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Abstract

hepatocellular carcinoma.

detected in dsWT1 treated cells.

treatment of hepatocellular carcinoma.

Aim: Recent studies have reported that double-stranded RNA (dsRNA) can activate gene expression by targeting
promoter sequence in a process termed RNA activation. The present study was conducted to evaluate the
potential of WT1 induction by small activating RNA targeting the WT1 promoter (dsWT1) in the treatment of

Methods: The human hepatocellular carcinoma cell line HepG2 was transfected with dsRNA by liposomes. The
expression of mMRNA and protein in cells were investigated using real-time reverse real-time quantitative PCR and
Western blot, respectively. Cell viability and clonogenicity were determined by MTT assay and clonogenicity assay,
respectively. Cell apoptosis was evaluated by flow-cytometric analysis.

Results: Expressions of WT1 mRNA and protein in dsWT1 treated HepG2 cells were significantly elevated. Inhibition
of cell viability by dsWT1 was dose-dependent and time-dependent. Reduction of the number and size of colonies
formed were found in dsWT1 treated cells. dsWT1 induced significant apoptosis in HepG2 cells. The decreased
anti-apoptotic protein Bcl-2 and elevated pro-apoptotic protein Bak expression were detected in dsWT1 treated
cells. The level of pro-caspase-3 remarkably decreased and cleaved caspase-3 and PARP fragment were also

Conclusion: These data show that RNAa-mediated overexpression of WT1 may have therapeutic potential in the

Keywords: WT1, Small activating RNA, dsRNA, Hepatocellular carcinoma, HepG2 cell, Apoptosis

Background

Hepatocellular carcinoma (HCC) is one of the most com-
mon malignancies in the world, and the prognosis of
patients with HCC is very poor [1]. As it is geographically
biased toward the several parts of Asia and Africa, China
in particular, it presents one of the major health threat in
China [2]. Although several treatments such as tumor
resection, liver transplantation, transcatheter arterial che-
moembolization (TAE), and local radiofrequencyablation
(RFA) are now used to treat HCC, there is no overall
long-term survival benefit so far [3]. Therefore, strategies
that explore new therapy for HCC are urgently needed.
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Recently, Li, et al. and others have reported that dou-
ble-stranded RNA (dsRNA) can activate gene expression
by targeting promoter sequence in a process termed
RNA activation [4,5]. This technique alters chromatin
structure leading to robust and prolonged expression of
the endogenous target gene [4]. As such, RNAa has
potential to be a useful tool for interrogating gene func-
tion by serving as an alternative to traditional vector-
based systems and an attractive strategy to activate
tumor suppressor genes for the treatment of cancer [6].

Wilms’ tumor 1 gene (WT1) is an important nuclear
factor involved in organ development and cell growth [7].
The role of WT1 in cell biology is equally complex, and
it has been shown that the repression or activation func-
tion of WT1 is dependent on the cell type and on its
level of expression [8]. Moreover, WT1 has been
described as a tumor suppressor and as an oncogene [9].
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It was reported that plasmid-mediated transfection of
WT1-KTS isoforms into hepatoma cell lines induced
p53-independent apoptosis [10]. Recently, some studies
showed WT1 is expressed in several human hepatocellu-
lar carcinoma (HCC) cell lines, and is also expressed in
tumor tissue in 42% of patients with HCC [11]. However,
the role of WT1 in hepatocarcinogenesis has not been
clarified.

In this study, we investigate the effects of the dsSRNA
that specifically targets the promoter region of WT1 on
the growth of human hepatocellular carcinoma cells
HepG2. We found that the dsRNA that specifically tar-
gets the promoter region of WT1 could up-regulate
WT1 and induce apoptosis which was related to modula-
tion of Bcl-2 family.

Materials and methods

Reagents

The sequence of dsRNAs (dsWT1-319: S,5-GAC UCA
CUG CUU ACC UGA A[dT][dT]-3;AS,5-UUC AGG
UAA GCA GUG AGU CI[dT][dT]-3’) and dsControl: S, 5'-
ACU ACU GAG UGA CAG UAG A[dT][dT]-3%AS, 5'-
UCU ACU GUC ACU CAG UAG U[dT][dT]- 3’) were
designed as previously reported [12] and chemically
synthesized by GeneChem (Shanghai, China). Primary
immunoblotting antibodies were: anti-WT1, anti-Bcl-2,
anti-Bak and anti-poly (ADP-ribose) polymerase (PARP)
(Santa-Cruz Biotechnology, Inc., Santa Cruz, CA), anti-f3-
actin (Cell Signaling Technology, Beverly, MA).

Cell culture and transfection

The human hepatocellular carcinoma cell line HepG2 was
obtained from the Shanghai Institute of Cell Biology, Chi-
nese Academy of Sciences. The cells were cultured in
RPMI 1640 medium supplemented with 10% heat-inacti-
vated fetal bovine serum, penicillin (100 U/mL), and strep-
tomycin (100 mg/L) in a humidified atmosphere
containing 5% CO, maintained at 37°C. The day before
transfection cells were plated in growth medium without
antibiotics at a density of 30-40%. Transfections of dsSRNA
were carried out by using Lipofectamine 2000 (Invitrogen,
Carlsbad, CA) according to the manufacturer’s protocol
and lasted for 24, 48 or 72 h. Cell images were taken using
a phase-contrast microscope at 100x magnification

(Olympus, Japan).

Cell viability assay

Cell viability was determined by the MTT assay. Approxi-
mately 2,000 HepG2 cells were plated in each well of a 96-
well plate. After overnight incubation, the cells were trea-
ted with dsRNAs for 48-72 h and the concentration of
dsWT1-319 arranged from 2 to 50 nM. At the various
times following treatment, the medium was removed and
MTT (20 pl of 5 mg/mL) was added to each well and
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incubated at 37°C for 4 h. The plates were spun, and the
purple colored precipitates of formazan were dissolved in
150 pl of dimethyl sulfoxide. Absorbance was measured at
490 nm using the MRX II absorbance reader (DYNEX
Technologies, Chantilly, Virginia, USA). The reduction in
viability of in dsWT1 or dsControl treated HepG2 cells
were expressed as a percentage compared to mock cells.
Mock cells were considered to be 100% viable.

Colony formation assay

Exponentially growing cells were plated at approxi-
mately 2,000 cells per well in 6-well plates and trans-
fected with dsRNA. Culture medium was changed every
3 days. Colony formation was analyzed 12 days follow-
ing transfection by staining cells with 0.05% crystal vio-
let solution for 1 hour.

Real-time quantitative PCR (qPCR)

Total RNA was extracted from cells transfected for 48 h
(mock, 50 nM dsControl, 50 nM dsWT1-319) and reverse
transcribed using random primers. The resulting cDNA
was quantified by the SYBR Premix Ex Taq™ Kit (Takara,
Dalian, China) according to the manufacturer’s protocol in
a ABI Prism 7500 Real-time PCR detection system
(Applied Biosystems, CA). GAPDH mRNA levels were
used for normalization. Values are expressed as fold-differ-
ence compared to mock. Primer sequences forWT1 are 5-
AGAGCCAGCCCGCTATTC-3’ (forward) and 5'- GGCG
TCCTCAGCAGCAAA-3’ (reverse) and, for GAPDH are
5- AAGGTGAAGGTCGGAGTCA-3’ (forward) and 5'-
GGAAGATGGTGATGGGATTT -3’ (reverse).

Detection of apoptotic cells by flow cytometry

A quantitative assessment of apoptosis was made by deter-
mining the percentage of cells with nuclei that were highly
condensed or fragmented. Cells were harvested at 48 or 72
h following dsRNAs treatment (mock, 50 nM dsControl,
50 nM dsWT1-319) as described above, and washed twice
with pre-chilled PBS and resuspended in 100 pL binding
buffer at a concentration of 1 x 10° cells/mL. Annexin V
and PI double-staining was performed using the Annexin
V-FITC Apoptosis Detection Kit (BD Biosciences, San
Jose, CA, USA) as described by the manufacturer’s proto-
col. Cell apoptosis analysis was performed by Beckman
Coulter FC500 Flow Cytometry System with CXP Soft-
ware (Beckman Coulter, Fullerton, CA, USA) within 1 h.

Western blotting analysis

Briefly, at 72 h following dsRNA treatment, cells were
harvested, washed, and lysed with lysis buffer as
described above. Protein concentration in the resulting
lysate was determined using the bicinchoninic acid pro-
tein assay kit (Pierce Biotechnology, Rockford, IL, USA)
according to the manufacturer’s instructions. Equivalent
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quantities of protein (30-50 pg) were separated by elec-
trophoresis in 8% Tris-glycine polyacrylamide gels and
transferred to nitrocellulose membranes. Membranes
were blocked and then incubated overnight with the
appropriate primary antibody at dilutions specified by the
manufacturer. They were next washed three times in 15
mL TBS-Tween and incubated with the corresponding
horseradish peroxidase (HRP)-conjugated secondary anti-
body at 1:2,000 dilution in TBS-Tween for 2 h. Bound
secondary antibody was detected using an enhanced che-
miluminescence (ECL) system (Pierce Biotechnology).

Statistical analysis
All values were expressed as mean = SD. Statistical sig-
nificance was compared between treatment group and
controls using one-way analysis of variance (ANOVA).
Data were considered statistically significant when p
values were < .05.

Results

dsWT1-319 induces WT1 gene expression in HepG2 cell
line

A dsRNA targeting the WT1 gene promoter at position-
319 relative to the transcription start site (dsWT1-319)
was used to activate WT1 expression (Figure 1). HepG2
cells were transfected with 50 nM of dsWT1-319 and a
control dsRNA (dsControl). Forty-eight hours later,
expression of WT1 mRNA and protein was detected by
qPCR and Western blotting analysis, respectively.
Expression of WT1 in dsWT1-319 treated cells was sig-
nificantly elevated. Compared to mock and dsControl
transfections, dsWT1-319 caused an over 2-fold induc-
tion in both mRNA and protein level (Figure 1).

dsWT1-319 inhibits HepG2 cell growth, viability and
clonogenicity

The dsWT1-319 and dsControl were transfected into
HepG2 cells at the concentration of 50 nM. At 48 h and
72 h following transfection, phase-contrast images of
cells from the same fields were taken. Morphologically,
mock and dsControl transfected cells maintained
healthy growth after transfection, whereas cells trans-
fected with WT1 dsRNA gradually lost viability and the
number were evidently less after 72 h (Figure 2).

The effect of dsWT1-319 on proliferation and viability
of HepG2 cells was determined with varying concentra-
tions of dsWT1-319 and times (48-72 h) by MTT assay.
As shown in Figure 3, the effects of dsWT1-319 on cell
viability occurred within 48 h and at dsRNA concentra-
tions as low as 2 nM. Inhibition of cell viability by
dsWT1-319 (10-50 nM)was both dose- and time-depen-
dent. Cell viability with dsRNA treatment at concentra-
tions of 2-50 nM after 48 h ranged from 87.7% to
76.0%, whereas after 72 h ranged from 83.6% to 57.8%
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Figure 1 dsWT1-319 induces WT1 gene expression in HepG2
cell line Cells were transfected with 50 nM dsRNA for 48 h. (a)
A schematic representation of the WT1 promoter and the location
of the dsRNA target. (b) Induction of WT1T mRNA expression was
detected by gPCR. The results were normalized to GAPDH and
presented as means + SD of three independent experiments.
(Mock:1.00 + 0.11, dsControl:0.99 + 0.10, dsWT1-319:237 + 0.24). (c)
Induction of WT1 protein expression was detected by Western blot
analysis. B-actin levels were also detected and served as a loading
control. The WT1 protein expression levels were normalized to -
actin and the results are presented as means + SD of three
independent experiments. (Mock:1.00 + 0.01, dsControl:1.10 + 0.10,

dsWT1-319:2.10 + 0.25)

(Figure 3). Clonogenicity assay revealed the reduction of
the number and size of colonies formed in dsWT1-319
treated cells(Figure 4).



Qin et al. World Journal of Surgical Oncology 2012, 10:11 Page 4 of 8
http://www.wjso.com/content/10/1/11

dsContro ds WT1-319

48h

72h

Figure 2 dsWT1-319 targeting the WT1 promoter inhibited HepG2 cell growth. HepG2 cells were transfected with 50 nM dsWT1-319, 50
nM dsControl or mock. Cell images were taken at 48 and 72 h after transfection at 100x magnification. dsWT1-319 transfected cells were less

dense and more dead cells were observed than dsControl and mock transfections.
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Figure 3 dsWT1-319 inhibited cell viability of HepG2 cells in a dose-dependent and time-dependent manner by the MTT assay.
Reduced cell viability was observed with dsWT1-319 treatment (2-50 nM) at 48 and 72 h. The data are presented as means + SD (n = 8).
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Figure 4 HepG2 cells were plated at 1,000 cells per well in 6-well tissue culture plates and transfected with mock, dsControl, or
dsWT1-319. Cells were grown for 12 days and analyzed for colony formation by staining with crystal violet. Shown are representative
photographs taken of tissue culture plates from each dsRNA treatment group following staining for colony formation.

.
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dsWT1-319 induces significant apoptosis in HepG2 cells

The dsWT1-319 mediated loss of HepG2 cell viability and
apoptosis were evaluated by flow-cytometric analysis of
dsRNA-treated cells labeled with PI and Annexin V. As
shown in Figure 5, we found that dsWT1-319 caused a
time-dependent increase in HepG2 cell apoptosis. The
number of early apoptotic cell at 48 h (5.5 + 0.7% vs 1.2 £
0.3%) and 72 h (2.1 + 0.4% vs 0.9 £ 0.3%) following
dsWT1-319 treatment increased significantly as compared
with control treatments(P < 0.05), and number of late
apoptotic cell at 48 h(8.3 + 1.1% vs 2.2 + 0.4) and 72 h
(17.9 £ 2.3 vs 2.1 £ 0.3) following dsWT1-319 treatment
also increased significantly as compared with control treat-
ments(P < 0.01) These data also showed that dsWT1-319

treatment resulted in cell necrosis(15.4 + 1.7%) in cells
treated for 72 h, which might be a secondary event in the
apoptotic process.

The relationship of dsWT1-319 treatment with the
expression of apoptosis related proteins

Bcl-2 is known as an anti-apoptotic protein and Bak as an
proapoptotic protein, so we detected their expression
after 50 nM dsWT1-319 treatment for 72 h. Consistent
with the significantly increased HepG2 apoptosis, the
level of Bcl-2 was decreased and level of Bak were ele-
vated in dsWT1-319 treated cells compared to mock and
dsControl treated ones (Figure 6). Caspase-3 and poly
(ADP-ribose) polymerase (PARP) play central roles in
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Figure 5 dsWT1-319 treatment induced time-dependent apoptosis in HepG2 cells detected by flow cytometry using a double-staining
method with FITC-conjugated annexin V and Pl. Annexin V-stained cells indicates the early apoptotic cells, whereas Annexin V + propidium
iodide-stained cells are the late apoptotic cells. A representative blot is shown from three independent experiments with identical results.
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Figure 6 The expressions of apoptosis-related proteins in
treated cells were analyzed by Western blotting. 3-actin levels
were also detected and served as a loading control. A
representative blot is shown from three independent experiments
with identical results. Fifty nanomolars dsWT1-319 treatment
reduced the level of Bcl-2, increased the level of Bak, and activated
caspase-3 and PARP in HepG2 cells at 72 h following treatment.

apoptosis. We observed that the level of pro-caspase-3
remarkably decreased in 50 nM dsWT1-319 treated cells
at 72 h following treatment. The cleaved caspase-3 and
89 kDa cleaved PARP fragment were detected in dsWT1-
319-treated samples(Figure 6). Thus the significant
changes of apoptosis- related proteins caused by dsWT1-
319 confirmed the observed apoptosis above and the
anti-tumor effect of dsWT1-319 on HepG2 cells.

Discussion

RNA activation (RNAa) is a newly discovered mechanism
of gene activation directed by small double-stranded
RNAs (dsRNAs) [4,5,12,13]. It offers similar benefits as
RNAI by utilizing small dsRNAs, while representing a
new method for gene overexpression [12]. Several models
of RNAa have been reported or proposed including tran-
scriptional activation by targeting promoter-specific
sequences [4,12,14] and/or gene antisense transcripts
[15,16] leading to changes in chromatin structure at the
targeted gene. RNAa is generally potent and long-lasting
making it a promising therapeutic strategy for diseases
that can be corrected by stimulating gene expression
[4,12]. Vector-based overexpression is the traditional
approach to evaluate the function of tumor suppressor
genes or oncogenes in cancer cells. However, all vector-
based systems require ectopic expression from an exo-
genous construct. Ectopic expression vectors do not typi-
cally resemble natural genes [17]. Ideally, RNAa can be
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applied as a cancer treatment to re-activate tumor sup-
pressor or pro-apoptotic genes that are otherwise not tar-
getable by current therapeutic strategies [12].

WT1 was initially discovered as a tumor suppressor in
Wilms’ tumor (WT), a pediatric kidney malignancy that
affects approximately 1/10,000 children. The Wilms’
tumor suppressor protein WT1 functions as a transcrip-
tional regulator of genes controlling growth, apoptosis,
and differentiation [18]. Recent findings have shown that
wildtype WT1 is expressed in a variety of tumors from
different origins that normally do not express WT1 [7].
Several reports have revealed an antiapoptotic function
for WT1, suggesting that WT1 acts as an oncogene in
some tumors [18]. However, the ability of WT1 to induce
growth suppression and suppress tumorigenicity in mice
also highlights its role as a tumor suppressor. For exam-
ple, The stable introduction of the WT1 -/- isoform into
G401, a kidney-derived tumor cell line that does not
express endogenous WT1, alters cellular morphology
and reduces tumor formation in athymic nude mice [19].
Furthermore, expression of WT1 in osteosarcoma cell
lines, Saos-2 and U20S can alter signaling pathways and
induce apoptosis [20], and plasmid-mediated transfection
of WT1-KTS isoforms into in HCC cell lines, Hep3B and
HepG2 also induced apoptosis [10].

Recently, Li et al [12] has confirmed that dsWT1-319
can up-regulate expression of WT1 in both African green
monkey (COS1) and chimpanzee (WES) cells. In this
study, we focus on investigating the effects and efficacy
of WT1 induction by small dsRNA in the treatment of
hepatocellular carcinoma. We found that dsWT1-319
induced activation of WT1 inhibited cell viability in a
dose- dependent and time-dependent way by MTT assay
and it was related to apoptotic cell death after treatment.
The role of WT1 in hepatocarcinogenesis has not been
clarified. It is reported that WT1 is expressed in several
human hepatocellular carcinoma (HCC) cell lines,
including PLC/PRE/5 and HepG2, and in HCC tumor tis-
sue in a high proportion of patients, up-regulation of
WT1 in liver cells promotes apoptosis resistance and cel-
lular dedifferentiation. Moreover, overexpressed WT1
was associated with a poor prognosis of HCC [11,21].
The mechanism of WT1 in the regulation of apoptosis
remains unclear, several genes that are central to the
control of apoptosis have been proposed as targets of
WT1, including Bcl-2, Bcl-2A1, Bak, c-myc, and JunB
[18,22]. Also, WT1 can downregulate growth factor
receptors such as the epidermal growth factor receptor
(EGFR) and the insulin receptor, altering the balance of
survival signals towards death [10].

The process of apoptosis is under the control of a
variety of internal and external signals that activate the
mitochondrial pathway or the death receptor pathway,
respectively [22,23]. Members of the multidomain Bcl-2
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gene family play a key regulatory role in the mitochon-
drial pathway by eithersuppressing or promoting apop-
tosis. The antiapoptotic members include Bcl-2, Bcl-XL,
Bfl-1, Bcl-W, and Mcl-1, whereas the proapoptotic
members include Bax, Bak, and Bik. Activated Bax/Bak
induces apoptosis by causing outer mitochondrial mem-
brane permeabilization and release of cytochrome c,
leading to cleavage of caspase-9, caspase-3, and even-
tually poly(ADP-ribose) polymerase (PARP). The activa-
tion of Bax/Bak is blocked by Bcl-2/Bcl-XL that
function as decoy receptors. Ultimately, it is the net bal-
ance between antiapoptotic and proapoptotic proteins in
the cell that determines cell fate [22]. Activation of cas-
pase-9, caspase-3 plays a central role in apoptosis by
initiating cell death [24]. Caspase-3 has substrate specifi-
city for the amino acid sequence Asp-Glu-Val-Asp
(DEVD) and cleaves poly (ADP-ribose) polymerase
(PARP). And activated caspase-3 is the key mediator of
cell apoptosis cleaving intracellular proteins vital for cell
survival and growth, such as PARP. It has been demon-
strated that the proteolytic cleavage of PARP is a bio-
chemical event during apoptosis [25,26]. In this study,
dsWT1-319 decreased anti-apoptotic protein Bcl-2,
increased proapoptotic protein Bak and activated cas-
pase-3, leading to PARP cleavage and the induction of
apoptosis in dsWT1-319 treated HepG2 cells.

In conclusion, this study demonstrates that dsWT1-319
induced apoptosis in human hepatocellular carcinoma
HepG2 cells. This is mediated through up-regulation of
Bak, down-regulation of Bcl-2, and activation of caspase-
3 and PARP. The results of our study provide evidences
that up-regulation of WT1 by dsWT1-319 may have
therapeutic potential in the treatment of hepatocellular
carcinoma
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