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Abstract

Background: Osteosarcoma is a type of bone cancer casting huge threat to the human health worldwide.
Previously, gene expression analyses were performed to identify biomarkers for cancer; however, systemic co-
expression analysis for osteosarcoma is still in need. The aim of this study was to construct a gene co-expression
network that predicts clusters of candidate genes associated with the pathogenesis of osteosarcoma.

Methods: Here, we extracted the large scale of datasets from the GEO database. With systematical approaches, we
identified the co-expression modules by using weighted gene co-expression network analysis (WGCNA) and
investigated the functional enrichments of important modules at GO and KEGG terms.

Results: First, seven co-expression modules, which contain different genes, were conducted for 2228 genes in the
22 human osteosarcoma samples. Then, correlation study showed that the hub genes between pairwise modules
displayed great differences. Lastly, functional enrichments of the co-expression modules showed that the module 5
enriched in immune response, antigen processing, and presentation, which is in consistence with GO result.
Therefore, we speculated that the module 5 may play a key role in the pathogenesis of osteosarcoma.

Conclusions: Here, we speculated that genes of the module 5 were the essential genes that were associated to
human osteosarcoma. Together, our findings not only provided outline of co-expression gene modules for human
osteosarcoma, but also promoted the understanding of these modules at functional aspects.
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Background
Osteosarcoma (OS), the most common primary bone
malignancy, has an overall incidence of 0.2–3/100000
per year. In the age group of 15–19 years, osteosarcoma
is even more common with an incidence of 0.8–11/
100,000 per year globally [1, 2]. Despite its rarity, it was
also reported as the third most common cancer in ado-
lescence, occurring only less frequently than brain tumor
and lymphomas in this age group. Usually, the incidence
increases to a peak along with the pubertal growth spurt
with gender bias (occurs earlier in females than in
males). Besides, tall stature and high birth weight are
also reported to be important risk factors [3]. Although
the introduction of effective chemotherapy has improved

3-year survival from 20% to 60–70%, no further im-
provements have been achieved in the last few decades
[4]. Therefore, better understanding of genetic etiology
and pathology of OS may provide new possible treat-
ment strategies for this tumor.
Several studies have reported that common genetic

variations were preliminarily associated with the occur-
rence of osteosarcoma in some biological pathways, such
as TGFBR1*6A, which is a common mutation of TGF-β
receptor 1 and was reported to be associated with the
distant metastasis of osteosarcoma [5]. Recently, Savage
et al. suggested that two loci in the GRM4 gene at 6p21.
3 and in the gene desert at 2p25.2 may be involved in
the mechanisms underlying susceptibility to osteosar-
coma [6]. However, only a handful of candidate genes
are considered to be crucial in the pathogenesis of OS,
and there is still a large part needed to be explored.
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In some computational research, disease risk modules
have been developed to provide significant measurement
for cancer diagnosis and to develop novel treatment
strategies [5, 7–10]. The weighted gene co-expression
network analysis (WGCNA) is a powerful approach
based on “guilt-by-association.” It is used to identify
gene modules which are popularly applied as candidate
biomarkers or therapeutic targets [11, 12]. As a sys-
tematical biology method, it was widely used in many
complex diseases, such as breast cancer [13], schizo-
phrenia [14, 15], and intracranial aneurysm [16]. By
using WGCNA, we are able to construct co-expression
networks to detect the differentially correlated gene
clusters and perform gene-specific analysis [17, 18].
In this study, WGCNA was constructed based on a

dataset comprising 2228 genes from 22 human osteosar-
coma samples. The correlation between each module
and the biologic functions of genes detected in these
modules are analyzed. These informative genes found in
our study may be beneficial to clinical treatment of
osteosarcoma.

Methods
Data processing
Datasets for WGCNA related to osteosarcoma were
obtained from the NCBI Gene Expression Omnibus
(GEO) (http://www.ncbi.nlm.nih.gov/geo) with acces-
sing number GSE12512. The combined dataset con-
sists of 22 samples. We firstly mapped the array
probes to their respective gene IDs by using the array
annotations. Probes matching multiple genes were re-
moved from the dataset, and then, we calculated the
average expression values of genes measured by mul-
tiple probes. A proper threshold was settled based on
the amount of genes filtered out.

Co-expression networks and modules
The influence of power value on the scale independ-
ence and mean connectivity were analyzed by using
the function softConnectivity in WGCNA package. The
“randomly selected genes” parameter was set as 5000;
other parameters’ set was default. The power param-
eter was pre-calculated with the function pickSoft-
Threshold in WGCNA. In this function, an appropriate
soft-thresholding power for network construction was
provided by calculating the scale-free topology fit
index of several powers. That is, if the scale-free top-
ology fit index for the reference dataset exceeded 0.8
for low powers (< 30), then the topology of the net-
work is scale-free without batch effects [12]. Next, we
summarized the expression values by using the func-
tion collapseRows in the R package. Cluster analysis
was subsequently performed by flashClust [11]. The

interactions (correlations) of each module was ana-
lyzed and visualized by heat map.

Hub genes and the functional annotations
We performed a gene ontology (GO) enrichment analysis
for top 5 modules with most genes by the Database for An-
notation, Visualization, and Integrated Discovery (DAVID
https://david.ncifcrf.gov/summary.jsp) [19]. Functional en-
richment analysis of the hub genes were carried out at GO
terms and KEGG pathways (p < 0.05) [20, 21]. Before
assigning enrichment score for each cluster to make inter-
pretation of the results more straightforward, functional
annotation clustering combines single category with a
significant overlap in gene content.

Results
Pre-processing of the osteosarcoma datasets
To generate gene co-expression networks, the raw
gene expression of osteosarcoma datasets were
downloaded from the GEO data repository (http://
www.ncbi.nlm.nih.gov/geo). The combined dataset
(GSE12512) contained a total of 22 classic OS sam-
ples (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE12512), and the microarray platform is
GPL7192. Then, we identically pre-processed the raw
data from every microarray dataset for background
correction and normalization. Firstly, probes match-
ing multiple genes were removed out from these
datasets, and secondly, the average expression value
of gene measured by multiple probes was calculated
as the final expression value. Finally, we identify in
total 19,015 genes that were expressed. Hereafter, we
plotted the relation of gene numbers and gene ex-
pression values (Fig. 1) and found that the lowest
value is 6.9 and the highest is 14.8. Since the
WGCNA was restricted to 3600 genes, we chose the
genes of which expression values are larger than 9.
In total, 2228 genes were filtered out based on the
requirement, which processed 11.7% of the total
gene amount.
The 2228 genes were further investigated as input for

hierarchical clustering analysis, which was performed
with the function flashClust. We found that these 22
samples mainly yielded two clusters (Fig. 2a), where
GSM314346, GSM314348, GSM314349, GSM314352,
and GSM314355 became one cluster; the other 17 sam-
ples yielded the other one.

Identification of gene co-expression networks and
modules
The choice of the soft-thresholding power is necessary
to construct a WGCNA, to which co-expression similar-
ity is raised to calculate adjacency. Prior to WGCNA
conducted to further study the 2228 genes obtained
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Fig. 1 a Gene numbers corresponding to different gene expression thresholds. b Hierarchical clustering of hub genes in the clustering analysis.
Branches of the dendrogram (the meta-modules) represent correlated-positive hub genes

Fig. 2 a, b Network topology of different soft-thresholding powers. The left panel displays the influence of soft-thresholding power (x-axis) on
scale-free fit index (y-axis). The right panel shows the influence of soft-thresholding power (x-axis) on the mean connectivity (degree, y-axis)
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from the 22 samples discussed above, we first performed
the analysis of network topology for various soft-
thresholding powers in order to have relative balanced
scale independence and mean connectivity of the
WGCNA. As shown in Fig. 2, power 4, the lowest power
for which the scale-free topology fit index reaches 0.90,
was chosen to produce a hierarchical clustering tree
(dendrogram) of the 2228 genes (Fig. 3). Seven modules
were generated and labeled 1–7 from largest to smallest.
The largest module contained 838 genes, while the smal-
lest contains 318 genes, and averagely, each module con-
tained 318 genes.

Correlation between each modules
Based on the network heatmap plot, each module
showed independent validation to each other. Therefore,
we calculate and cluster the eigengenes of entire
modules on their correlations to further quantify co-
expression similarity (Fig. 4a). These seven modules
yielded two main clusters; one contained two modules,
while the other contained the other five modules
which can also be divided into three sub-clusters.
This result was also supported by the heatmap plot of
the adjacencies (Fig. 4b).

Functional enrichment and clustering analysis
Gene ontology (GO) enrichment analysis for the first
five largest network modules was performed by using

the Database for Annotation (Table 1), Visualization
and Integrated Discovery (DAVID, http://david.abcc.
ncifcrf.gov/). Supported by the network heatmap plot,
each module had great difference with each other.
Genes in module 1 were mainly enriched in cell cycle
and negative regulation of cellular protein, especially
protein ubiquitination, modules 2 and 4 were enriched
in translation process, and module 3 was enriched in
energy synthesis while module 5 was enriched in anti-
gen processing and immune response.
To verify the result of GO enrichment analysis,

KEGG pathways were analyzed on the same modules
(Table 2). The first four modules were enriched in
proteasome (module 1), ribosome (modules 2 and 4),
and cell signaling and lysosome (module 4), while
the module 5 was enriched in antigen processing,
which is in consistence with GO result. Therefore,
we speculated that the module 5, antigen process
and immune response, may play a key role in the
pathogenesis of osteosarcoma.

Discussion
The main objective for this study was to utilize a
global approach to construct a gene co-expression
network that predicts clusters of candidate genes
involved in the pathogenesis of osteosarcoma. We
hypothesized that tightly co-expressed gene modules
with common functional annotation would be able

Fig. 3 Clustering of genes together with assigned module colors. The dissimilarity was based on topological overlap. The y-axis is the distance
determined by the extent of topological overlap
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to predict candidate gene sets that underlies a given
biological process.
WGCNA is a relatively novel statistical approach

based on gene correlations and has been used not
only to construct gene networks and detect modules/
sub-networks, but also to identify hub genes and
select candidate genes as biomarkers [11]. Usually,
module detection in WGCNA needs a knowledge-
independent process. However, selection of a thresh-
old for culling the network to limit noise would prob-
ably rely on empirical judgment and functional
annotation [11]. Furthermore, WGCNA can only
provide a set of hub genes instead of specific genes
related to the background, such as osteosarcoma in
this study. Therefore, further studies should be
carried out to narrow down the gene targets. Such as
RMT method, this lies in its ability to automatically
localize the noise-to-signal threshold instead of using

empirical judgment or annotations [22]. Moreover,
construction of mutant will also help to understand
the role of one or more specific genes in the patho-
genesis of osteosarcoma.
Here, WGCNA was applied to investigate 2228 genes

of 22 samples that were compromised from a dataset
obtained from NCBI, and seven modules were yielded.
According to correlation study by network heatmap
plot (Fig. 5), all the modules have almost no correlation
with each other. GO enrichment and KEGG pathway
analysis were performed to further study the biological
functions of genes enriched in five largest modules.
Both GO and KEGG showed that, in consistence with
correlation study, no module is involved in the same
functions/pathways with each other (Tables 1 and 2).
Modules 1–4 were involved in protein ubiquitination,
translation process, energy synthesis, etc. But interest-
ingly, the genes in module 5 were consistently involved

Fig. 4 a Hierarchical clustering of module hub genes in the clustering analysis. Branches of the dendrogram group together with hub genes that
are positively correlated. b Heatmap plot of the adjacencies in the hub gene network. The trait weight was included. Each column and row
corresponds to one module hub gene (labeled by color) or weight. In the heatmap, red represents high adjacency (positive correlation) and blue
represents low adjacency (negative correlation). Red squares along the diagonal are the meta-modules
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in antigen processing and immune system in both GO
and KEGG result.
Endo Munoz et al. have reported that OS are char-

acterized by an early deregulation of genes involved
in antigen presentation and suggest that patient

prognosis is determined early in tumor development
and that enhancing antigen presentation may be
clinically valuable in treating OS [23]. Furthermore,
several immune molecules, such as cytotoxic T cell
lymphocyte antigen 4 (CTLA4) and CD40 (TNF

Table 1 GO enrichment analysis in co-expression modules

Term Gene counts Percent P value Benjamini

Module 1 Cell cycle 66 0.8 1.30E−10 3.10E−07

Negative regulation of cellular protein metabolic process 28 0.4 2.80E−10 3.50E−07

Negative regulation of protein metabolic process 28 0.4 6.80E−10 5.60E−07

Negative regulation of protein ubiquitination 18 0.2 7.50E−10 4.70E−07

Anaphase-promoting complex-dependent proteasomal
ubiquitin-dependent protein catabolic process

16 0.2 7.10E−09 3.50E−06

Module 2 Translational elongation 51 0.8 4.20E−53 8.70E−50

Translation 61 0.9 2.60E−34 2.70E−31

Generation of precursor metabolites and energy 30 0.5 2.00E−09 1.40E−06

Oxidative phosphorylation 17 0.3 3.40E−09 1.70E−06

Ribosomal large subunit biogenesis 6 0.1 2.40E−06 1.00E−03

Module 3 ATP synthesis coupled proton transport 6 0.3 9.40E−05 4.50E−02

Energy-coupled proton transport, down electrochemical gradient 6 0.3 9.40E−05 4.50E−02

Module 4 Translational elongation 14 0.7 1.40E−11 1.50E−08

Translation 18 0.9 2.00E−08 1.10E−05

Module 5 Antigen processing and presentation 12 1.7 1.30E−13 8.60E−11

Antigen processing and presentation of peptide or polysaccharide
antigen via MHC class II

8 1.1 1.50E−10 4.70E−08

Immune response 20 2.8 2.20E−10 4.70E−08

Antigen processing and presentation of peptide antigen 6 0.8 1.80E−07 2.90E−05

Antigen processing and presentation of exogenous peptide antigen 4 0.6 1.60E−05 2.10E−03

Table 2 KEGG pathways in co-expression modules

Term Gene counts Percent P value Benjamini

Module 1 Proteasome 14 0.2 3.90E−07 6.10E−05

Module 2 Ribosome 46 0.7 1.80E−41 2.60E−39

Parkinson’s disease 24 0.4 6.20E−10 4.50E−08

Oxidative phosphorylation 24 0.4 8.50E−10 4.10E-08

Huntington’s disease 26 0.4 2.70E−08 9.90E−07

Alzheimer’s disease 22 0.3 1.40E−06 4.00E−05

Module 3 Epithelial cell signaling in Helicobacter pylori infection 9 0.4 1.80E−05 1.80E−03

Lysosome 11 0.5 2.80E−05 1.30E−03

Vibrio cholerae infection 8 0.4 4.30E−05 1.30E−03

Oxidative phosphorylation 9 0.4 1.70E−03 4.00E−02

Module 4 Ribosome 14 0.7 2.80E−11 1.90E−09

Module 5 Type I diabetes mellitus 10 1.4 3.30E−11 2.60E−09

Antigen processing and presentation 12 1.7 4.20E−11 1.60E−09

Viral myocarditis 11 1.6 2.00E−10 5.10E−09

Allograft rejection 9 1.3 3.30E−10 6.50E−09

Graft-versus-host disease 9 1.3 6.70E−10 1.00E−08
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receptor superfamily 5), have been targeted clinically
in osteosarcoma. It was discovered that they can
break the immune tolerance in tumor [24]. There-
fore, we suggested the genes in module 5 might play
a key role in the pathogenesis of osteosarcoma and
thereby provide potential targets for treating OS.

Conclusion
In summary, this research creatively applied transcrip-
tional network analysis to identify co-expression module.

In module 5, the highly enriched genes were involved in
the antigen and immune process. According to their
collective expression, they were speculated to be correlated
with pathogenesis of osteosarcoma as well.
The discoveries in this study might be used to predict

clusters of candidate genes associated with the patho-
genesis of osteosarcoma. This might contribute to
improve or optimize clinical diagnosis by using molecular
techniques. However, the clinical specific efficiency of the
identified module needs more experiments to clarify.

Fig. 5 a, b Network heatmap plot. Branch in the hierarchical clustering dendrograms correspond to each module. Color-coded module
membership is showed in the color bars beneath and towards the right of the dendrograms. In this heatmap, the progressively more
saturated yellow and red indicate the high co-expression interconnectedness. Modules correspond to highly interconnected gene blocks.
Genes of high intra-modular connectivity are located at the top of the module branches. These genes show the highest interconnectedness with the
rest of the genes in the module
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