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Abstract

Background: Colon adenocarcinoma (COAD) is a gastrointestinal tumor with a high degree of malignancy. Its
deterioration process is closely related to the tumor microenvironment, and transcription factors (TF) play a
regulatory role in this process. Currently, there is a lack of exploration between the genes related to the COAD
tumor microenvironment and the survival prognosis of patients. Models composed of multiple genes usually
predict the survival prognosis of patients more accurately than single genes. We can analyze the multigene models
that can predict the prognosis of COAD from the current database.

Methods: The limma package of the R programming language is used for gene differential expression analysis.
Kaplan-Meier curve is used to analyze the relationship between the patient risk score model and survival data. The
hazard model is used to analyze the relationship between the risk score and the clinical data of COAD patients. The
information of immune genes and immune cells is obtained from IMMPORT database and TIMER database. Receiver
operating characteristic (ROC) curve is used to judge the stability of the model.

Results: We found 7 immune genes, which can built a risk score model to predict the survival prognosis of
COAD. According to univariate and multivariate analysis, the risk score can be used as an independent
predictor. The content of some immune microenvironment cells will also increase as the risk score
increases.

Conclusions: We found 7 immune genes, such as SLC10A2 (solute carrier family 10 member 2), CXCL3 (C-
X-C motif chemokine ligand 3), IGHV5-51 (immunoglobulin heavy variable 5-51), INHBA (inhibin subunit beta
A), STC1 (stanniocalcin 1), UCN (urocortin), and OXTR (oxytocin receptor), can constitute a model for
predicting the prognosis of COAD. They may provide potential therapeutic targets for clinical treatment of
COAD.
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Background
Colon adenocarcinoma (COAD) is a type of malignant
tumor of the digestive tract, which can be subdivided
into right COAD and left COAD according to location.
According to a WHO report in 2018, COAD is the third
most common adenocarcinoma worldwide, and 1.8 mil-
lion COAD cases were diagnosed in 2018 (10% of all tu-
mors). Adenocarcinoma of the colon is relatively
common in both men and women. There were 881,000
patients who died of COAD in 2018 [1–4]. Recently,
many studies have shown that the immune microenvir-
onment plays an important role in the process of tumors
[5], such as the CCR (cinnamoyl-CoA reductase) family
and the CCL (CCR-like protein) famil y[6], and tran-
scription factors can regulate this process [7, 8], but the
research on the immune microenvironment in the field
of COAD still needs further exploration. Compared with
the single genes predicting the prognosis of cancer pa-
tients, multigene models can more accurately predict the
prognosis of cancer patients, so the building of a multi-
gene model related to the tumor microenvironment has
become the focus of this research [9].
With the development of various network databases

[10], such as clinical database TCGA (https://portal.gdc.
cancer.gov/) [11], immune gene database IMMPORT
(https://www.immport.org/shared/home) [12], TIMER
(https://cistrome.shinyapps.io/timer/) [13], and tran-
scription factor database Cistrome (http://www.cistrome.
org/) [14], we can find the immune genes related to the
prognosis of COAD through data analysis methods such
as limma package (http://www.bioconductor.org/

packages/release/bioc/html/limma.html) [15]. Cox re-
gression analysis is used to build a risk score model of
immune genes related to prognosis. Seven immune
genes building this model are SLC10A2 (solute carrier
family 10 member 2), CXCL3 (C-X-C motif chemokine
ligand 3), IGHV5-51 (immunoglobulin heavy variable 5-
51), INHBA (inhibin subunit beta A), STC1 (stanniocal-
cin 1), UCN (urocortin), and OXTR (oxytocin receptor).
We define the sample with the highest risk score of 50%
as the high-risk group and the sample with the lowest
risk score of 50% as the low-risk group. Subsequent
studies will combine relevant clinical data to further
compare the differences between the two groups.
The result of this study is we built a multigene model

related to the immune microenvironment, which can
predict the prognosis of COAD patients. These seven
immune genes may provide potential therapeutic targets
for clinical treatment of COAD.

Methods
Gets the relevant data from the network database
Obtaining COAD gene expression data and clinical data
from the TCGA (https://portal.gdc.cancer.gov/) database,
immune gene names were obtained from the IMMPORT
(https://www.immport.org/shared/home) database, and
immune genes were screened from the downloaded data.
Transcription factor data from the Cistrome (http://www.
cistrome.org/) database and tumor microenvironment-
related gene infiltration data were obtained from the
TIMER (https://cistrome.shinyapps.io/timer/) database.

Fig. 1 Flow chart of this study
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Fig. 2 a Heat map of genes expression. b Volcano map of genes expression. c Heat map of immune genes expression. d Volcano map of
immune genes expression. e Heat map of transcription factors expression. f Volcano map of transcription factors expression
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Acquisition of differentially expressed genes of interest
Using the R script (Gene.diff.R) to obtain differentially
expressed genes of interest, then, the differential expres-
sion analysis of immune genes uses R script (immuneGen-
e.immuneDiff.R), and the screening condition is LogFC
(log fold change) > 2 and FDR (false discover rate) < 0.05.
Then, differentially expressed transcription factors were

analyzed using R script (immuneGene.TFdiff.R), and the
screening conditions were LogFC > 1 and P < 0.05.

Obtain immune genes related to the survival prognosis of
COAD patients
Univariate Cox regression analysis was performed on the
differentially expressed immune genes obtained by the

Fig. 3 a Forest plot of 12 immune genes associated with survival prognosis in patients with COAD. b Regulatory network of immune genes and
transcription factors related to the prognosis of COAD. The circles represent immune genes (green represents a downward adjustment, and red
represents an upward adjustment), and the triangles represent transcription factors
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above method and the clinical data of COAD patients,
and then, the immune genes related to the prognosis of
COAD patients were obtained. The screening conditions
are P < 0.01 and hazard ratio ≠ 1(immuneGene.uniCox.R).

Calculation of risk score and independent prognostic
analysis
First, through univariate Cox regression analysis, the immune
genes related to the prognosis of COAD are obtained and
then through multivariate Cox regression to find the im-
mune genes that can build the risk score model (immune-
Gene.multiCox.R). Risk score = ExpmRNA1 × coefmRNA1
+ ExprmRNA2 × coefmRNA2 +···+ ExpmRNAn ×
coefmRNA. “Exp” indicates the expression level of the gene;
“coef” indicates the correlation coefficient of the gene. Finally,
we combined clinical data and used immuneGene.uniIn-
dep.R and immuneGene.multiIndep.R for univariate inde-
pendent prognostic analysis and multivariate independent
prognostic analysis.

Immune genes will draw the interaction network of
transcription factors
Mapping the interaction network of immune genes and
transcription factors using R script (immuneGene.TF-
cor.R) and Cytoscape [16], the screening conditions are
Cor = 0.4 and P = 0.01.

Analysis of clinical correlation of 7 genes (building of risk
scoring model)
We correlate the risk score with clinical data and analyze
and make the corresponding models. Building of
Kaplan-Meier curve (K-M) uses R script (immuneGen-
e.survial.R); the building of receiver operating character-
istic (ROC) model uses R script (immuneGene.ROC.R);
the building of risk curve uses R script (immuneGene.r-
iskPlot.R); clinical correlation was built using R script
(immuneGene.clincialCor.R), and the immune cell cor-
relation graph was built using R script (immuneGen-
e.immuneCor.R). The K-M curve is used to express the
relationship between risk scores and patient survival
data. P < 0.05 is considered statistically significant. The
ROC curve is used to indicate the sensitivity of the
model. 0.5–0.7 means the sensitivity is acceptable, 0.7–
0.9 means the sensitivity is good, and > 0.9 means the
sensitivity is excellent.

Correlation analysis between samples and tumor
microenvironment
Twenty samples from the top 10 and the bottom 10 of the
risk score were selected to analyze the cells composed of
the tumor microenvironment. The TIMER database was
used for this analysis and draw (Fig. 9). Figure 8 is drawn
using R script (immuneGene.immuneCor.R).

Table 1 Details of the regulatory relationship between
transcription factors and immune genes

TF Immune gene Cor P value Regulation

E2F1 NOX4 − 5.63E−01 1.14E−06 Negative

INHBA − 5.26E−01 3.04E−05 Negative

STC1 − 4.67E−01 2.17E−03 Negative

VIP − 4.71E−01 1.75E−03 Negative

FOSL1 INHBA 4.67E−01 2.16E−03 Positive

STC1 4.67E−01 2.18E−03 Positive

VIP 4.57E−01 2.01E−06 Positive

OXTR 4.85E−01 7.00E−04 Positive

HOXC11 SLC10A2 9.34E−01 3.98E−10 Positive

KLF4 CXCL3 5.15E−01 7.63E−05 Positive

NOX4 − 4.96E−01 3.09E−04 Negative

LEF1 SLC10A2 4.87E−01 5.95E−04 Positive

CXCL3 − 4.56E−01 4.22E−03 Negative

NOX4 4.82E−01 8.60E−04 Positive

INHBA 4.84E−01 7.51E−04 Positive

VIP 4.65E−01 2.56E−03 Positive

MYBL2 NOX4 − 5.45E−01 5.71E−06 Negative

INHBA − 5.31E−01 2.01E−05 Negative

STC1 − 4.53E+01 4.94E−03 Negative

VIP − 4.58E−01 3.75E−03 Negative

MYH11 CXCL3 − 4.58E−01 3.80E−03 Negative

NOX4 4.55E−01 4.44E−03 Positive

CCL19 6.40E−01 1.84E−10 Positive

INHBA 4.80E−01 9.71E−04 Positive

STC1 4.68E−01 2.04E−03 Positive

VIP 7.22E−01 5.91E−20 Positive

SALL4 SLC10A2 6.22E−01 1.66E−09 Positive

CXCL3 − 4.84E−01 7.37E−04 Negative

INHBA 4.70E−01 1.81E−03 Positive

SPIB CCL19 4.77E−01 1.17E−03 Positive

TFAP2A STC1 4.49E−01 6.26E−03 Positive

Table 2 Details of the seven immune genes used to build the
risk score model

Id Coef HR HR.95L HR.95H P value

SLC10A2 0.65 1.916 1.203 3.05 0.006

CXCL3 − 0.019 0.981 0.964 0.998 0.033

IGHV5-51 0.002 1.002 1 1.003 0.005

INHBA 0.046 1.047 1.003 1.093 0.038

STC1 0.058 1.059 0.991 1.133 0.092

UCN 0.405 1.499 1.198 1.876 0

OXTR 0.229 1.258 0.996 1.588 0.054
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Result
Acquisition of immune DEGs and differentially expressed
transcription factors
The research team downloaded clinical data and gene ex-
pression data of 385 COAD patients from the TCGA
(https://portal.gdc.cancer.gov/) database and obtained dif-
ferentially expressed genes (DEGs) through screening
(screening conditions: LogFC > 2 and FDR < 0.05) (Figs. 1
and 2a, b). The IMMPORT (https://www.immport.org/
shared/home) database contains the names of a large num-
ber of immune genes. We obtain the differentially
expressed immune genes through the intersection of the
immune gene names and DEGs (Fig. 2c, d). The transcrip-
tion factor names were obtained from the Cistrome (http://
www.cistrome.org/) database and then screened for eligible
transcription factors from DEGs. The screening conditions
for transcription factors are LogFC > 1 and P < 0.05. The
volcano and heat maps were drawn (Fig. 2e, f).

Building of the prognostic-related immune gene model
and the interaction network of prognostic-related
immune genes and transcription factors
Univariate Cox regression analysis was used to study the
differentially expressed immune genes related to survival
prognosis. The results showed that there are 12 immune
genes that are closely related to the prognosis of COAD
(Fig. 3a). Cor = 0.4 and P = 0.01 screening criteria were
used to establish the interaction between immune genes
and transcription factors, and network diagrams were made
(Fig. 3b). Details of the regulatory relationship between
transcription factors and the immune genes associated with
COAD prognosis are shown in Table 1. The results showed

that 8 immune genes are closely related to the regulation of
transcription factors and belong to positive regulation.

Calculation of immune gene risk score and building of
survival prognosis model
The 12 immune genes (Fig. 3a) related to the survival
prognosis of COAD patients obtained by univariate Cox
analysis were included. Then, using multivariate Cox re-
gression analysis, the screening conditions were P < 0.05
and hazard ratio (HR) ≠ 1, and 7 immune genes were
eligible and included for further calculation of risk score.
We define the sample with the top 50% of the risk score
as the high-risk group and the sample with the bottom
50% of the risk score as the low-risk group. Subsequent
studies will further compare the differences between the
two groups. Among the immune genes related to sur-
vival prognosis, 7 immune genes are closely related to
the composition of risk score, which are SLC10A2,
CXCL3, IGHV5-51, INHBA, STC1, UCN, and OXTR
(Table 2); this is also the key immune gene that we will
study later. According to the median risk score, the risk
score is divided into two groups. Survival and surmiser
packages in R were used to correlate risk score with sur-
vival prognosis and draw the Kaplan-Meier survival
curves. The results showed that P = 8.876e−04. The sur-
vival prognosis of the high-risk group was significantly
worse than that of the low-expression group (Fig. 4a).
The survivalROC package of R language is used to draw
the ROC curve. The results show that the AUC of the
ROC curve = 0.749 (Fig. 4b). Detailed data on the sur-
vival rates of high- and low-risk patients are shown in
Tables 3 and 4.

Fig. 4 a Kaplan-Meier survival curve of high-risk group and low-risk group. b ROC curve of survival prognosis model (0.5–0.7 means the sensitivity
is acceptable, 0.7-0.9 means the sensitivity is good, and > 0.9 means the sensitivity is excellent)
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Immune gene risk curve mapping and independent
prognostic analysis
Using R language related codes to draw related pictures
of the risk curve, the results showed that with the grad-
ual increase of the immune gene risk value, the survival
time of patients gradually decreased (Fig. 5a, b). Heat
map of related immune gene expression is shown in Fig.
5c. Univariate independent prognostic analysis showed
that the hazard ratio of risk score was 1.033 (1.018–
1.049) and P < 0.001. Multivariate independent

prognostic analysis showed that hazard ratio of risk
score was 1.026 (1.011–1.042) and P < 0.001 (Fig. 6a, b).
Risk scores are clinically and statistically significant.

Correlation analysis of immune genes and clinical data
We analyzed the correlation between the 7 immune
genes that make up the immune score and clinical data,
using the R language beeswarm package. The results
showed that there were statistically significant correla-
tions between seven immune genes and clinical data,

Table 3 Detailed data for high risk survival analysis

Time (year) n.Risk n.Event Survival (%) Std.err Lower 95% CI Upper 95% CI

0.266 167 1 0.994 0.00597 0.9824 1

0.419 163 1 0.988 0.0085 0.9714 1

0.427 160 1 0.982 0.01045 0.9615 1

0.436 159 1 0.976 0.01207 0.9522 1

0.471 158 1 0.969 0.01348 0.9433 0.996

0.515 154 1 0.963 0.01479 0.9345 0.993

0.586 150 1 0.957 0.01602 0.9258 0.989

0.625 149 1 0.95 0.01715 0.9172 0.984

0.718 142 1 0.944 0.01829 0.9084 0.98

0.795 136 1 0.937 0.01943 0.8993 0.975

0.827 134 1 0.93 0.0205 0.8903 0.971

0.838 131 2 0.915 0.02251 0.8724 0.961

0.907 127 1 0.908 0.02346 0.8634 0.955

0.926 123 1 0.901 0.0244 0.8543 0.95

1.008 117 1 0.893 0.02538 0.8448 0.944

1.049 112 1 0.885 0.02638 0.835 0.938

1.085 108 1 0.877 0.02738 0.8249 0.932

1.104 106 1 0.869 0.02834 0.8149 0.926

1.162 101 1 0.86 0.02934 0.8045 0.92

1.167 99 1 0.851 0.0303 0.7941 0.913

1.293 88 1 0.842 0.03146 0.7823 0.906

1.359 81 1 0.831 0.03275 0.7696 0.898

1.4 77 1 0.821 0.03405 0.7565 0.89

1.762 57 1 0.806 0.03637 0.7379 0.881

1.836 53 1 0.791 0.03874 0.7186 0.871

1.868 52 1 0.776 0.04087 0.6996 0.86

2.036 49 1 0.76 0.04299 0.6801 0.849

2.205 46 1 0.743 0.04512 0.66 0.837

3.693 16 1 0.697 0.06175 0.5858 0.829

3.784 15 1 0.65 0.07305 0.5219 0.811

4.688 10 1 0.585 0.09017 0.4329 0.792

5.066 9 1 0.52 0.10092 0.3558 0.761

5.233 8 1 0.455 0.10724 0.287 0.722

5.488 7 1 0.39 0.10989 0.2248 0.678

8.334 3 1 0.26 0.12903 0.0984 0.688
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namely, CXCL3, OXTR, and STC1 (Fig. 7). Among
them, the expressions of CXCL3 were statistically signifi-
cant in correlation with stage, while the expressions of
OXTR and STC1 were statistically significant in correl-
ation with T. CXCL3 also has significant difference in N
and M. In T1–2, the tumor invades the submucosa, or the
tumor invades the muscularis intestinal wall; in T3–T4,
the tumor infiltrates the muscularis laminae and reaches
the subserosa, or the tumor has penetrated the periton-
eum; in N0, no regional lymph node metastasis; in N1–3,
there is metastasis in regional lymph nodes; in M0, the
tumor has no distant metastasis; in M1, the tumor has dis-
tant metastasis. Stages I, II, and III are early colon cancer,
and stage IV is advanced colon cancer.

Correlation analysis of risk score and tumor
microenvironment cells
Correlation analysis was performed between the risk
score assessed by our research and immune microenvir-
onment genes, and the results showed that in CD4,
CD8, dendritic, macrophage, and neutrophil cells, as the
risk score increased, the expression levels of these genes
became upward. And it has statistical significance P <
0.05. Correlation analysis of our risk value model with
some widely recognized genes that constitute the im-
mune microenvironment showed that CD4, CD8, den-
dritic, macrophage, and neutrophil cells were positively

correlated with the risk score model. As the risk score
increases, so does the expression of these genes (Fig. 8).

Correlation between risk score model and tumor
microenvironment
To evaluate the difference in immune cell content be-
tween samples with high risk score and samples with
low risk score, we selected 20 sets of samples, which
were selected from the 10 samples with the highest risk
score and the 10 samples with the lowest risk score,
through the EPIC database. Calculate the difference in
the amount of their direct immune cells, the results
showed that in 10 samples with high risk score, the con-
tent of cancer-associated fibroblasts (CAFs) cells was sig-
nificantly higher than that with 10 samples with low risk
score. From this, we can know that CAFs cells play an
important role in risk score (Fig. 9).

Discussion
The flow of this study is shown in Fig. 1. We searched
the TCGA (https://portal.gdc.cancer.gov/) database for
385 cases of COAD and downloaded them. The clinical
data and gene expression data in the download data
were integrated, and the limma package of R language
was used to extract differentially expressed genes
(DEGs). Using the immune gene names provided by
IMMPORT (https://www.immport.org/shared/home),
we can easily screen out the differential gene immune

Table 4 Detailed data for low risk survival analysis

Time (year) n.Risk n.Event Survival (%) Std.err Lower 95% CI Upper 95% CI

0.247 167 1 0.994 0.00597 0.982 1

0.4 161 1 0.988 0.00855 0.971 1

0.419 159 2 0.975 0.01214 0.952 1

0.564 154 1 0.969 0.01362 0.943 0.996

0.663 148 1 0.963 0.01502 0.934 0.992

0.918 138 1 0.956 0.01645 0.924 0.988

0.978 133 1 0.948 0.01783 0.914 0.984

1.211 114 1 0.94 0.01951 0.903 0.979

2.252 71 1 0.927 0.0233 0.882 0.974

2.351 69 1 0.913 0.02655 0.863 0.967

2.463 66 1 0.9 0.02954 0.843 0.959

2.997 52 1 0.882 0.03366 0.819 0.951

3.173 43 1 0.862 0.03863 0.789 0.941

3.184 42 1 0.841 0.04281 0.761 0.929

4.09 31 1 0.814 0.04928 0.723 0.917

4.118 30 1 0.787 0.0546 0.687 0.902

5.153 16 1 0.738 0.06992 0.613 0.888

6.781 10 1 0.664 0.09412 0.503 0.877

7.729 7 1 0.569 0.11925 0.377 0.858
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Fig. 5 a Risk curve of risk score growth trend. b Diagram of the relationship between risk score and patient survival time. c Building of a heat
map of immune genes in the risk score model

Fig. 6 a Forest plot of univariate Cox regression analysis between immune genes and clinical data constituting the risk score model. b Forest
plot of multivariate Cox regression analysis between immune genes and clinical data that constitute the risk score model
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genes from DEGs. In the same way, we download the
names of transcription factors from the Cistrome
(http://www.cistrome.org/) database and screen out the
differentially expressed transcription factors from DEGs
(screening conditions: LogFC > 2 and FDR < 0.05). We then
conduct further analysis of differentially expressed immune
genes (screening conditions: LogFC > 2 and FDR < 0.05)
and differentially expressed transcription factors (screening
conditions: LogFC > 1 and FDR < 0.05). The differentially
expressed immune genes were analyzed by univariate Cox
regression using the survival package of R language and
clinical data to obtain immune genes related to prognosis.
Prognostic-related immune genes are as follows: SLC10A2,
CXCL3, NOX4, CCL19, IGHG1, IGHV5-51, IGKV1-33,
INHBA, STC1, UCN, VIP, and OXTR (Fig. 3a). We per-
formed an interaction network analysis of prognostic-

associated immune genes and differentially expressed tran-
scription factors, and the results are shown in Fig. 3b. Ana-
lysis results show that the regulatory network functions are
mainly concentrated in optic vesicle morphogenesis and
regulation of leukocyte adhesion to arterial endothelial cells,
but more specific mechanisms need further study [17].
We excluded samples with a survival time of less than

90 days from the downloaded clinical data and assessed
the survival prognosis by the level of risk score. The re-
sults showed that patients with high risk score had sig-
nificantly worse survival prognosis than patients with
low risk score, P = 8.876e−04 (Fig. 4a). The ROC curve
showed that AUC = 0.749, and the risk score and prog-
nosis model were more reliable (Fig. 4b). This allows us
to group patients according to the risk scores in clinical
work to predict their prognosis. According to Fig. 5 a

Fig. 7 Correlation analysis of genes (building a risk score model) and clinical data. a Correlation analysis between CXCL3 and M. b Correlation
analysis between CXCL3 and N. c Correlation analysis between CXCL3 and COAD stage. d Correlation analysis between OXTR and T. e Correlation
analysis between STC1 and T. T1–2, the tumor invades the submucosa, or the tumor invades the muscularis intestinal wall; T3–T4, the tumor
infiltrates the muscularis laminae and reaches the subserosa, or the tumor has penetrated the peritoneum; N0, no regional lymph node
metastasis; N1–3, there is metastasis in regional lymph nodes; M0, the tumor has no distant metastasis; M1, the tumor has distant metastasis;
stage, the stage of colon cancer. Stages I, II, and III are early colon cancer, and IV is advanced colon cancer
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and b, we can find that as the risk score increases, the
survival time of the patient decreases. The heat map of
Fig. 5c also shows that the genes that build the risk score
have higher expression levels in the high risk score array.

We included clinical data on COAD and the risk score
evaluated in this study into the Cox regression analysis.
The results showed that stage, T, M, N, and risk score
were statistically significant and clinically significant in

Fig. 8 Correlation analysis between the expression of immune microenvironment cells and risk score. a Correlation analysis between B cells and
risk score. b Correlation analysis between CD4 cells and risk score. c Correlation analysis between CD8 cells and risk score. d Correlation analysis
between dendritic cells and risk score. e Correlation analysis between macrophage cells correlation and risk score. f Correlation analysis between
neutrophil cells and risk score
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the survival prognosis of the patients in the univariate
Cox regression analysis. However, in the results of multi-
variate Cox regression analysis, age, stage, T, and risk
score have statistical significance and clinical signifi-
cance. Based on the analysis of the seven genes and clin-
ical data used to build the risk score model, the results
show that the expression of CXCL3 gene in M, N, and
stage is higher than that in late stage. This is likely to be
related to the mechanism of the immune microenviron-
ment [18]. Studies on the immune microenvironment
have shown that some genes that build the immune
microenvironment can promote tumor progression (Fig.
7). Some cells that make up the tumor microenviron-
ment, such as B, CD4, CD8, dendritic, macrophage, and
neutrophil cells, have been shown in research to be cor-
related with the survival prognosis of many types of
tumor patients [9]. We downloaded the data of these
cells through the TIMER (https://cistrome.shinyapps.io/
timer/) database and performed correlation analysis with

the risk score model we built. The results showed that
the expression of CD4, CD8, dendritic, macrophage, and
neutrophil cells increased with the increase of the risk
score. This also confirms on the side that the risk score
model we built has a certain predictive ability for the
clinical prognosis of patients.
The formation of the tumor microenvironment is

closely related to the occurrence and development of tu-
mors [9]. By studying the cells that constitute the tumor
microenvironment, we can effectively find many cells or
genes that are closely related to the clinical prognosis of
patients. To evaluate the difference in immune cell con-
tent between samples with high risk score and samples
with low risk score, we further evaluated them in the
EPIC database. We selected 20 sets of samples, which
were selected from the 10 samples with the highest risk
score and the 10 samples with the lowest risk score,
which passed the EPIC database [19]. Calculate the dif-
ference in the amount of their direct immune cells, the

Fig. 9 a Comparison of immune cell differences between 10 groups of high risk score samples and 10 groups of low risk score samples, each
color represents a different cell type. b The expression of immune cells differs between 10 groups of high risk score samples and 10 groups of
low risk score samples. c Immune cell correlation matrix, the positive correlation is red, and the negative correlation is blue
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results showed that in 10 samples with high risk score, the
content of CAFs cells was significantly higher than that
with 10 samples with low risk score. From this, we can
know that CAFs cells play an important role in risk score.
The related literature reports that cancer-associated fibro-
blasts (CAFs) are the main cell types in the tumor stromal.
CAFs usually promote tumor progression by inducing cell
proliferation, inflammation, blood vessel growth, and me-
tastasis. We judged that the content of CAFs is also an im-
portant indicator to increase the risk score [20].
In this study, we built an immune gene risk score

model for 385 COAD patients through correlation ana-
lysis. Through a series of analyses of the disease, it was
found that the risk score is closely related to the survival
prognosis of patients. In future clinical treatments, we
can use the risk score model to effectively predict the
survival prognosis of patients with COAD, and we can
do targeted immunotherapy for 7 immune genes
(SLC10A2, CXCL3, IGHV5-51, INHBA, STC1, UCN,
and OXTR) that constitute the risk score to improve the
prognosis of patients and improve the treatment effect.
Bile acids, especially secondary bile acids, can promote

the development of colorectal cancer, and SLC10A2 can
promote this process [21, 22]. CXCL3 is related to the
occurrence and development of prostate cancer, colon
cancer, and breast cancer. There are also reports in the
literature that the effect of suppressing the development
of colon cancer can be achieved by immunosuppression
of CXCL3 [23–27]. INHBA has a significant relationship
with the occurrence and development of gastric, esophageal,
and ovarian cancers, and studies have reported that the im-
munosuppressive treatment of INHBA can reduce the rate
of deterioration of gastric and ovarian cancers [28–30].
STC1 can promote the metastasis of colon cancer [31, 32].

Conclusion
We download data for COAD, immune genes, and tran-
scription factors through a series of bioinformatics data-
bases. A risk score model of COAD immune genes was
built. Through a series of clinical correlation analysis, it
was found that 7 immune genes (SLC10A2, CXCL3,
IGHV5-51, INHBA, STC1, UCN, and OXTR) were corre-
lated with clinical prognosis and risk score of patients with
COAD. These seven immune genes may provide potential
therapeutic targets for clinical treatment of COAD.
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