualized, as shown in Fig.
5c–e. The number of hub genes in these 4 sub-networks
is 61, 39, 6 and 6, respectively.

Construction and analysis of prognostic models
Cox regression analysis was carried out of the prognos-
tic value of 442 RBPs interacting with survival time, 19
RBPs related to survival were screened and a forest
map was drawn as shown in Fig. 6a. Then, a prognostic
model was constructed for the RBPs related to progno-
sis, and a prognostic marker gene comprised of 12
RBPs was established. These twelve genes are nucleolar
protein 14 (NOP14), mitochondrial ribosomal protein
S23 (MRPS23), MAK16 homolog (MAK16), tudor
domain-containing 6 (TDRD6), processing of precursor
1 (POP1), tudor domain-containing 5 (TDRD5), tudor
domain-containing 7 (TDRD7), peroxisome prolifera
tor-activated receptor gamma coactivator 1-alpha
(PPARGC1A), lin-28 homolog B (LIN28B), CUGBP
Elav-like family member 4 (CELF4), leucine-rich repeat
flightless-interacting protein 2 (LRRFIP2) and Musashi
RNA-binding protein 2 (MSI2). Then, the correspond-
ing forest map was drawn for these twelve genes as
shown in Fig. 6b. Among them, TDRD5, ELF4 and
LRRFIP2 are classed as high-risk genes, while the rest is
classed as low-risk genes. Based on the established
model, the risk value of each patient was calculated.
According to the median value, the patients in the

Fig. 2 Volcano and heat map of RNA-binding protein DEGs. a Volcano map. b Heat map. Red nodes represent upregulated genes, and green
nodes represent downregulated genes.
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training set and the test set were divided into either a
high-risk group or a low-risk group. Among them, the
number of patients in the training set as well as the
high-risk group was 226. The number of patients in the
low-risk group was 226. In the test set, the number of
patients in the high-risk group was 152 and that of pa-
tients in the low-risk group was 25. According to the
results, the patients with high-risk scores had a shorter
survival time, as shown in Fig. 6c, d. Finally, in terms of
survival prediction, the ROC curve showed a relatively
decent performance, as shown in Fig. 6e, f. The AUC
value in the training set was 0.754 and the AUC value
in the test set was 0.553. Then, the risk curves were
plotted for the training and test sets, as shown in Fig. 7,
which reveals that their abscissas are the same. They

were divided into high and low-risk groups by the me-
dian value. The patients were ranked by risk value in
ascending order. The risk value of patients from left to
right increased on a continued basis, as did the risk of
fatality.
Then, independent prognostic analysis was conducted

of univariate and multivariate for the training and test
sets, as shown in Fig. 8a–d. According to the results of
single-factor independent prognosis analysis, for the
training and test sets, age and tumour stage can be
treated as independent prognostic factor for the survival
of colorectal patients (p < 0.05). In the multivariate inde-
pendent prognostic analysis, age and stage can be taken
as independent prognostic factor for CRC in the test set
(p < 0.05). For the training set, however, only stage can

Fig. 3 The Gene Ontology analyses of 469 RNA-binding protein DEGs. a Barplot shows GO functional enrichment analysis predicted upregulated
DEGs, including biological process, cellular components and molecular functions. The colour indicates the significance of the p value. b Bubble
shows GO functional enrichment analysis predicted upregulated DEGs. The size of the circle represents the number of genes enriched in the
entry, and the colour indicates the significance of the p value. c Barplot shows GO functional enrichment analysis predicted downregulated DEGs.
d Bubble shows GO functional enrichment analysis predicted downregulated DEGs.
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be taken as independent prognostic factors for CRC (p <
0.01), not age (p = 0.492).
Finally, nomograms were plotted for these 12 RBP

prognostic genes in the training set to predict the sur-
vival time of the patients, as shown in Fig. 8e. The RNA
expression of 12 RBPs was applied as parameters to
draw the point line in nomograms. The scores were
added to obtain the total score, which can be used to
predict the 1-year, 2-year and 3-year survival rates
among CRC patients.

Discussion
As one of the most common malignant tumours, CRC is
characterized by a high recurrence rate and poor prog-
nosis, especially in developed countries. It is the third
most common cancer among males and ranks second

among females [9, 10]. To date, various methods have
been applied to predict biomarkers of CRC prognosis
[11]. RBPs can regulate mRNA stability and contribute
to cancer-associated pathways [12]. In this paper, the
RBPs of CRC were analysed. Through a series of ana-
lyses, 12 marker genes related to the prognosis of CRC
were identified.
Tudor domain-containing (TDRD) refers to a family of

evolutionarily conserved proteins. In general, PIWI and
TDRD proteins are recognized as the major influencing
factors in piRNA biogenesis and the development of
germ cells [13]. In a previous study, it was found that
methyl lysine-bound TDRDs are primarily involved in
histone modification and chromatin remodelling, while
methyl arginine-bound TDRDs are usually associated
with RNA metabolism, alternative splicing, small RNA

Fig. 4 The KEGG pathway enrichment analyses of 469 RNA-binding protein DEGs. a Barplot shows KEGG pathway analysis predicted upregulated
DEGs. The colour indicates the significance of the p value. b Bubble shows KEGG pathway analysis predicted upregulated DEGs. The size of the
circle represents the number of genes enriched in the entry, and the colour indicates the significance of the p value. c Barplot shows KEGG
pathway analysis predicted downregulated DEGs. d Bubble shows KEGG pathway analysis predicted downregulated DEGs
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pathways and germ cell development [14, 15]. TDRDs
have now been detected in various cancers. TDRD9 is
highly expressed in a subset of non-small cell lung car-
cinomas and derived cell lines through hypomethylation
of its CpG island [16]. TDRD1 is closely associated with
ERG overexpression in primary prostate cancer [17]. Ac-
cording to the findings by Jiang et al. [18], 7 TDRD
genes (PHF20L1, ARIB4B, SETDB1, LBR, TDRKH,
TDRD10 and TDRD5) showed high levels of amplifica-
tion in more than 10% of TCGA breast cancer datasets.
TDRD5 has significant prognostic value for hepatocellu-
lar carcinoma (HCC). Patients with higher TDRD5
expression exhibit significantly poorer overall survival
than patients with low TDRD5 expression [19]. An early
study revealed that TDRD5 was expressed in normal
gastric and colonic mucosal tissues, suggesting the possi-
bility that the TDRD5 gene is modified in CRC [20].
TDRD6 is capable of differentiating irradiated prostate
cancer patients into early and late relapse groups [21]. In
addition, TDRD7 may play a certain role in the migra-
tion of tumour cells [22]. In an analysis of CRC, Mo
et al. [23] discovered not only frameshift mutations but
also intratumoural heterogeneity of TDRD1, TDRD5
and TDRD9, which in combination might alter TDRD

gene functions and affect the tumorigenesis of high
microsatellite instability CRC. In our study, it was found
that TDRD5, TDRD6 and TDRD7 are differentially
expressed in CRC, and further studies on the role of
these three genes in colon cancer are needed.
POP1 is a component of ribonuclease P, which is a

ribonucleoprotein complex that generates mature tRNA
molecules by cleaving their 5′ end s[24, 25]. In addition,
it is a component of the MRP ribonuclease complex,
which cleaves pre-rRNA sequences [26]. In a previous
study, POP1 was found to be enriched in human pros-
tate cancer cell lines [27], suggesting that it may be
suitable as a potential marker for the diagnosis and
prognosis of prostate cancer. In addition, POP1 is upreg-
ulated in CRC and applicable as a prognostic factor for
CRC. Nevertheless, there is still no relevant research on
the mechanism of POP1 in CRC, so further studies are
necessary.
PPARGC1A, also known as PGC1α, is a transcriptional

coactivator of genes encoding proteins responsible for
the regulation of mitochondrial biogenesis and function
[28]. D’Errico et al. [29] discovered that in the presence
of Bax, PGC1α-induced ROS accumulation is one of the
main apoptosis-driving factors in CRC cells. They also

Fig. 5 RNA-binding proteins DEGs are used to construct protein-protein interaction networks and subnetworks. a PPI interaction network map
obtained from STRING website. b Cytoscape visualizes the genes of the interacting PPI network. Red nodes represent upregulated genes, while
blue nodes refer to downregulated genes. c Four MCODE modules visualization. d–g Four most significant MCODE components form the
PPI network
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found that PGC1α induced mitochondrial proliferation
and activation in human intestinal cancer cells [30]. Shin
et al. [31] demonstrated that PGC1α overexpression was
effective in upregulating the proliferation of HEK293
and CT26 cells. In addition, its overexpression was cor-
related with an enhancement of tumourigenesis. In a
case-control study, heterozygous carriers of rs3774921 in

PGC1α showed an increased risk of CRC [32]. PGC1α
plays an essential role in the pathogenesis of colon can-
cer. In a clinical study, the expression of PGC1α was
assessed in 17 CRC patients using real-time quantitative
PCR, and the mRNA level of PGC1α was found to be
decreased in the tumours of most patients [33]. How-
ever, immunohistochemistry has also been performed to

Table 1 The GO function enrichment analysis of four most significant MCODE components

Ontology ID Description Count p value p.adjust

Sub-network 1

BP GO:0042254 Ribosome biogenesis 46 1.57E−74 5.06E−72

BP GO:0016072 rRNA metabolic process 43 7.30E−73 1.18E−70

BP GO:0006364 rRNA processing 42 2.21E−71 2.38E−69

CC GO:0030684 Preribosome 27 5.03E−51 1.71E−49

CC GO:0034455 t-UTP complex 18 2.51E−33 4.26E−32

CC GO:0032040 Small-subunit processome 15 5.16E−29 5.84E−28

MF GO:0140098 Catalytic activity, acting on RNA 20 8.42E−19 6.90E−17

MF GO:0003724 RNA helicase activity 12 2.62E−17 1.08E−15

MF GO:0030515 snoRNA binding 8 1.60E−14 4.38E−13

Sub-network 2

BP GO:0000377 RNA splicing, via transesterification reactions with bulged adenosine as nucleophile 21 7.37E−26 1.03E−23

BP GO:0000398 mRNA splicing, via spliceosome 21 7.37E−26 1.03E−23

BP GO:0000375 RNA splicing, via transesterification reactions 21 8.71E−26 1.03E−23

CC GO:0071013 Catalytic step 2 spliceosome 13 6.97E−22 6.62E−20

CC GO:0000974 Prp19 complex 13 2.03E−21 9.66E−20

CC GO:0005682 U5 snRNP 13 3.10E−19 9.83E−18

MF GO:0090079 Translation regulator activity, nucleic acid binding 10 2.82E−14 2.23E−12

MF GO:0003743 Translation initiation factor activity 8 1.54E−13 4.37E−12

MF GO:0008135 Translation factor activity, RNA binding 9 1.66E−13 4.37E−12

Sub-network 3

BP GO:0000460 Maturation of 5.8S rRNA 6 5.04E−18 5.24E−16

BP GO:0034427 Nuclear-transcribed mRNA catabolic process, exonucleolytic, 3′-5′ 4 6.22E−13 3.23E−11

BP GO:0043629 ncRNA polyadenylation 4 1.47E−12 3.67E−11

CC GO:1905354 Exoribonuclease complex 6 2.17E−18 3.69E−17

CC GO:0000176 Nuclear exosome (RNase complex) 5 1.50E−15 1.27E−14

CC GO:0000178 Exosome (RNase complex) 5 1.03E−14 5.82E−14

MF GO:0017091 AU-rich element binding 3 7.07E−08 8.18E−07

MF GO:0000175 3′-5′-Exoribonuclease activity 3 1.29E−07 8.18E−07

MF GO:0016896 Exoribonuclease activity, producing 5′-phosphomonoesters 3 1.54E−07 8.18E−07

Sub-network 4

BP GO:0051028 mRNA transport 6 2.64E−13 1.90E−11

BP GO:0050657 Nucleic acid transport 6 1.13E−12 2.23E−11

BP GO:0050658 RNA transport 6 1.13E−12 2.23E−11

CC GO:0000346 Transcription export complex 3 5.69E−09 9.11E−08

CC GO:0016607 Nuclear speck 4 2.35E−06 1.88E−05

CC GO:0000784 Nuclear chromosome, telomeric region 2 0.000588204 0.003137089
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detect the expression of PGC1α. The results revealed
that 51.9% of the 108 CRC samples were positive, while
no or weak PGC1α expression was detected in the nuclei
of normal mucosa cells. PGC1α expression is demon-
strated to be related to lymph node metastasis. Thus, it
can serve as a possible prognostic marker [34]. Our re-
sults also show that PGC1α can be used as an independ-
ent prognostic factor for CRC.
It is thought that LRRFIP2 functions as an activator of

the canonical Wnt signalling pathway, which is associ-
ated with DVL3, a factor upstream of CTNNB1/beta-ca-
tenin. It positively regulates Toll-like receptor (TLR)

signalling in response to agonists, probably by compet-
ing with the negative FLII regulator for MYD88 binding,
which plays a crucial role in the progression of colon
cancer [35, 36]. In this study, LRRFIP2 was identified as
a candidate gene for alternative splicing in colon and
prostate cancer. There were three splice variants that
differed in their inclusion or skipping of exons 5 and/or
6. These exons contain five predicted putative serine
phosphorylation sites and one putative O-glycosylation
site and could modulate LRRFIP2 protein function [37].
As a familial hereditary disease, hereditary nonpolyposis
CRC (Lynch syndrome) is mainly caused by DNA

Table 2 The KEGG function enrichment analysis of four most significant MCODE components

List ID Description Count p value p.adjust

Sub-network1 hsa03008 Ribosome biogenesis in eukaryotes 19 1.84E−32 3.68E−32

Sub-network2 hsa03040 Spliceosome 13 4.08E−13 2.85E−12

hsa03013 RNA transport 12 1.00E−10 3.51E−10

hsa03015 mRNA surveillance pathway 7 5.47E−07 1.28E−06

hsa03010 Ribosome 5 0.001767902 0.003093829

Sub-network3 hsa03018 RNA degradation 5 4.75E−10 4.75E−10

Fig. 6 RNA-binding protein DGEs are used to construct prognostic models, survival analysis and verification of GEO data sets. a The 19
prognostic-related RBPs shown in the forest map, red indicates high-risk genes and green denotes low-risk genes. b The 12 RBPs obtained by
constructing the prognostic model shown in the forest map. c Survival analysis curve of training set, red indicates patients in the high-risk group,
blue denotes patients in the low-risk group. d Survival analysis curve of test set. e ROC curve of training set. f ROC curve of test set
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mismatch (mismatch repair). In Lynch syndrome, Morak
and colleagues discovered a paracentric inversion on
chromosome 3p22.2 between the DNA mismatch repair
gene MLH1 and the downstream LRRFIP2 gene tran-
scribed in the antisense direction. This generates two
new stable fusion transcripts, thus removing the MLH1
gene and protein function [38]. In another study con-
ducted on a Lynch syndrome family, it was found that
the MLH1.ITGA9 fusion allele caused loss of heterozy-
gosity (LOH) in five genes, including LRRFIP2, which re-
sulted in the loss of mismatch repair capabilities [39].
Thus, LRRFIP2 may play a critical role in the pathogen-
esis of CRC.
CELF4 is responsible for encoding a protein with three

domains that bind an RNA recognition motif and
regulate pre-mRNA alternative splicing. Some studies
showed that CELF4 was hypermethylated in endometrial
cancer. Methylated CELF4 may be suitable for endomet-
rial cancer screening of cervical smears [40]. Further re-
search is still needed to determine the role of CELF4 in
tumours.

As a member of the Musashi family, MSI2 belongs to
the family of Drosophila melanogaster RNA-binding
proteins. It has been identified as a critical regulator of
haematopoietic stem cell (HSC) self-renewal and fate
determination [41, 42]. In this study, MSI2 was found to
be a central component in an unknown oncogenic path-
way to promote intestinal transformation via the PDK-
AKT-mTORC1 axis [43]. MSI2 is highly expressed in a
variety of cancers, including HCC and lung cancer [44,
45]. Recent studies on colon cancer cell lines have
suggested that both USP10 and MSI2 proteins are
upregulated. In addition, ubiquitin-specific protease 10
(USP10) could stabilize the oncogenic factor MSI2
through deubiquitination [46]. The expression of MSI2
was detected in CRC and control specimens from 164
patients by the tissue microarray technique and immu-
nohistochemical staining. MSI2 was highly expressed in
32.9% (54/164) of CRC samples. In addition, high MSI2
expression was related to liver metastasis in CRC pa-
tients [47]. In other cancers, Guo et al. found that MSI2
expression was markedly increased in both pancreatic

Fig. 7 Risk curve of training and test sets. a The risk score distribution of training set. b The distribution of survival status for training set. c In
training set, the heat map of 12 RBPs for the high- and low-risk groups. d The risk score distribution of test set. e The survival status distribution
for test set. f In test set, the heat map of 12 RBPs for the high- and low-risk groups
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ductal adenocarcinoma (PDAC) cell lines and human
PDAC specimens, and high MSI2 expression was associ-
ated with poor prognosis of PDAC [48]. High expression
of MSI2 mRNA is associated with decreased survival in
acute myeloid leukaemia [49]. Furthermore, MSI2 may
act as a prognostic biomarker in patients with cervical
cancer [50], bladder cancer [51] and oesophageal squa-
mous cell carcinoma [52]. It was also found that its ex-
pression is upregulated in CRC, which makes it
applicable as a prognostic marker gene for CRC.
LIN28, an oncofoetal RNA-binding protein, modulates

stem cell maintenance, somatic reprogramming, metab-
olism, organismal growth, tissue development and
tumourigenesis [53]. Two paralogues of LIN28 were in-
cluded, LIN28A and LIN28B. It is well established that
LIN28A and LIN28B inhibit let-7 family miRNAs and
derepress let-7 targets, including Ras, PI3K/AKT, Myc,
Hmga2 and Igf2bps, thus promoting oncogenesis [54,
55]. In liver cancer stem cells, Fang et al. found that
overexpression of MSI2 resulted in the upregulation of
LIN28A. Stemness and chemotherapeutic drug resist-
ance induced by MSI2 overexpression were dramatically

reduced by LIN28A knockdown. Moreover, MSI2 and
LIN28A levels positively correlated with the clinical se-
verity and prognosis in HCC patients [56]. King et al.
[57] found that LIN28B overexpression is associated
with reduced survival time and increased probability of
tumour recurrence in patients. Constitutive LIN28B ex-
pression promotes not only tumorigenesis but also
LGR5 and PROM1 expression in colonic epithelial cells
[58]. In addition, LIN28B promotes the proliferation,
colony formation and tumourigenesis of colon cancer
cells by increasing BCL-2 expression [59]. A clinical
study found that LIN28A and LIN28B were overex-
pressed in oesophageal cancer cells, especially on the in-
vasive front. High expression of LIN28A and LIN28B
correlated significantly with lymph node metastasis and
poor prognosis [60]. Hu et al. found that gastric adeno-
carcinoma (GAC) patient survival time was negatively
correlated with the LIN28B expression level, whereby
higher LIN28B expression correlated with shorter
survival time [61]. In PDAC patients, high LIN28B ex-
pression was significantly correlated with high levels of
lymphatic metastasis, distant metastasis and a poor

Fig. 8 Independent prognosis analysis and prediction of 1, 2 and 3 years of nomograms of CRC patients in the training and test sets. a Single-
factor prognosis analysis of training set. b Multi-factor prognosis analysis of training set. c Single-factor prognosis analysis of test set. d Multi-
factor prognostic analysis of test set. e The nomograms for predicting 1-year, 2-year and 3-year survival probability of patients with CRC for
training set
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prognosis. In addition, patients with increased LIN28B
had markedly reduced overall survival compared to
those with low LIN28B in HCC [62] and oral squamous
cell carcinoma (OSCC) [63]. Thus, LIN28B is highly
expressed in CRC and plays an important role in its
pathogenesis, indicating that it is suitable as a target
gene for CRC prognosis.
NOP14 is a stress-responsive gene required for 18S

rRNA maturation and 40S ribosome production [64].
As indicated by Zhou et al. [65], NOP14 in pancreatic
cancer cells promotes motility, proliferation and meta-
static capacity. According to the findings by Du et al.
[66], NOP14 induced tumour invasion and metastasis
by improving the stability of mutp53 mRNA. By inhi-
biting the Wnt/β-catenin pathways, NOP14 suppresses
breast cancer [67]. In addition, NOP14 can reduce
melanoma cell proliferation and metastasis by regulat-
ing the Wnt/b-catenin signalling pathway [68]. In
clinical studies of patients with ovarian cancer, down-
regulation of NOP14 was associated with a signifi-
cantly worse survival rate [69]. This study showed
that the expression of NOP14 was upregulated in
CRC, but its role in pathogenesis requires further re-
search and confirmation.
The MRPS23 gene, which is responsible for encoding

a 28S subunit protein, has been found to be overex-
pressed in breast cancer [70], uterine cervical cancer
[71], HCC [72], colorectal cancer [73] and uterine leio-
myoma [74]. As revealed by Gao et al. [75], inhibiting
MRPS23 could lead to a significant reduction in breast
cancer metastasis by inhibiting the EMT phenotype. Pu
et al. found that high MRPS23 levels can predict poor
clinical outcomes in HCC [72]. Although the expression
of MRPS23 is increased in CRC, its specific pathogenesis
remains unclear.
MAK16 encodes a ribosomal protein and plays an im-

portant role in ribosome biogenesis throughout the cell
cycle [76]. In this study, it was found that mutations in
MAK16 can induce cell cycle arrest at G1 phase, during
which the cell synthesizes mRNA and proteins in prep-
aration for cell division [77]. At present, there is still no
study of the role of MAK16 in the pathogenesis of tu-
mours, which requires further research to confirm.
In this paper, a discussion was conducted about the

role of the 12 identified genes in tumours. Although
some genes were found irrelevant to the pathogenesis of
CRC, their biological functions and changes in their ex-
pression in CRC suggest that they may play a role in
CRC to some extent, and further experiments need to be
conducted for verification. This is also a limitation of
our study. More research is needed to explore the patho-
genesis of CRC.
The above genes are related to the prognosis of CRC.

More research, especially experimental studies, is needed

to verify the specific function of each gene. Our findings
may improve the understanding of the incidence and
prognosis of CRC, thus providing a reference for further
improvement of the diagnosis and treatment of CRC.

Conclusions
In summary, 12 prognostic RBPs were obtained through
TCGA database analysis, including NOP14, MRPS23,
MAK16, TDRD6, POP1, TDRD5, TDRD7, PPARGC1A,
LIN28B, CELF4, LRRFIP2 and MSI2, which were then
verified through the sample data obtained from the GEO
database. In CRC, NOP14, MRPS23, MAK16, TDRD6,
POP1, TDRD5, LIN28B and MSI2 were upregulated,
while TDRD7, PPARGC1A, CELF4 and LRRFIP2 were
downregulated. These genes are related to the prognosis
of CRC. More research is deemed necessary to verify the
specific function of each gene, especially experimental
studies. Our findings may improve the understanding of
the incidence and prognosis of CRC, thus providing ref-
erence for the further exploration of the diagnosis and
treatment of CRC.
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