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carcinoma cell apoptosis by reducing HIF-
1α/mTOR-mediated autophagy
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Abstract

Background: Hepatocellular carcinoma (HCC) is still a major health burden in China considering its high incidence
and mortality. Long non-coding RNAs (lncRNAs) were found playing vital roles in tumor progression, suggesting a
new way of diagnosis and prognosis prediction, or treatment of HCC. This study was designed to investigate the
role of HIF1A-AS1 during the progression of HCC and to explore its related mechanisms.

Methods: The expression of HIF1A-AS1 was detected in 50 paired carcinoma tissues and adjacent normal tissues by
quantitative real-time PCR assay. HCC cell apoptosis was induced by nutrient-deficient culture medium and
detected by Cell Counting Kit-8 and flow cytometer assays. HIF1A-AS1 inhibition in HCC cells was accomplished by
small interfering RNA transfection.

Results: HIF1A-AS1 was overexpressed in HCC tissues and was associated with tumor size, TNM stage, and lymph
node metastasis. Compared with the low HIF1A-AS1 group, the high HIF1A-AS1 group had a shorter overall survival
and a worse disease-free survival. HIF1A-AS1 expression was significantly higher in HCC cell lines (7721 and Huh7)
than that in normal hepatocyte cell line L02 under normal culture condition. However, under nutrient-deficient
condition, HIF1A-AS1 expression was significantly increased in both HCC and normal hepatocyte cell lines and was
increased with the prolongation of nutrient-free culture. Inhibition of HIF1A-AS1 promoted starvation-induced HCC
cell apoptosis. Furthermore, inhibition of HIF1A-AS1 could also reduce starvation-induced HCC cell autophagy. The
expression of HIF-1α and phosphorylated mTOR was significantly decreased in HCC cells after HIF1A-AS1 inhibition.

Conclusions: HIF1A-AS1, overexpressed in HCC and associated with HCC prognosis, could regulate starvation-
induced HCC cell apoptosis by reducing HIF-1α/mTOR-mediated autophagy, promoting HCC cell progression.
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Background
Hepatocellular carcinoma (HCC) is the most common
primary liver cancer in the world, and it is one of the
most common causes of tumor-related deaths due to the
high incidence of tumor recurrence and metastasis
worldwide [1, 2]. Although interventional therapy, liver
transplantation, chemotherapy, and surgery are available
to treat HCC, the 5-year survival rate remains unsatis-
factory [3, 4]. In general, the process of HCC involves
multiple steps, including a large number of genetic or
epigenetic changes, which ultimately lead to the trans-
formation of hepatocellular malignancies [5, 6]. There-
fore, in order to improve the diagnosis and management
strategies for HCC, it is urgent to find new hepatocellu-
lar carcinoma biomarkers and to understand the mo-
lecular mechanism of HCC in more detail.
Autophagy is a highly conserved and widespread mech-

anism of lysosome-dependent self-digestion and intracel-
lular recycling in the evolutionary process, which is
essential for the maintenance of cellular homeostasis [7].
The self-protection mechanism of autophagy occurs in
unfavorable environment, which is closely related to the
occurrence and development of tumor [8]. For instance,
autophagy can affect the progression of HCC by regulat-
ing the expression of other factors or signaling pathways,
such as RAC1, NF-κB, and PI3K pathways [9–11]. How-
ever, the specific molecular mechanism between HCC and
autophagy remains unclear.
Long non-coding RNAs (lncRNAs) are commonly de-

fined as the > 200-nt transcript without protein-coding
potential. lncRNAs have been identified as one of the
most important regulatory factors in medical research in
recent years, which play a complex and precise regula-
tory function in the development of organism and dis-
ease [12]. Recently, it has been reported that several
lncRNAs are frequently regulated in HCC, including
HOTAIR, MALAT1, UCA1, HULC, DBH-AS1, and
PTV1 [13–18]. Some of these lncRNAs include
HOTAIR, HULC, PTV1, and MALAT1, which are also
involved in the regulation of autophagy in hepatoma
cells [19–22]. lncRNA HIF1A-AS1 is located on the anti-
sense strand of hypoxia inducible factor 1α (HIF-1α) of
human chromosome 14, and the length of mature body
is 652 nt. Zhang et al. found that the activation of hep-
atic stellate cells mediated by TET3 may be mediated by
regulating the HIF1A-AS1 expression [23]. The expres-
sion of HIF1A-AS1 is closely related to the proliferation
and apoptosis of hepatic stellate cells [24]. However, the
specific downstream regulation mechanism of HIF1A-
AS1 has not been reported.
In our study, we aimed to identify the relationship be-

tween HIF1A-AS1 expression and clinical characteristic
of HCC and to explore the role and mechanism of
HIF1A-AS1 on nutrient-deficient induced HCC cell

apoptosis and autophagy. The results would bring poten-
tial research directions for HCC treatment in future.

Methods
Patients and specimens
This study was carried out in accordance to the princi-
ples of the Declaration of Helsinki and approved by the
Medical Ethics Committee in Ningbo University Medical
College. All clinical HCC tissues and matched adjacent
normal tissues were obtained from Yinzhou Hospital be-
tween 2015 and 2017. Written informed consent was ob-
tained from all the participants prior to enrollment. All
patients recruited in this study were diagnosed with
HCC based on histopathological evaluation and did not
receive any chemotherapy or radiotherapy before surgi-
cal operation. All collected tissues were immediately
stored at liquid nitrogen until further analysis. TNM sta-
ging of HCC samples was performed according to the
7th edition AJCC/UICC TNM staging systems. Clinico-
pathological characteristic analyses of all the specimens
are provided in Table 1.

Cell lines and culture
The human HCC cell lines (7721 and Huh7) were ob-
tained from the Chinese Academy of Sciences, and the
normal hepatocyte cell line (L02) was presented by the
Department of General Surgery of Changhai Hospital.
Cells were cultured in Dulbecco’s modified Eagle’s
medium (Gibco) containing 10% fetal bovine serum
(Gibco) in a humidified atmosphere of 5% CO2 at 37 °C.

Table 1 Correlation between HIF1A-AS1 levels and clinical
features of HCC patients

Clinical
features

n HIF1A-AS1 expression P

High (n = 25) Low (n = 25)

Age

≤ 50 14 8 6 0.529

> 50 36 17 19

Gender

Female 19 9 10 0.771

Male 31 16 15

Tumor size

≤ 5cm 25 7 15 0.023*

> 5cm 25 18 10

TNM stage

I–II 25 8 16 0.024*

III–IV 25 17 9

Lymph node metastasis

Yes 25 15 8 0.047*

No 25 10 17

*P < 0.05
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The nutrient-deficient induction was established by Ear-
le’s Balanced Salt Solution (EBSS, Gibco).

RNA extraction and quantitative real-time PCR
Total RNA was extracted from tissue and cell samples
using TRIzol reagent (Invitrogen) according to the man-
ufacturer’s protocol. Reverse transcription was per-
formed using PrimeScript RT Reagent Kit (TaKaRa).
The diluted cDNAs were amplified using SYBR Premix
Ex Taq (TaKaRa). Three independent biological repli-
cates were set at least for the cell experiments. β-Actin
was used as a loading control. The sequences of the
primers were listed in supplemental Table S1.

Western blot analysis
Total cell lysates were subjected to 10% SDS-PAGE, and
the proteins were transferred to nitrocellulose filter
membranes, followed by blocking for 1 h in 5% non-fat
dry milk. The membranes were incubated with primary
antibodies (LC3, 1:1000 dilutions, ab51520 from Abcam;
BECN1, 1:1000 dilutions, ab62557 from Abcam; HIF-1α,
1:500 dilutions, BM4083 from Boster; P-mTOR and
mTOR, 1:1000 dilutions, ab32028 and ab2732 from
Abcam; β-actin, 1:2000 dilutions, BM0627 from Boster)
at 4 °C overnight and then with secondary antibodies
(HRP-conjugated anti-mouse and anti-rabbit secondary
antibodies, 1:5000 dilutions, BA1051 and BM2006 from
Boster) at room temperature for 1 h. Proteins were visu-
alized by ECL Plus Western Blotting Substrate (Thermo
Scientific) on ChemiDoc MP system (Bio-Rad). β-Actin
was used as a gel loading control.

Small interfering RNA and transient transfection
siRNA targeting HIF1A-AS1 (5′-GUCAAUUGGUUGAU
CACCCG-3′, si-HIF1A-AS1) and scrambled control (5′-
UUCUCCGAACGUGUCACGUTT-3′, si-NC) were de-
signed and synthesized by Shanghai GenePharma company.
When the confluence of cells reached to 70–80%, siRNAs
were transfected at a final concentration of 100 nmol/L
with Lipofectamine 2000 (Invitrogen) according to the
manufacturer’s protocol. The non-off-target effects were
confirmed by an additional siRNA-targeted GAPDH (sup-
plemental Figure S1). Knockdown efficiency of the siRNA
was determined by qRT-PCR.

Cell viability analysis
The HCC cell vitality was identified by Cell Counting
Kit-8 assay (CCK-8, Beyotime). Briefly, HCC cells were
seeded in a 96-well plate (6 wells per group) and incu-
bated overnight, followed by siRNA transfection and
nutrient-deficient induction for 24 h. After adding 10 μL
CCK-8 solution, the relative growth vitality was detected
on a microplate reader (BioTek) according to the
manual.

Cell apoptosis analysis
The cell apoptosis was determined using Annexin V-
fluorescein isothiocyanate (FITC)/propidium iodide (PI)
double staining (BD Biosciences). After treatment for 48
h, cells were harvested and resuspended in 200 μL
Annexin-binding buffer. Then, the cells were incubated
with 10 μL Annexin V-FITC and 5 μL PI for 30 min in
the dark. The stained cells were examined by a FACScan
flow cytometer (BD Biosciences).

Statistical analysis
The statistical analysis was carried out by SPSS 22.0 soft-
ware. The qualitative data was analyzed by chi-square
test or Fisher’s exact test when necessary. The quantita-
tive data were expressed as the means ± standard devia-
tions and analyzed by t test for 2 groups and one-way
ANOVA test for multiple groups. The survival curves
were analyzed by the Kaplan-Meier test. A P value less
than 0.05 was considered statistically significant.

Results
The elevated HIF1A-AS1 levels were directly proportional
to HCC prognosis
We first detected the expression of HIF1A-AS1 in 50
pairs of HCC specimens and corresponding adjacent
normal tissues by qRT-PCR. The results showed that
HIF1A-AS1 expression was obviously upregulated in
HCC specimens when compared with that in matched
normal tissues (P < 0.01, Fig. 1a). Additionally, we ana-
lyzed the correlation between HIF1A-AS1 expression
and clinicopathological characteristics in HCC patients,
which were divided into the high HIF1A-AS1 group (n =
25) and low HIF1A-AS1 group (n = 25) with the median
value of HIF1A-AS1 expression as a cutoff point. Statis-
tical analysis revealed that high level of HIF1A-AS1 was
significantly correlated with tumor size (P = 0.023),
TNM stage (P = 0.024), and lymph node metastasis (P =
0.047, Table 1). There was no significant correlation
between HIF1A-AS1 expression and other clinicopatho-
logical features including age and gender (P > 0.05). Fur-
thermore, patients in the high HIF1A-AS1 group had a
shorter overall survival (P = 0.0225, Fig. 1b) and a worse
disease-free survival (P = 0.017, Fig. 1c) than the low
HIF1A-AS1 group. Together, these results demonstrated
that HIF1A-AS1 expression might be associated with the
HCC progression and prognosis.

HIF1A-AS1 expression was increased in HCC cells exposed
to starvation
To clarify the potential function of HIF1A-AS1 on HCC
development, we first detected HIF1A-AS1 expression
levels in different HCC cells. On normal culture condi-
tion, the expression level of HIF1A-AS1 was significantly
higher in HCC cell lines (7721 and Huh7) than that in
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normal hepatocyte cell line L02 (Fig. 2a). Under
nutrient-deficient condition, HIF1A-AS1 expression was
significantly increased in both HCC and normal hepato-
cyte cell lines (Fig. 2b). Furthermore, we analyzed the re-
lationship between HIF1A-AS1 expression and the
nutrient-deficient time in 2 HCC cell lines. qRT-PCR
assay confirmed that the expression of HIF1A-AS1 was
increased with the prolongation of nutrient-free culture
in both 7721 and Huh7 cell lines (Fig. 2c, d). These re-
sults indicated that the HIF1A-AS1 might be correlated
with nutrient-deficient induced HCC cell apoptosis or
autophagy.
Inhibition of HIF1A-AS1 promoted starvation-induced

HCC cell apoptosis
In order to further explore the role of HIF1A-AS1 on

nutrient-deficient induced HCC cell behaviors, siRNAs
targeting HIF1A-AS1 (si-HIF1A-AS1) and negative con-
trol (si-NC) were synthesized and transfected into HCC
cells, respectively. The inhibition efficiency of si-HIF1A-
AS1 was verified by qRT-PCR assay. si-HIF1A-AS1
transfection could significantly reduce the HIF1A-AS1
level in 7721 and Huh7 HCC cell lines (Fig. 3a, b). The
result from CCK-8 assay showed that the viability of
HCC cells transfected with si-HIF1A-AS1 was signifi-
cantly lower than that of the si-NC group under
nutrient-deficient condition (Fig. 3c). Flow cytometry
assay confirmed that inhibition of HIF1A-AS1 could en-
hance nutrient-deficient induced HCC cell apoptosis
(Fig. 3d).

Inhibition of HIF1A-AS1 reduced starvation-induced HCC
cell autophagy
Autophagy is an important mechanism for cells to sur-
vive and resist apoptosis in extreme environments, such

as nutrient deficiency and hypoxia. Western blot assay
showed that the expression of autophagic marker
(BECN1 and LC3) was significantly increased in 7721
and Huh7 cell lines after 12-h nutrient-deficient culture
(Fig. 4a, b and supplemental Figure S2A-2B). Subse-
quently, we explored the role of HIF1A-AS1 on HCC
cell autophagy induced by nutrient deficiency. After 12-
h nutrient-deficient induction, the increased expression
of BECN1 and the conversion of LC3I to LC3II (LC3 II/
I) were significantly reduced in both 7721 and Huh7 cell
lines transfected with si-HIF1A-AS1 (Fig. 4c, d and sup-
plemental Figure S2C-2D). Then, we further detected
the effect of HIF1A-AS1 on HIF-1α and mTOR expres-
sion under normal and nutrient-deficient conditions.
The results showed that the expression of HIF-1α and
phosphorylated mTOR was significantly reduced in 7721
and Huh7 HCC cell lines after HIF1A-AS1 inhibition
(Fig. 4e, f and supplemental Figure S2E-2F). These re-
sults suggested that HIF1A-AS1 might regulate
starvation-induced HCC cell autophagy through HIF-1α
and mTOR pathways.

Discussion
In the present study, we found that HIF1A-AS1 was
highly expressed in HCC tissues and associated with
poor HCC prognosis. Inhibition of HIF1A-AS1 could
promote starvation-induced HCC cell apoptosis,
which might be mediated by HIF-1α pathway-related
autophagy. Our results suggested that inhibition of
HIF1A-AS1 might be a potential strategy for HCC
treatment.
Many studies have shown that lots of differentially

expressed lncRNAs are involved in regulation of HCC
cell proliferation, migration, and invasion [2, 25].

Fig. 1 The elevated HIF1A-AS1 levels were directly proportional to HCC prognosis. a The relative expression of HIF1A-AS1 was detected in 50
pairs of HCC specimens (carcinoma group) and corresponding adjacent tissues (adjacent group) by qRT-PCR assay and calculated by the 2-△△CT

method. HIF1A-AS1 expression was obviously higher in the carcinoma group than that in the adjacent group. *P < 0.05. b The Kaplan-Meier
overall survival curve for HCC patients with high and low HIF1A-AS1 levels. HCC patients with high HIF1A-AS1 level had significantly shorter
overall survival than those with low HIF1A-AS1 level (P = 0.0225). c The Kaplan-Meier disease-free survival curve for HCC patients. HCC patients
with high HIF1A-AS1 level had significantly worse disease-free survival than those with low HIF1A-AS1 level (P = 0.0171). The disease-free survival
curve was created based on the survival time of HCC patients who did not recur after treatment
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lncRNA TUG1, highly expressed in HCC cells, could
promote proliferation and apoptosis of HCC cells
through epigenetic silencing of KLF2 [26]. Wang et al.
found that lncRNA PVT1 can stabilize NOP, thereby
promoting HCC cell growth and maintaining stem cell-
like properties [27]. lncRNA Magic2-AS3 could inhibit
HCC progression by targeting the miR-374b-5p/SMG1
pathway [28]. Our work confirmed that inhibition of
HIF1A-AS1 could promote starvation-induced HCC cell
apoptosis. Based on the limited protein-coding potential
of lncRNAs, overexpression or inhibition of lncRNAs
would be a more feasible strategy for gene therapy in
HCC.
HIF1A-AS1, located in the antisense strand of human

HIF-1α gene, was recognized as an oncogene in non-
small cell lung cancer and colorectal cancer [29, 30]. In
addition, studies have shown that HIF1A-AS1 was in-
volved in the regulation of proliferation of vascular
smooth muscle cells, which may be related to the patho-
genesis of aneurysms [31–33]. However, the role of
HIF1A-AS1 in HCC remains unclear. In our study, the
elevated expression of HIF1A-AS1 was associated with
tumor size, TNM stage, lymph node metastasis, and

prognosis. These pieces of evidence suggested that
HIF1A-AS1 played an important role during the pro-
gression of HCC.
Autophagic cell death is a process of programmed

cell death that is different from apoptosis and does
not depend on the caspase pathway. The autophagic
activity would be increased in the harsh environ-
ments, including nutritional deprivation, peroxidative
damage, and DNA damage. During the development
of HCC, in order to adapt to nutrient deficiencies
and hypoxia, cells would initiate autophagy to protect
themselves [34]. Therefore, inhibition of tumor cell
autophagy is an important part of anti-tumor drug
development. To date, there have been some studies
on the relationship between lncRNA and HCC cell
autophagy. Yang et al. found that HOTAIR activated
autophagy by increasing the expression of ATG3 and
ATG7 [19]. Xiong et al. found that HULC triggered
protective autophagy by stabilizing SIRT1 [20]. Yuan
et al. found that MALAT1 could inhibit HCC cell
apoptosis and reduce chemosensitivity by promoting
autophagy [21]. In our experiments, it was found that
in the starved state of HCC cells, the highly expressed

Fig. 2 HIF1A-AS1 expression was increased in HCC cells exposed to starvation. a The relative expression of HIF1A-AS1 was detected in HCC cell
lines (7721 and Huh7) and normal hepatocyte cell line (L02) by qRT-PCR. The HIF1A-AS1 expression in L02 cell line was set as reference, and the
relative expression of HIF1A-AS1 in 7721 and Huh7 HCC cell lines was calculated compared with that in L02 cell line. **P < 0.01 vs. L02 group. b
The expression changes of HIF1A-AS1 in 7721, Huh7, and L02 cell lines under normal and EBSS culture conditions. **P < 0.01 vs. normal group. c,
d The expression changes of HIF1A-AS1 in 7721 and Huh7 HCC cell lines at different starvation time. **P < 0.01 vs. 0 h group
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HIF1A-AS1 is involved in autophagy activation and
reduces the HCC cell apoptosis.
mTOR is a mammalian target of rapamycin, an

atypical serine/threonine protein kinase. As a key
regulator of the autophagy initiation phase, inhibition
of mTOR complex 1 (MTORC1) in autophagy has
been demonstrated [35]. Li et al. found that DCST1-
AS1 accelerates proliferation, metastasis, and autoph-
agy of HCC cells through the Akt/mTOR signaling
pathway [36]. Zhang et al. found that SOCS5 pro-
motes HCC cell metastasis via PI3K/Akt/mTOR-me-
diated autophagy pathway [28]. In our study, we
found that inhibition of HIF1A-AS1 induced de-
creased expression of HIF-1α, suggesting that the role
of HIF1A-AS1 on HCC cells autophagy might be me-
diated by HIF-1α/mTOR pathway.

In the present study, the effect of HIF1A-AS1 on HCC
cells was accomplished through in vitro experiments. In-
hibition of HIF1A-AS1 was proved to promote HCC cell
apoptosis by reducing HIF-1α/mTOR-mediated autoph-
agy, but the function of HIF1A-AS1 on HCC develop-
ment had not been confirmed through in vivo
experiments. Currently, most of the in vitro experiments
testing cell biological behavior were performed in sub-
strates coated with protein or peptide ligands for integ-
rins. However, the native extracellular matrix (ECM) is
highly enriched with glycosaminoglycans and proteogly-
cans which could adjust cell adhesion and signaling
though integrins [37, 38]. It was reported that hyaluronic
acid (HA) together with integrin ligands could promote
Huh7 cells spreading on very soft substrates [39]. Re-
cently, an ECM microarray screening platform was

Fig. 3 Inhibition of HIF1A-AS1 promoted starvation-induced HCC cell apoptosis. a, b The inhibition efficiency of siRNA targeting HIF1A-AS1 in
7721 and Huh7 HCC cell lines. qRT-PCR assay confirmed that the expression of HIF1A-AS1 was significantly decreased in 7721 and Huh7 HCC cell
lines transfecting si-HIF1A-AS1. **P < 0.01 vs. si-NC group. c The role of HIF1A-AS1 on HCC cell growth viability under nutrient-deficient condition.
CCK-8 assay confirmed that inhibition of HIF1A-AS1 depressed HCC cell growth. **P < 0.01 vs. si-NC group. d The role of HIF1A-AS1 on starvation-
induced HCC cell apoptosis. Flow cytometry assay confirmed that inhibition of HIF1A-AS1 could enhance HCC cell apoptosis
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developed to screen the effects of substrate stiffness and
ECM protein composition and their interactions on cell
fate, and could be broadly applied to various types of
cells for cell phenotype investigation [40]. The develop-
ment and optimization of biomimetic cell culture sub-
strates would make the in vitro experiments close to the
in vivo microenvironment.

Conclusions
In conclusion, our results suggest that HIF1A-AS1 pro-
motes hepatocarcinogenesis through activation of au-
tophagy via the HIF-1α/mTOR signaling pathway, and
reveal that HIF1A-AS1 is involved in a new pathway to
regulate HCC progression and provides a potential dir-
ection for future HCC treatment strategies.
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