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BCL2 and hsa-miR-181a-5p are potential
biomarkers associated with papillary
thyroid cancer based on bioinformatics
analysis
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Abstract

Background: The morbidity of thyroid carcinoma has been rising worldwide and increasing faster than any other
cancer type. The most common subtype with the best prognosis is papillary thyroid cancer (PTC); however, the
exact molecular pathogenesis of PTC is still not completely understood.

Methods: In the current study, 3 gene expression datasets (GSE3678, GSE3467, and GSE33630) and 2 miRNA
expression datasets (GSE113629 and GSE73182) of PTC were selected from the Gene Expression Omnibus (GEO)
database and were further used to identify differentially expressed genes (DEGs) and deregulated miRNAs between
normal thyroid tissue samples and PTC samples. Then, Gene Ontology (GO) and pathway enrichment analyses were
conducted, and a protein-protein interaction (PPI) network was constructed to explore the potential mechanism of
PTC carcinogenesis. The hub gene detection was performed using the CentiScaPe v2.0 plugin, and significant
modules were discovered using the MCODE plugin for Cytoscape. In addition, a miRNA-gene regulatory network in
PTC was constructed using common deregulated miRNAs and DEGs.

Results: A total of 263 common DEGs and 12 common deregulated miRNAs were identified. Then, 6 significant
KEGG pathways (P < 0.05) and 82 significant GO terms were found to be enriched, indicating that PTC was closely
related to amino acid metabolism, development, immune system, and endocrine system. In addition, by
constructing a PPI network and miRNA-gene regulatory network, we found that hsa-miR-181a-5p regulated the
most DEGs, while BCL2 was targeted by the most miRNAs.

Conclusions: The results of this study suggested that hsa-miR-181a-5p and BCL2 and their regulatory networks may
play important roles in the pathogenesis of PTC.

Keywords: Papillary thyroid cancer (PTC), Differentially expressed genes (DEGs), Deregulated miRNAs, BCL2, hsa-
miR-181a-5p

Background
The morbidity of thyroid carcinoma has been rising
worldwide and increasing faster than any other type of
cancer, mainly due to the increasing use of diagnostic
equipment [1]. It was reported that in 2017 thyroid can-
cer was the fifth most common cancer among American

women [2]. Remarkably, thyroid cancer is 3 times more
common in women than in men [2]. Similarly, thyroid
cancer was the fastest growing cancer among Chinese
from 1988 to 2013. Between 1988 and 2013, the inci-
dence of thyroid cancer increased by an average of
14.73% per year in men and 18.98% per year in women
[3]. Papillary thyroid cancer (PTC) is the most common
subtype of differentiated thyroid cancers (DTCs), with
the best overall prognosis [4]. However, the biggest
challenge in treating PTC is to identify an easy method
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for the early recognition of benign or malignant nodules
and the detection of overtreatment.
In recent years, a number of risk genes of PTC have

been identified, including Cbp/p300 interacting transacti-
vator with Glu/Asp rich carboxy-terminal domain 1
(CITED1) [5], LDL receptor related protein 4 (LRP4) [6]
and tektin 4 (TEKT4) [7], whose downregulation can sig-
nificantly inhibit the proliferation, migration, and invasion
of PTC cells. Interleukin 17 receptor A (IL17RA) polymor-
phisms, which play an important role in tumor develop-
ment, have been found to influence both the unilateral
and bilateral development of PTC [8]. In addition, in-
creased expression of flavin-containing monooxygenase 1
(encoded by the FMO1 gene) could serve as a biomarker
that independently predicts favorable recurrence-free
survival in classical PTC patients [9]. These observations
suggest that an increasing number of genes are crucial for
the pathogenesis of PTC.
In addition, miRNAs also play an important role in the

pathogenesis of various cancers, especially PTC. For ex-
ample, miR-524-5p can inhibit cell migration, invasion,
and apoptosis by targeting FOXE1 and ITGA3 in PTC
[10]. In addition, miR-215 was found to target ARFGEF1
and inhibit the proliferation and metastasis of PTC by
regulating the epithelial-mesenchymal transformation
[11]. Furthermore, miR-509 [12], miR-1270 [13], miR-
128 ,[14] and many other miRNAs can inhibit PTC by
targeting specific genes. These studies focused on one
specific gene or miRNA; however, the comprehensive
view of how these miRNAs and genes affect PTC re-
mains unknown. The aim of our study was to screen
significant gene and miRNA changes through bioinfor-
matics methods to provide guidance for the study of
PTC mechanisms and clinical treatment.
In this study, 3 gene expression datasets (GSE3678,

GSE3467, and GSE33630) and 2 miRNA expression
datasets (GSE113629 and GSE73182) (Sample analysis
was shown in Additional file 1: Figure S1) of PTC were
selected from the GEO database that were further used
to identify DEGs and deregulated miRNAs between nor-
mal thyroid tissue samples and PTC samples. As a re-
sult, 263 DEGs and 12 deregulated miRNAs were
identified based on the criteria we set. Then, GO and
pathway enrichment analyses were conducted, and a PPI
network was constructed to explore the potential mech-
anism of PTC carcinogenesis. The hub gene detection
was performed using the CentiScaPe v2.0 plugin, and
significant modules were discovered using the MCODE
plugin for Cytoscape. In addition, a miRNA-gene regula-
tory network of PTC was constructed using common
deregulated miRNAs and DEGs, and we found that hsa-
miR-181a-5p regulated the most DEGs, while BCL2 was
targeted by the most miRNAs in this network. However,
the specific mechanisms of how hsa-miR-181a-5p could

regulate BCL2 need further experiments. In conclusion,
hsa-miR-181a-5p and BCL2 are expected to be distinctive
biomarkers of benign or malignant tumors and potential
therapeutic targets of PTC.

Methods
Acquisition of gene and miRNA expression profile
microarray data
The microarray data were acquired from the Gene Expres-
sion Omnibus (GEO) database (www.ncbi.nlm.nih.gov/
geo) [15]. Three gene expression datasets (GSE3678,
GSE3467, and GSE33630) and 2 miRNA expression data-
sets (GSE113629 and GSE73182) of PTC were included in
this study.
Dataset GSE3678 included 7 PTC samples and 7

paired normal thyroid tissue samples; dataset GSE3467
included 9 PTC patients with paired tumor and normal
thyroid tissue; and dataset GSE33630 included 49 PTC
samples and 45 normal thyroid tissue samples. These 3
gene expression datasets were all based on the platform
of GPL570 [HG-U133_Plus_2] Affymetrix Human Gen-
ome U133 Plus 2.0 Array [16–19].
The miRNA dataset GSE113629, based on the GPL24741

Agilent-070156 Human_miRNA_V21.0_Microarray 046064
platform, included matched neoplasms and normal thyroid
tissues from 5 patients with PTC. The GSE73182 dataset
based on the GPL20194 Agilent-035758 Human miRBASE
16.0 plus 031181 platform included 19 primary papillary
thyroid carcinomas and 5 normal thyroids [20, 21].

Identification of DEGs and deregulated miRNA
The interactive web tool GEO2R (www.ncbi.nlm.nih.
gov/geo/geo2r) was used to screen the DEGs and
deregulated miRNAs between normal thyroid tissue
samples and PTC samples [15]. The Benjamin and
Hochberg false discovery rate (FDR) method was used to
correct the adjusted P value and correct the occurrence
of false positive results. The cutoff standard was defined
as P value< 0.01, adjusted P value < 0.01 and |logFC| > 1.

GO terms and KEGG pathway enrichment analysis
Pathway data were obtained from the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database (https://www.
kegg.jp/) [22] to examine specific pathways. To identify
the Gene Ontology (GO) annotation and pathways in
which DEGs were enriched, functional annotation tools
were used for GO terms and KEGG pathway enrichment
analysis in Database for Annotation, Visualization and In-
tegrated Discovery (DAVID) (https://david.ncifcrf.gov/)
[23]. The significance level of KEGG pathway enrichment
was calculated using a cutoff of P value < 0.05. A GO
term was considered significantly enriched if it showed
a P value < 0.05.
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Construction of the PPI network
The PPI network of DEGs was identified using the Search
Tool for the Retrieval of Interacting Genes (STRING)
(http://string-db.org/) database [24]. Subsequently, Cytos-
cape software (v 3.6.1) was used to visualize the PPI
network.

Topological measurements of the PPI network
Several common topological measurements were investi-
gated to reveal the basic features of the PPI network.
The node degree, neighborhood connectivity, topological
coefficients, and clustering coefficients were analyzed for
the whole network.

Hub gene identification and module analysis of the PPI
network
The hub genes in this PPI network were defined as
nodes with a connective degree > 10 and identified using
the CentiScaPe v2.0 plugin for Cytoscape [25]. The most
significant modules in the PPI network were identified
by the Molecular Complex Detection (MCODE) plugin
[26] with MCODE scores ≥ 5, degree cutoff = 2, node
score cutoff = 0.2, Max depth = 100 and k-core = 3.

Construction of a network of deregulated miRNAs
targeting DEGs
The miRNA-gene target data were extracted from miR-
TarBase [27] (http://mirtarbase.mbc.nctu.edu.tw/php/
index.php). When miRNA-gene pairs showed strong evi-
dence of interaction in humans and matched the DEGs
we identified, they were selected. Subsequently, Cytos-
cape software (v 3.6.1) was used to visualize the miRNA-
gene network.

Results
Identification of DEGs and deregulated miRNAs in PTC
The gene expression datasets GSE3678, GSE3467, and
GSE33630 were acquired from the GEO database. DEGs
between normal thyroid tissue and PTC samples were
screened using GEO2R. As a result, 436, 653, and 1237
DEGs were identified from the GSE3467, GSE3678, and
GSE33630 datasets, respectively. Volcano plots were
generated for the 3 gene expression datasets for intuitive
representation of the DEGs (Fig. 1a–c). The green plots
represent downregulated DEGs, the red plots represent
upregulated DEGs, and the black plots are not DEGs. In
addition, Venn diagrams were also drawn for comparison
of the number of total DEGs, upregulated DEGs, and
downregulated DEGs in the three datasets. As a result,
263 common DEGs were obtained (Fig. 1d), comprising
120 coupregulated genes and 143 codownregulated genes
(Fig. 1e, f).
The miRNA datasets GSE113629 and GSE73182 were

also analyzed to screen deregulated miRNAs. The

volcano plots showed that 16 and 2008 deregulated miR-
NAs were identified from the GSE73182 and GSE113629
datasets, respectively (Fig. 1g, i). Among them, 8 down-
regulated miRNAs and 8 upregulated miRNAs in the
GSE73182 dataset, 96 downregulated miRNAs and 1912
upregulated miRNAs in the GSE113629 dataset, were
identified. In addition, a Venn diagram was generated
for comparison of the number of deregulated miRNAs
in the two miRNA datasets; thus, 12 common deregu-
lated miRNAs were acquired (Fig. 1h).

Pathway enrichment analysis of common DEGs
With the aid of the David database, KEGG pathway en-
richment analysis was performed using common DEGs.
As a result, 6 KEGG pathways (P < 0.05) were signifi-
cantly enriched, and the top 6 pathways are shown in
Fig. 2a. These common DEGs were identified to be
enriched in the pathways of ‘Tyrosine metabolism’,
‘Pathways in cancer’, ‘Small cell lung cancer’, ‘Axon
guidance’, ‘Complement and coagulation cascades’ and
‘Adipocytokine signaling pathway’. The most significant
pathway ‘Tyrosine metabolism’ is shown in Fig. 2b. In
addition, a classification of these pathways was also per-
formed, which showed that the six pathways were di-
vided into three major categories (Metabolism, Human
Diseases and Organismal Systems) and five minor cat-
egories (Amino acid metabolism, Cancers, Development,
Immune system and Endocrine system) (Table 1). These
results indicated that PTC was closely related to amino
acid metabolism, development, immune system, and
endocrine system.

GO enrichment analysis of common DEGs
To better understand common DEGs, a GO enrichment
analysis was also performed using DAVID. As a result, a
total of 82 significant GO terms were identified with a
cutoff of P < 0.05. The top biological processes (BPs),
cellular components (CCs), and molecular functions
(MFs) are shown in Fig. 3 a, b, and c, respectively. A
total of 57 BPs, 16 CCs, and 9 MFs were included in the
82 significant GO terms (Fig. 3d). The top 10 BPs were
‘positive regulation of MAP kinase activity’, ‘response to
estrogen’, ‘sensory perception of sound’, ‘activation of
MAPK activity’, ‘reactive oxygen species metabolic
process’, ‘cell adhesion’, ‘melanocyte differentiation’,
‘positive regulation of epithelial cell proliferation in-
volved in lung morphogenesis’, ‘regulation of ERK1 and
ERK2 cascade’ and ‘mesenchymal cell differentiation’. In
addition, the most significant CC was the ‘extracellular
exosome’, and the most significant MF was ‘protein
homodimerization activity’. These results further illus-
trate the fundamental characteristics and functions of
cell adhesion, differentiation, proliferation, and MAPK
activity in PTC. Therefore, the roles of these DEGs
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could be better understood by analyzing these signifi-
cantly enriched GO terms in PTC pathogenesis.

Construction of the PPI network and module analysis
To further explore the interaction among the 263 com-
mon DEGs, a PPI network was constructed (Fig. 4a).
The PPI network contained 189 nodes and 346 edges.
To explore the basic characteristics of the PPI network,
the topological features of the network were analyzed in
terms of degrees, topological coefficients, neighborhood
connectivity, and clustering coefficients (Fig. 4b–e). It
was observed that this network followed a natural rule

that the majority of nodes had a low degree and that
only a few nodes were highly connected with the others.
Similar to other biological networks, the degree distribu-
tion of this network displayed a power law distribution
of f(x) = 100.46x−1.54 with an R2 of 0.857, indicating that
the network followed a scale-free distribution and be-
haved like a small-world network [28].
Furthermore, the hub genes in the PPI network with a

connectivity degree > 10 were identified using the Cen-
tiScaPe v2.0 plugin for Cytoscape. The most significant
11 node degree genes were FN1, CCND1, MET, RUNX2,
IRS1, SERPINA1, KRT19, FGFR2, MUC1, NCAM1, and

Fig. 1 Volcano plot and Venn diagram of DEGs and deregulated miRNAs in gene/miRNA expression profiling datasets. a–c Volcano plots of DEGs
in normal thyroid tissue and PTC samples in the GSE3467, GSE3678, and GSE33630 datasets. d–f Venn diagrams illustrating the number of all
upregulated and downregulated DEGs in three gene expression datasets. The intersection in the center represents the common DEGs among the
three datasets. g, i Volcano plots of deregulated miRNAs in normal thyroid tissue and PTC samples in GSE73182 and GSE113629 datasets,
respectively. h Venn diagrams of all deregulated miRNAs in the two datasets. The intersection in the center represents the common deregulated
miRNAs between the two datasets. DEGs and deregulated miRNAs were selected by P value < 0.01 and |logFC| > 1. The x-axis shows the fold-
change in gene/miRNA expression, and the y-axis shows the statistical significance of the differences. Colors represent different genes/miRNAs:
black for genes/miRNAs without significantly different expression, red for significantly upregulated genes/miRNAs and green for significantly
downregulated genes/miRNAs. PTC, papillary thyroid cancer; FC, fold change

Zhang et al. World Journal of Surgical Oncology          (2019) 17:221 Page 4 of 12



WFS1. Detailed information on the 11 hub genes is sum-
marized in Table 2. Among these 11 hub genes, IRS1
and WFS1 had not been previously validated in PTC,
which prompted us to further investigate the role of
IRS1 and WFS1 in PTC.
The MCODE plug-in was also used to identify signifi-

cant clusters. As a result, 3 clusters were identified. One

cluster consisted of 9 nodes and 20 edges and included
RUNX2, IRS1, KIT, FGFR2, CCND1, LGALS3, MET,
MUC1, and NCAM1, which exhibited the highest score
(Fig. 4f). Another cluster containing 9 nodes and 20 edges,
including SERPINA, FAM20A, WFS1, MXRA8, and
PRSS23, also possessed a strong connection (Fig. 4g).
Furthermore, the third cluster contained 5 nodes and

Fig. 2 Pathway enrichment analysis of common DEGs. a Top six significant pathways of DEGs with KEGG enrichment (P < 0.05). b In-depth study
of the top PTC-associated pathway (hsa00350: Tyrosine metabolism). DEGs, differentially expressed genes; KEGG, Kyoto encyclopedia of genes and
genomes; PTC, papillary thyroid cancer

Table 1 Six significant KEGG pathways and their classification

Pathway P value Classification

hsa00350:Tyrosine metabolism 0.002602 Metabolism; Amino acid metabolism

hsa05200:Pathways in cancer 0.005643 Human Diseases; Cancers: Overview

hsa05222:Small cell lung cancer 0.013589 Human Diseases; Cancers: Specific types

hsa04360:Axon guidance 0.019287 Organismal Systems; Development

hsa04610:Complement and coagulation cascades 0.027889 Organismal Systems; Immune system

hsa04920:Adipocytokine signaling pathway 0.029209 Organismal Systems; Endocrine system
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10 edges and included AVPR1A, AGTR1, GNA14,
HRH1, and LPAR5 (Fig. 4h). These findings strongly
suggested that the hub genes we identified could play
critical roles in the pathogenesis of PTC.

Comprehensive analysis of common deregulated miRNA
and DEGs
The miRNA-gene pairs were based on the 12 common
deregulated miRNAs and 263 common DEGs. Thus, 35
miRNA-gene pairs were acquired that included 11 common
deregulated miRNAs and 20 common DEGs. We con-
structed a miRNA-gene regulating network, and the net-
work is shown in Fig. 5a, which illustrates that certain
miRNAs play important roles in regulating DEGs. In Fig. 5a,
the larger the size of the modules, the greater the degree
they have. The nodes with greater degrees tend to be net-
work hubs and are usually considered to play critical roles
in maintaining the overall connectivity of the network [40].
In this network, hsa-miR-181a-5p regulated the most DEGs,
while BCL2 was targeted by the most miRNAs; in other
words, hsa-miR-181a-5p and BCL2 had the greatest degrees

among miRNAs and DEGs, respectively, and they were
considered to be network hubs. Therefore, we generated
subnetworks with hsa-miR-181a-5p and BCL2 as the central
nodes (Fig. 5b, c). This information may be important in es-
tablishing underlying molecular mechanisms of PTC, which
may be used in the development of targets for further re-
search and diagnosis.

Discussion
Although great progress has been made in PTC research
in recent decades, the pathogenesis of PTC still needs to
be further clarified. The urgent need for better treatment
of PTC has sparked a search for an easy method for the
early recognition of benign or malignant modules. If
there is a way to find a certain deregulated gene or
ncRNA for the early recognition of PTC, then the treat-
ment of PTC could be further improved.
In our present study, PTC-associated deregulated

genes and miRNAs were identified based on 3 gene and
2 miRNA expression microarray datasets. A total of 263
DEGs and 12 deregulated miRNAs were selected. Then,

Fig. 3 GO enrichment analysis of common DEGs. a The top 10 significant biological processes (P < 0.05). b The top 10 significant cellular
components (P < 0.05). c The top 9 significant molecular functions (P < 0.05). d A pie chart of the proportion of the significant GO terms,
including 57 biological processes, 16 cellular components and 9 molecular functions. DEGs, differentially expressed genes; GO, Gene Ontology
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pathway and GO enrichment analyses were performed
using the 263 DEGs to elucidate the function of PTC-
associated DEGs. In addition, PPI networks were con-
structed to discover hub genes and core clusters. In
addition, a deregulated miRNA-gene network was also
constructed, and hsa-miR-181a-5p was found to regulate
the most DEGs, while BCL2 was targeted by the most
miRNAs.
Pathway enrichment analysis using DEGs of PTC pro-

vided an insightful overview in elucidating the mechan-
ism of PTC. Among the top 6 pathways, two were

associated with Human Diseases; Cancers, while three
were categorized into Organismal Systems and were pre-
dicted to attribute to development (axon guidance),
immune system and endocrine system, and the last path-
way was related to amino acid metabolism, suggesting
that the pathogenesis of PTC may be closely related to
amino acid metabolism, axon guidance, immune system,
and endocrine system. For example, Li Y et al. discov-
ered metabolic changes associated with PTC by nuclear
magnetic resonance (NMR)–based metabolomic tech-
nique, including branched chain amino acid metabolism

Fig. 4 PPI network constructed from the common DEGs and their topological features and significant modules. a A PPI network was constructed
from STRING using the 164 common DEGs. The nodes represent proteins, the edges represent the interactions of proteins and the green circles
and red circles indicate downregulated and upregulated DEGs, respectively. b–e The basic topological features of the network included degrees,
topological coefficients, neighborhood connectivity, and clustering coefficients. The degree distribution of this network displayed a power law
distribution of f(x) = 100.46x−1.54 and an R2 of 0.857. f–h Three significant modules in the PPI network with MCODE scores ≥ 5. Green circles and
red circles indicate downregulated and upregulated DEGs, respectively. PPI, protein-protein interaction; DEGs, differentially expressed genes;
STRING, Search Tool for the Retrieval of Interacting Genes; MCODE, Molecular Complex Detection
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(leucine and valine), other amino acid metabolism (gly-
cine and taurine) and other metabolisms of other sub-
stances, such as glycolysis, tricarboxylic acid cycle,
choline metabolism, and lipid metabolism, among which
amino acid metabolism function as an oncogenic sub-
stance, suggesting that amino acid metabolism may play
an important part in the pathogenesis of PTC [41]. Slits,
representative axon guidance molecules have been re-
ported whose overexpression regulates the activity of
Rho GTPase by inhibiting the transcriptional activity of
beta-catenin and inhibiting the cell proliferation, migra-
tion, and invasion of thyroid cancer [42], which was con-
sistent with our pathway enrichment results. In addition,
a distinct tumor immune microenvironment exists in
PTC, correlating with pathological aggressiveness [43].
All these findings indicated a complex mechanism of
PTC involving the immune and endocrine system with
the participation of amino acid metabolism and axon
guidance.
To verify the interaction between the functions of

DEGs identified, a PPI network was constructed in
which 11 hub genes with the highest connective degree
were selected that included FN1, CCND1, MET, RUNX2,
IRS1, SERPINA1, KRT19, FGFR2, MUC1, NCAM1, and
WFS1. Some of these genes have been reported to be
closely associated with PTC; however, their precise roles
and molecular mechanisms have not yet been fully

elucidated. Fibronectin 1 (FN1), with the highest con-
nective degree in this PPI network, encodes fibronectin,
which is involved in cell adhesion and migration pro-
cesses, including host defense and metastasis [44]. The
overexpression of FN1 is an important determinant of
PTC aggressiveness [29]. In addition, FN1 is targeted by
miR-139 and functions in inhibiting tumorigenesis in
PTC cells [45]. CCND1, short for cyclin D1, has been
demonstrated to interact with tumor suppressor protein
Rb [46]. Mutations, amplification, and overexpression of
CCND1, which alters cell cycle progression, occurred
frequently in a variety of tumors, including PTC, and
may lead to tumorigenesis [30, 47].
In addition, a miRNA-gene regulatory network was

constructed to further explore the association between
deregulated miRNAs and DEGs in PTC. The results
showed that hsa-miR-181a-5p and BCL2 were the most
impactful miRNA and gene of PTC. However, few bio-
logical studies have focused on the relationship between
hsa-miR-181a-5p and PTC. By consulting the literature
in PubMed, only one study was found to have reported
the underlying mechanism that miR-181a-5p was oppos-
itely expressed in the exosomes of both PTC and follicu-
lar thyroid cancer (FTC), which can help distinguish
these two types of TC through comparison [48]. Simi-
larly, studies on the relationship between BCL2 and PTC
are also very rare, and only a few studies have verified

Table 2 Detailed information on the 11 hub genes identified in the PPI network

Gene Full name Overview Expression in PTC Reference

FN1 Fibronectin 1 FN1 is involved in cell adhesion and migration processes
including host defense and metastasis.

Upregulated [29]

CCND1 Cyclin D1 CCND1 has been demonstrated to interact with tumor suppressor
protein Rb.

Upregulated [30]

MET MET proto-oncogene, receptor
tyrosine kinase

MET plays a role in cellular survival, embryogenesis, and
cellular migration and invasion.

Downregulated [31]

RUNX2 RUNX family transcription
factor 2

RUNX2 is essential for osteoblastic differentiation and
skeletal morphogenesis.

Upregulated [32]

IRS1 Insulin receptor substrate 1 Mutations in IRS1 are associated with type II diabetes and
susceptibility to insulin resistance.

No relevant biological
experiments

[33]

SERPINA1 Serpin family A member 1 The protein encoded by SERPINA1 is an inhibitor whose
targets include elastase, plasmin, thrombin, trypsin, chymotrypsin,
and plasminogen activator.

Upregulated [34]

KRT19 Keratin 19 KRT19 is responsible for the structural integrity of epithelial cells.
It is specifically expressed in the periderm.

Upregulated [35]

FGFR2 Fibroblast growth factor
receptor 2

FGFR-2 is involved in regulating cell proliferation, migration and
differentiation, as well as in the response to injury and tissue repair.

Downregulated [36]

MUC1 Mucin 1, cell surface associated Overexpression, aberrant intracellular localization, and changes in the
glycosylation of MUC1 have been associated with carcinomas.

Downregulated [37]

NCAM1 Neural cell adhesion molecule 1,
also known as CD56

NCAM1 is involved in the development of the nervous system, the
expansion of T cells and dendritic cells with a regulatory role in
cell motility and migratory capacity of neoplastic cells.

Downregulated [38]

WFS1 Wolframin ER transmembrane
glycoprotein

Mutations in WFS1 are associated with Wolfram syndrome, also
called DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy,
and deafness), an autosomal recessive disorder.

No related references [39]
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the correlation between BCL2 and PTC. For example,
the synonymous SNP rs1801018 and the G allele of the
BCL2 gene were discovered by Eun et al., and this alter-
ation may be related to the bilaterality and multifocality
of PTC [49]. It has been found that loss of BCL2 is asso-
ciated with dedifferentiation in thyroid tumors [50];
however, whether there is a connection that deregulation
of BCL2 influences PTC remains unclear. Our study
provides a novel way to discover how BCL2 and hsa-
miR-181a-5p act on PTC through biological experi-
ments. Next, we used the GEPIA database [51] to
analyze the predictive power of BCL2 for the clinical
stage and survival of TCGA thyroid cancer (Fig. 6). The
survival analysis results showed that there was no statis-
tically significant association between the expression
level of BCL2 and the survival of patients with thyroid
cancer. However, observed that high levels of BCL2 ex-
pression could be correlated with a 2-fold higher mortal-
ity rate in patients than in the low-expression group
(Fig. 6a, HR (high) = 2). Therefore, the expression level
of BCL2 can be used as a predictor of survival in patients
with thyroid cancer. In addition, we found that in TCGA

thyroid cancer data, BCL2 was differentially expressed
between cases and controls. BCL2 was generally down-
regulated in tumor tissues, and this trend became more
pronounced as the disease progressed, so BCL2 also has
a potential to be a dynamic signal for estimating the pro-
gression and prognosis of thyroid cancer (Fig. 6b, c).
However, there are still some limitations of this study.

(i) Different methods of functional analyses have differ-
ent advantages and disadvantages. In this study, we
applied DAVID for functional analyses. The limitations
of the DAVID tool include that it only uses the number
of genes, regardless of the gene expression level or dif-
ferential expression value. In addition, to obtain the
genes of interest or differential expression, an artificial
threshold was needed. In addition, it usually uses the
most significant genes and ignores the genes with no sig-
nificant differences, which may result in a loss of genes
with lower significance but a more critical role, resulting
in decreased detection sensitivity. (ii) Microarray data
were obtained from the GEO database, not generated by
the authors. (iii) This study focused on bioinformatics
methods to screen candidate genes and miRNAs for

Fig. 5 miRNA-gene regulatory network. a A global view of the network. The network was constructed from common DEGs and deregulated
miRNAs. The network contained 11 common deregulated miRNAs, 20 common DEGs, and 35 miRNA-gene pairs. The orange triangle represents
miRNA, while the blue square represents DEG. b A subnetwork with hsa-miR-181a-5p as the central node. c A subnetwork with BCL2 as the
central node. DEGs, differentially expressed genes
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PTC; however, the predicted results should be confirmed
by laboratory data. Further validation with larger sample
sizes and in vitro and in vivo experiments are required
to confirm these results. (iv) BCL2 has two main iso-
forms (1G5M and 1G5O/1GJH), and the structures of
the two BCL2 isoforms were found to be very similar
[52, 53]. Further experiments could be performed to
recognize the differences in the results for different iso-
forms of BCL2 and may be useful for the treatment of
cancers.

Conclusions
In conclusion, we systematically identified DEGs and
deregulated miRNAs through microarray datasets. Path-
way and GO enrichment analysis gave us an insightful
view of the functions of DEGs. Furthermore, the con-
struction of the PPI network and miRNA-gene regula-
tory network provided us with hsa-miR-181a-5p and
BCL2 for further biological experiments to determine
the regulatory relationship between them in PTC. As
biomarkers, hsa-miR-181a-5p and BCL2 have enormous
potential for distinguishing benign or malignant nodules
and guiding clinical treatments. These findings will pro-
vide important clues for investigating the pathogenesis
and therapeutic methods of PTC.
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