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Background: Iron is a crucial element for cell proliferation, growth, and metabolism. However, excess iron and
altered iron metabolism are both associated with tumor initiation and tumor growth. Deferasirox is an oral iron
chelator. Although some studies have indicated that deferasirox is a promising candidate for anti-cancer therapies,
its effectiveness against gastric cancer has not yet been determined. This study was conducted to determine
whether deferasirox exerts anti-tumor effects in gastric cancer cell lines and whether deferasirox and cisplatin

Methods: Four human gastric cancer cell lines (AGS, MKN-28, SNU-484, and SNU-638) were treated with various
concentrations of deferasirox to determine the ICs, for each cell line. The effects of deferasirox on the cell cycle
were evaluated by flow cytometry, and the effects of deferasirox on iron metabolism, the cell cycle, and apoptosis
were assessed by Western blotting. To determine whether deferasirox enhances the effect of cisplatin, AGS cells

Results: Deferasirox inhibited the proliferation of all gastric cancer cell lines as assessed by MTT assays. Since the
ICso of deferasirox was the lowest (below 10 uM) in AGS cells, subsequent experiments were performed in this

line. Deferasirox upregulated transferrin receptor 1 expression and decreased ferroportin expression. Moreover,
deferasirox induced G1 arrest; upregulated p21, p27, and p53 expression; and downregulated cyclin D1, cyclin B,
and CDK4 expression. Furthermore, deferasirox induced apoptosis, upregulated N-myc downstream regulated gene
1 (NDRGT1), and downregulated p-mTOR and c-myc expression. It was also found to act synergistically with cisplatin.

Conclusions: Our results suggest that deferasirox may exert anti-tumor effects in the context of gastric cancer.
Deferasirox affects a number of different pathways and molecules; for instance, deferasirox upregulates NDRG]
expression, inhibits the cell cycle, downregulates mTOR and c-myc expression, and induces apoptosis. In addition,
deferasirox appears to potentiate the anti-cancer effects of cisplatin. Although the efficacy of deferasirox remains to
be tested in future studies, the results presented here indicate that deferasirox is a promising novel anti-cancer

Background

Gastric cancer is one of the leading causes of cancer-
related deaths in Korea [1]. Although patients with
gastric cancer show excellent outcomes if the cancer is
detected early, inoperable advanced and recurrent gas-
tric cancers are still associated with poor survival rates.
In the past few decades, substantial improvements in
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chemotherapeutic agents have improved survival in
advanced gastric cancer. Recently, overall survival was
significantly prolonged in patients with HER2-positive
advanced gastric or gastro-esophageal junction cancer
by treating with trastuzumab (HER-2 monoclonal anti-
body) in combination with conventional chemotherapy
[2]. However, the overall survival was only 13.8 months.
Therefore, new agents are urgently required.

Iron is an essential element for cell proliferation,
growth, and metabolism. However, excess iron and
altered iron metabolism have been associated with
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tumor initiation and tumor growth [3]. Epidemiological
studies have revealed that a high iron intake is associated
with an increased risk of colorectal cancer [4]. Many
cancer cells alter iron metabolism because malignant
cells require more iron than normal cells. To increase
the labile iron pool, cancer cells have been shown to up-
regulate the expression of transferrin receptor 1 (TFR1)
and hepcidin, in addition to downregulating ferroportin
expression [3].

Deferasirox (Exjade®), an oral tridentate iron (Fe
chelator, is rapidly absorbed from the gut and has a rela-
tively long half-life (8 to 16 h). Thus, once-daily dosing
can achieve sustained circulating drug levels sufficient
for the scavenging of non-transferrin-bound plasma iron.
Although deferasirox has been associated with some ad-
verse effects such as gastrointestinal disturbance, skin
rash, and renal toxicity, it is relatively well tolerated.
Therefore, deferasirox is currently the most commonly
used iron chelator for the treatment of iron overload dis-
ease [5].

Recently, several studies have investigated the potential
of deferasirox as an anti-neoplastic agent. Deferasirox
has been reported to inhibit NF-kB activity in blood
samples from patients with myelodysplastic syndrome
and in leukemia cell lines [6]; moreover, deferasirox was
also shown to repress the mTOR pathway in myeloid
leukemia cells [7]. Regarding clinical data, one case
report showed that deferasirox treatment achieved
complete remission in patients with chemotherapy-
refractory acute monocytic leukemia [8]. Furthermore,
post hoc analysis of a multicenter trial revealed that
deferasirox improved hematological parameters in pa-
tients with myelodysplastic syndrome [9]. At present,
most reports of deferasirox as an anti-neoplastic agent
have been in hematologic malignancies; only a few stud-
ies have focused on solid tumors. Recently, deferasirox
was shown to inhibit the growth of lung and esophageal
cancer cells both in vitro and in vivo [10, 11]. However,
the effect of deferasirox on gastric cancer has not yet
been determined, and the mechanism by which defera-
sirox exerts its anti-tumor effects remains poorly under-
stood. Therefore, this study was conducted to investigate
whether deferasirox exerts anti-tumor effects on gastric
cancer cell lines and also whether deferasirox acts syner-
gistically with cisplatin.

3+)

Methods

Cell culture

Four human gastric cancer cell lines (AGS, MKN-28,
SNU-484, and SNU-638) were obtained from the Korean
Cell Line Bank. All cells were cultured in RPMI 1640
medium containing 10 % fetal bovine serum and antibi-
otics (100 U/mL penicillin and 100 pg/mL streptomycin)
in a humidified 5 % CO, incubator at 37 °C.
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Reagents and antibodies

Deferasirox (Exjade®) was donated by Novartis (Basel,
Switzerland). Goat polyclonal anti-NDRG1 (N-myc down-
stream regulated gene 1) (catalog no. ab37897) and rabbit
polyclonal anti-ferroportin (catalog no. ab85370) anti-
bodies were purchased from Abcam (Cambridge, UK).
Anti-TFR1 mouse monoclonal antibodies (catalog no.
136800) were obtained from Life Technologies (Carlsbad,
CA, USA), and FeSO, was purchased from Sigma-Aldrich
(St. Louis, MO, USA). Anti-p53, anti-p27, p21, cyclin A,
cyclin B, cyclin D1, cyclin E, CDK2, CDK4, CDK6, c-myc,
pro-caspase 3, and BAX antibodies were purchased from
Santa Cruz Biotechnology (Santa Cruz, CA, USA).
Anti-p-mTOR and pro-caspase 8 antibodies were ob-
tained from Cell Signaling Technology (Beverly, MA,
USA).

Growth inhibition assay

Growth inhibition was measured with MTT (3-[4,5-
dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide)
as previously described [12]. Briefly, cells were seeded
(2 x 10% cells/well) in 96-well microtiter plates (Nunc,
Roskilde, Denmark) and incubated at 37 °C for 24, 48, or
72 h. MTT solution (50 pL) from Sigma (2 mg/mL in
PBS) was added to each well, and the plates were incu-
bated for an additional 4 h at 37 °C. After this incubation,
the MTT solution was aspirated off. To solubilize the for-
mazan crystals formed in viable cells, 200 uL. of DMSO
was added to each well. The plates were shaken for
30 min at room temperature, and the absorbance of each
well at 595 nm was read immediately with a scanning
multiwell spectrophotometer (Bio-Rad, iMarkTM micro-
plate reader).

To determine the concentration of deferasirox re-
quired to kill 50 % of the cells (ICs5y), AGS, MKN-28,
SNU-484, and SNU-638 cells were treated with 0, 1, 10,
50, and 100 pM of deferasirox for 24, 48, and 72 h.
These results were used to select the gastric cell line
with the greatest sensitivity to deferasirox for all subse-
quent experiments.

Cell cycle analysis

After 24-h incubation of AGS cells with 0, 10, and
100 pM of deferasirox at 37 °C, the cells were washed
twice with PBS, fixed overnight with 70 % ethanol,
washed with PBS, and stained with 50 pg/mL of propi-
dium iodide (PI) containing RNase A at 50 pg/mL. The
DNA contents of the cells (10,000 cells/experimental
group) were analyzed using a FACSCanto II flow cyt-
ometer (Becton Dickinson, San Jose, CA, USA) equipped
with BD FACSDivaTM software (v6.1.3). The per-
centages of the cell populations in each cell cycle phase
(G1, S, or G2/M) were calculated from the DNA content
histograms.
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Western blot analysis

AGS cells were incubated with 0, 10, and 100 pM of defera-
sirox at 37 °C for 24 h. The cells were washed with PBS, re-
suspended in lysis buffer [50 mM Tris (pH 7.5), 1 % NP-40,
2 mM EDTA, 10 mM NaCl, 20 pg/mL aprotinin, 20 pg/mL
leupeptin, and 1 mM phenylmethylsulfonyl fluoride], and
placed on ice for 20 min. Proteins in the lysates (20-30 pg)
were resolved on 10-15 % SDS-polyacrylamide denaturing
gels and transferred to nitrocellulose membranes for 90—
120 min. Nonspecific binding sites were blocked with 5 %
skim milk for 1 h, and the membranes were then incubated
overnight with primary antibodies (all at a 1:1000 dilution).
The antibodies and the related processes that were used to
investigate were as follows: anti-TFR1 and anti-ferroportin
for iron metabolism; anti-p53, p27, p21, cyclin A, cyclin B,
cyclin D1, cyclin E, CDK2, CDK4, and CDK6 for the
cell cycle; anti-pro-caspase 3, pro-caspase 8, pro-
caspase 9, and BAX for apoptosis; anti-NDRG1 for me-
tastasis; and anti-p-mTOR and c-myc. Immunoreactive
bands were visualized with an ECL kit (Intron, Korea).

Statistical analysis

Data are presented as means + SEMs (error bars). Differ-
ences were analyzed with Student’s ¢ test. P values <0.05
were considered statistically significant.
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Results

Effect of deferasirox on the growth of gastric cancer

cell lines

The ability of deferasirox to inhibit the growth of the four
gastric cancer cell lines was determined by an MTT prolif-
eration assay. AGS, MKN-28, SNU-484, and SNU-638
cells were incubated with 0, 1, 10, 50, and 100 uM defera-
sirox at 37 °C for 24, 48, or 72 h. Deferasirox inhibited the
growth of all four gastric cancer cell lines in a dose-
dependent and time-dependent manner (Fig. la). Since
the ICs of deferasirox at 72 h was the lowest in AGS cells
(less than 10 pM), all subsequent experiments were per-
formed using these cells.

AGS cells were cultured with 10 and 20 uM of defera-
sirox either alone or in the presence of FeSO, (100 pM)
for 48 h. The inhibitory effect of deferasirox was re-
versed by FeSO, supplement (Fig. 1b).

Cell cycle analysis in AGS cells

Iron depletion induces G1/S arrest by affecting the ex-
pression of critical molecules for cell cycle progression
such as cyclin D1 and p21 [13]. The effects of defera-
sirox on the cell cycle were determined by fluorescence-
activated cell sorting (FACS) using propidium iodide.
AGS cells were incubated with 0, 10, and 100 uM of

% of Survival
[+2] =]
o o o

N
o

100
4 I I
0

SNU-484, and SNU-638 cells were incubated with 0,

A 24 hr 48hr 72 hr
1 120 120
80 - - -
s F ® 5 ®
s 4 H
& 60 @ 60 & 60
s 5 5
* a0 ® 2
o sUNds4 407 | o sunasa ° 4011 5 suNds4
= SUN638 = SUN638 = SUN638
20 |-® AGS 201 | & AGS 20| -~ AGS
o MKN28 o~ MKN28 o MKN28
0 1um  1ouM  Soum  100uM 0  1UM 10uM 50uM 100uM % 1um  toum soum 10oum
Drug Conc. (M) Drug Conc. (M) Drug Conc. (M)
140
120

Iron Deferasirox10uyM  Deferasirox20uM

Fig. 1 Inhibitory effect of deferasirox on the growth of gastric cancer cell lines. a Cell viability was measured by the MTT assay. AGS, MKN-28,
1,10, 50, and 100 puM of deferasirox at 37 °C for 24, 48, or 72 h. Deferasirox treatment resulted
in dose-dependent and time-dependent growth inhibition in all four gastric cancer cell lines. b AGS cells were cultured with 10 and 20 uM of
deferasirox either alone or in the presence of FeSO,4 (100 uM) for 48 h. The inhibitory effect of deferasirox was reversed by FeSO, supplement
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deferasirox at 37 °C for 24 h. As shown in Fig. 2a, treat-
ment of AGS cells with deferasirox for 24 h led to an ac-
cumulation of cells in G1 phase in a dose-dependent
manner (41.8 % at 0 uM, 53.7 % at 10 uM, and 77.2 % at
100 pM). This result indicates that deferasirox induces
G1 arrest. Western blot analysis of cell cycle-related pro-
teins showed that deferasirox induced the upregulation
of p21, p27, and p53, and the downregulation of cyclin
D1, cyclin B, and CDK4 (Fig. 2b). These results suggest
that the anti-proliferative effect of deferasirox is due to
cell cycle inhibition.

Effect of deferasirox on iron metabolism and other
pathways

For iron uptake into the cell, circulating iron-transferrin
complexes bind to the cell surface receptor TFR1. Iron
exits via ferroportin, an iron efflux pump that is regu-
lated by hepcidin. In cancer cells, TFR1 and hepcidin
have been shown to be upregulated and ferroportin is
downregulated, which cumulatively lead to increased
concentrations of intracellular iron [3]. The effect of
deferasirox on iron metabolism was evaluated by Western
blot analysis of TFR1 and ferroportin. The level of
TFR1 increased after 24 h of treatment with defera-
sirox. In contrast, ferroportin expression decreased
(Fig. 3a). These results are consistent with those of pre-
vious studies [10, 11].

The effects of deferasirox on apoptosis were next eval-
uated by FACS and Western blot analysis of apoptosis-
related proteins. As shown in Fig. 2a, AGS cells treated
with deferasirox for 24 h exhibited an accumulation of
cells in sub-G1 (apoptotic) phase (3.2 % at 0 uM, 3.3 %
at 10 pM, and 9.5 % at 100 uM). Moreover, deferasirox
treatment decreased the expression of pro-caspase 3,
pro-caspase 8, and pro-caspase 9 and increased the
expression of BAX (Fig. 3b). NDRG1 is known to be a
suppressor of cell growth and metastasis. Deferasirox in-
creased the level of NDRGI. In addition, c-myc and
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phospho-mTOR expression were decreased after 24 h of
treatment with deferasirox (Fig. 3b). These results sug-
gest that deferasirox induces apoptosis, inhibits distant
metastasis, and suppresses the c-myc and mTOR
pathways.

Synergistic effect of deferasirox and cisplatin

To assess whether deferasirox could enhance the effect
of cisplatin, AGS cells were cultured with or without cis-
platin and their viability was determined using the MTT
assay. Treatment with cisplatin for 48 h reduced the
number of viable cells, with an IC5, of 5-10 pM. To de-
termine whether deferasirox exerts a synergistic effect
with cisplatin, AGS cells were treated with 0, 2.5, 5, 10,
and 20 pM of deferasirox either alone or in the presence
of a fixed concentration of cisplatin (5 uM) for 48 h. As
shown in Fig. 4a, b, AGS cells treated with deferasirox
and cisplatin showed a significantly greater decrease in
cellular viability compared with cells treated with either
deferasirox or cisplatin alone (P <0.01). These results
suggest that deferasirox enhances cisplatin-mediated in-
hibition of AGS cell growth.

To investigate the molecular mechanisms underlying
this effect, Western blot analysis was used to assess the
levels of various molecules in AGS cells treated with
deferasirox (5 pM), cisplatin (5 puM), or both. The com-
bination of deferasirox and cisplatin resulted in the up-
regulation of NDRGI, p21, and p53. In contrast, this
combination resulted in the downregulation of phospho-
mTOR, ferroportin, and pro-caspase 9. These findings
suggest that deferasirox potentiates the anti-cancer
effects of cisplatin through various pathways (Fig. 5).

Discussion

In this study, we found that deferasirox inhibits the pro-
liferation of gastric cancer cells. Deferasirox was also
found to induce G1 arrest; upregulate p21, p27, and p53
expression; and downregulate cyclin D1, cyclin B, and
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Fig. 2 Effect of deferasirox on cell cycle progression in AGS cells. a AGS cells were incubated with 0, 10, and 100 uM of deferasirox at 37 °C for
24 h. Cell cycle progression was analyzed by FACS. Deferasirox treatment for 24 h led to a dose-dependent accumulation of AGS cells in G1 phase
(41.8 % at O uM, 53.7 % at 10 uM, and 77.2 % at 100 uM). b Western blot analysis of cell cycle-related molecules showed that deferasirox upregulated
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CDK4 expression. Deferasirox also induced apoptosis,
upregulated NDRG1, and downregulated p-mTOR and
c-myc. These results suggest that deferasirox exerts anti-
tumor effects in gastric cancer cells via various pathways.
Specifically, our data indicate that deferasirox alters iron
metabolism, inhibits cell cycle progression, affects
mTOR signaling and metastasis pathways, and induces
apoptosis. In addition, deferasirox appears to potentiate
the anti-proliferative effect of cisplatin in stomach can-
cer cells.

Iron is essential for cell survival but can also cause cel-
lular damage by generating reactive oxygen species [14].
Although the level of intracellular iron is tightly regu-
lated in normal cells, the level of intracellular iron is

elevated in cancer cells due to increased expression of
TFR1 and hepcidin and reduced expression of ferroportin
[3]. Since excess iron and altered iron metabolism can lead
to tumor initiation and growth, iron chelators are believed
to be promising anti-cancer agents. Several lines of evi-
dence support the idea that iron chelators are potential
anti-tumor therapeutics. Firstly, increased levels of intra-
cellular iron are known to promote DNA synthesis. Since
iron is essential for the activity of ribonucleotide reduc-
tase, a key enzyme for DNA synthesis, iron plays an im-
portant role in cell proliferation [15]. Therefore, increased
iron is required to augment ribonucleotide reductase ac-
tivity in neoplastic cells. Secondly, iron depletion can
cause G1/S arrest and induce apoptosis [13]. Cyclin D1
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binds to CDK4 and CDKS, thereby resulting in G1/S pro-
gression via phosphorylation of retinoblastoma protein
(RB). This phosphorylation in turn results in the release of
the transcription factor E2F from RB. Iron depletion is
known to decrease cyclin D1 and CDK expression.
Thirdly, excessive cellular iron can drive the Wnt signaling
pathway, which is known to be important for tumor pro-
gression [16].

We performed this study to investigate whether defer-
asirox exerts anti-tumor effects in the context of gastric
cancer. We chose deferasirox out of the numerous com-
mercially available iron chelators due to its oral availabil-
ity and relatively low toxicity. Although the precise
mechanisms by which deferasirox exerts its anti-cancer
effects are still being investigated, we hypothesized that
deferasirox inhibits cell cycle progression based on
previous studies [11, 17]. We found that deferasirox
induced G1 arrest by upregulating p21 and p27 and
downregulating cyclin D1 and CDK4. These findings
support our hypothesis that deferasirox exerts its anti-
neoplastic effects by regulating cell cycle progression.

Iron chelators can induce the expression of NDRG1, a
known metastatic suppressor, in a variety of human can-
cers [18-20]. The mechanism by which NDRG1 sup-
presses metastasis is presently unclear, although NDRG1
has been shown to inhibit cell migration and invasion by
modulating the expression of a number of adhesion mol-
ecules [21]. NDRG1 expression has been shown to be
significantly lower in cancer tissue compared with adja-
cent normal tissue; moreover, NDRG1 expression has
been shown to be inversely correlated with the metasta-
sis of some cancers, such as prostate and colorectal can-
cer [22, 23]. However, discrepant results have been
obtained regarding a possible association of NDRG1
with tumor progression. Interestingly, NDRG has a dem-
onstrated role in cell cycle control. Specifically, NDRG1

expression is upregulated via p53-mediated induction,
and NDRG1 can also induce G1/S arrest by upregulating
p21 [24]. We found that deferasirox upregulates the ex-
pression levels of NDRG1, p53, and p21. Although we did
not assay cell migration or investigate metastasis in vivo in
the present study, our findings suggest that deferasirox
may be able to inhibit tumor growth and metastasis. We
hypothesize that the mechanism by which deferasirox ex-
erts its anti-tumor effects may involve NDRG1.

Deferasirox has been shown to enhance the cytotoxic
effect of cisplatin in esophageal cancer cell lines. In
addition, cisplatin-resistant cells treated with a low con-
centration of deferasirox (5 pM) in combination with
cisplatin showed a significant reduction in cellular viabil-
ity compared with cells treated with deferasirox or
cisplatin alone [10]. We found that the combination of
deferasirox (5 pM) and cisplatin (5 pM) induced a
significant decrease in cellular viability. Moreover, this
combined treatment resulted in the upregulation of
NDRG1, p21, and p53 and the downregulation of
phospho-mTOR. Our results, therefore, suggest that
deferasirox can potentially enhance the anti-cancer effect
of cisplatin in gastric cancer cells. Moreover, the p53-
NDRG1-p21 and mTOR pathways may be involved in
the synergistic effect of deferasirox with cisplatin.

This study did have a number of limitations. Firstly,
we restricted our study to gastric cancer cell lines and
did not perform any in vivo experiments. In addition,
the expression of cell cycle-related proteins was assessed
only by Western blotting. More detailed information
could have been obtained by immunoprecipitation and
kinase assays. To determine the anti-tumor effect of
deferasirox, additional experiments including in vivo
study would be needed. Nevertheless, this is the first
study to investigate the anti-tumor effects of deferasirox
against gastric cancer.
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Conclusions

In conclusion, we found that deferasirox induced anti-
tumor effects in gastric cancer cells via various pathways.
Specifically, deferasirox upregulated NDRG1, inhibited
cell cycle progression, downregulated mTOR and c-myc
expression, and induced apoptosis. Moreover, deferasirox
potentiated the anti-cancer effects of cisplatin. Although
the efficacy of deferasirox must be confirmed in future
studies, our results indicate that deferasirox is a promising
anti-cancer therapeutic agent and may also be an effective
chemotherapy sensitizer.
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