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Abstract 

This study investigates the genetic factors contributing to the disparity in prostate cancer incidence and progression 
among African American men (AAM) compared to European American men (EAM). The research focuses on employ-
ing Weighted Gene Co-expression Network Analysis (WGCNA) on public microarray data obtained from prostate 
cancer patients. The study employed WGCNA to identify clusters of genes with correlated expression patterns, which 
were then analyzed for their connection to population backgrounds. Additionally, pathway enrichment analysis 
was conducted to understand the significance of the identified gene modules in prostate cancer pathways. The 
Least Absolute Shrinkage and Selection Operator (LASSO) and Correlation-based Feature Selection (CFS) meth-
ods were utilized for selection of biomarker genes. The results revealed 353 differentially expressed genes (DEGs) 
between AAM and EAM. Six significant gene expression modules were identified through WGCNA, showing varying 
degrees of correlation with prostate cancer. LASSO and CFS methods pinpointed critical genes, as well as six common 
genes between both approaches, which are indicative of their vital role in the disease. The XGBoost classifier validated 
these findings, achieving satisfactory prediction accuracy. Genes such as APRT, CCL2, BEX2, MGC26963, and PLAU 
were identified as key genes significantly associated with cancer progression. In conclusion, the research under-
lines the importance of incorporating AAM and EAM population diversity in genomic studies, particularly in cancer 
research. In addition, the study highlights the effectiveness of integrating machine learning techniques with gene 
expression analysis as a robust methodology for identifying critical genes in cancer research.
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Introduction
Prostate cancer is a substantial public health concern 
within the field of oncology due to the notable dispari-
ties observed in its incidence and progression across vari-
ous population groups. African American men (AAM), 
specifically, exhibit a higher incidence rate and a higher 
probability of receiving advanced-stage diagnoses com-
pared to men of other groups, thereby demonstrating a 
disproportionate impact [1]. Prior studies have indicated 
that genetic factors may contribute to the susceptibil-
ity and severity of prostate cancer, with particular gene 
mutations or variants being more common in distinct 
ethnic groups [2–4]. An example of a genetic variation 
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in the NEDD9 gene has been discovered, which is closely 
linked to a higher likelihood of developing prostate can-
cer in individuals of African population. This genetic 
variant causes the overexpression of the NEDD9 gene, 
facilitating the onset and advancement of prostate cancer 
[3]. In addition, a recent study has investigated the con-
nections between genetic variations in 30 alternatively 
spliced genes with the risk, aggressiveness, and survival 
rates of prostate cancer in both white and African-Amer-
ican populations. The study revealed that variations in 
single-nucleotide polymorphisms of genes that are alter-
natively spliced and connected to population descrip-
tors are linked to the risk, aggressiveness, and survival 
of prostate cancer [2]. Nevertheless, the mechanisms 
contributing to the elevated occurrence and severity 
of prostate cancer in African Americans have not been 
definitively determined. Possible factors include socioec-
onomic status, biological aggressiveness, family history, 
and variations in genetic susceptibility [5–8].

From a biological standpoint, evidence indicates inher-
ent variations in tumor features among different popula-
tion groups. These variances may manifest themselves as 
varying rates of tumor growth or aggressiveness, requir-
ing a more thorough investigation of hereditary fac-
tors. Nevertheless, the historical under-representation 
of minority groups in clinical trials and research studies 
impedes the development of a comprehensive under-
standing of cancer, thereby restricting the ability to gain 
insights into the disease’s behavior among diverse popu-
lations. Powell and his colleagues [9] discovered clear dif-
ferences in the patterns of gene activity in prostate cancer 
between African-American men (AAM) and European-
American men (EAM). Their examination of 639 tumor 
samples unveiled noteworthy group-specific dispari-
ties: A total of 95 genes had increased expression levels 
in AAM samples, whereas 132 genes displayed elevated 
expression levels in EAM samples. These findings empha-
size the significance of considering population diver-
sity in the field of cancer genetics and the necessity for 
tailored treatment strategies [2]. Recent advancements 
in the field of machine learning, have demonstrated the 
effectiveness of machine learning models in identifying 
gene biomarkers associated with prostate cancer [10, 11]. 
These authors employed various machine learning algo-
rithms, including hierarchical clustering and support 
vector machines, to accurately classify the different stages 
and locations of prostate cancer. Using these models, rel-
evant biomarkers were identified. These biomarkers sig-
nificantly contribute to the understanding the molecular 
mechanisms underlying prostate cancer and provide a 
basis for more personalized and effective treatments.

The objective of this research is to address these gaps 
in knowledge and investigate the genetic foundations of 

these discrepancies through the utilization of Weighted 
Gene Co-expression Network Analysis (WGCNA) on 
microarray data obtained from prostate cancer patients 
belonging to two separate population cohorts. The moti-
vation for doing such an analysis is based on the com-
plex nature of the inequality observed in prostate cancer. 
Through the analysis of microarray data, our goal is to 
discern gene expression patterns and possible biomark-
ers that exhibit notable differences among the popula-
tion groups under investigation. This method not only 
enhances the overall comprehension of disparities in 
prostate cancer, but it also facilitates the development of 
more customized and efficient diagnostic and therapeu-
tic strategies, with the ultimate goal of diminishing the 
impact of prostate cancer on all groups.

Materials and methods
Flowchart of the study to find the key genes involved in 
prostate cancer in European-American Men (EAM) and 
African-American Men (AAM) is presented in Fig. 1.

Data acquisition and preprocessing
In this study, publicly available microarray gene expres-
sion data (GSE41967) was retrieved at Gene Expression 
Omnibus (GEO, http://​www.​ncbi.​nlm.​nih.​gov/​geo/). The study 
utilized primary tumor samples from the Gene Expres-
sion Omnibus (GEO) dataset (GSE41967) from prostate 
cancer patients [9]. The dataset included 270 African 
American men (AAM) and 369 European American men 
(EAM) collected from the Wayne State University (WSU) 
pathology core in Detroit, Michigan during 1991 to 1996. 
No samples were excluded, and all 639 samples were ana-
lyzed. Gleason’s grade of the tumor was recorded with 
tumors stratified into aggressive (grades 7(4 + 3), 8, 9, and 
10) and non-aggressive (grades ≤ 7(3 + 4)) categories. The 
dataset did not provide data on either metastatic disease 
or detailed geographical information about the individual 
patients and focused solely on primary tumors. The plat-
form used for the gene microarray was GPL16230. The 
raw data were received and read into the R statistical envi-
ronment (v. 4.1.2) using the GEOquery package (v. 2.62.2). 
The expression matrix was divided into AAM and EAM 
groups. A non-paired t-test provided by Limma [12] 
was used to find differentially expressed genes (DEGs). 
P-values < 0.01 were chosen as the threshold for the 
identification of DEGs.

Weighted Gene Co‑expression Network Analysis (WGCNA)
The fundamental basis of our scientific approach relied 
on WGCNA, a systems biology technique employed to 
identify clusters (modules) of genes that exhibit strong 
correlations. By employing this method, we were able 
to create a scale-free network that accurately depicts 

http://www.ncbi.nlm.nih.gov/geo/
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the complex patterns of gene expression connections 
found in the prostate cancer data. Using this network, 
we were able to detect groups of genes that have simi-
lar patterns of expression. These gene modules were 
then compared with the population backgrounds of 
the patient samples to find any correlations. The mod-
ules are deemed statistically significant based on their 
correlation coefficients and p-values. This phase was 
essential in identifying precise gene clusters that may 
have a significant impact on the differences reported in 
prostate cancer among different population groups.

The WGCNA R library (v. 1.71) [13] was conducted 
across the DEGs profile, including 353 genes. The gene 
dendrogram was employed for module detection by the 
dynamic tree cut method (minimum module size = 20, 
cutting height = 0.85, and deepSplit = 2). For network 
construction, the selected power (β) was set to 5. Mod-
ule membership (MM) and gene significance (GS) were 
generated for selected modules. The hub-ness of a gene 
in each module was identified through the “chooseTo-
pHubInEachModule” function.

Pathway enrichment analysis
We conducted a pathway enrichment analysis using 
the DAVID database (https://​david.​ncifc​rf.​gov/) to 
obtain a better understanding of the significance of the 
selected modules in terms of pathways. The pathways 
were considered significant according to p < 0.01. The 
ggplot2 package (v. 3.3.6) was used to visualize the path-
way enrichment analysis of the selected modules. This 
research facilitates comprehension of the various mecha-
nisms by which the discovered genes may contribute to 
the observed differences in prostate cancer among differ-
ent population groups.

Least absolute shrinkage and selection operator
LASSO is a regularization technique developed by Tib-
shirani [14] to improve feature selection. A subset of 
informative features is selected by shrinking the regres-
sion coefficients to zero in the linear regression model. 
LASSO performs L1 regularization resulting in sparse 
models with few coefficients. The larger the penalties, the 
closer the coefficients are to zero, resulting in a simpler 

Fig. 1  Flowchart of the study to find the key genes responsible for disparities in prostate cancer between African-American Men (AAM) 
and European-American Men (EAM)

https://david.ncifcrf.gov/
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model. The purpose of the LASSO algorithm is to mini-
mize the sum of squares of the error:

In the equation, some coefficients of β are shrunk to 
zero; therefore, the output model is easier to interpret. 
The tuning parameter λ controls the L1 penalty strength. 
When λ equals zero, no feature is removed from the 
model. When λ increases, more coefficients are removed. 
As a rule, as λ increases, the degree of bias also increases. 
On the other hand, variance decreases with increasing λ.

To select cancer-responsive gene combinations reli-
ably associated with prostate cancer, we used the R pack-
age  glmnet  (Version 4.1.4) [15] to fit a logistic LASSO 
regression model on the 353 DEGs, which were all 
included in the modules categorized by WGCNA. Here, 
we performed tenfold cross-validation using the ‘cv.
glmnet’ function, and parameters were set as alpha = 1, 
family = "binomial".

Correlation‑based feature selection
Correlation based Feature Selection (CFS) is a filter 
method that measures the correlation between two 
nominal features. It is a fully automatic algorithm, with-
out imposing any thresholds or limits on the number 
of selected features. Redundant features that might be 
highly correlated with other features are screened out. 
The acceptance of a feature will depend on its ability to 
predict classes in areas of the instance space not already 
predicted by other features. The CFS function is calcu-
lated as:

In the above equation, Merits is the heuristic merit of a 
subset (s) of k features, rcf stands for the average feature 
class correlation, and rff is the average inter-correlation 
of features. The Eq.  2, is Pearson’s correlation between 
standardized variables [16].

In this study, CFS was performed using Waikato 
Environment for Knowledge Analysis (WEKA) ver-
sion 3.7.4 using the BestFirst search method. The space 
of attribute subsets was searched with default param-
eters (direction = Forward; LookUpCasheSize = 1; and 
SearchTermination = 1).

Validation and reproducibility
In order to guarantee the strength and reliability of our 
results, we utilized stringent cross-validation methods 
and assessed the performance of XGBoost, a gradient 
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boosting method incorporating the regression tree [17] 
to classify AAM and EAM samples based on the blue 
and yellow modules. XGBoost combines weak learners to 
create a single strong learner. Package ‘xgboost’ version 
1.6.0.1 was used for the classification and Ckmeans.1d.dp 
version 4.3.4 was used for the importance ranking of the 
selected features. Cross validation XGBoost model was 
conducted, splitting the data into 75% training and 25% 
testing.

Results
All samples were divided into AAM and EAM and sub-
mitted to the Limma package to find differential genes 
between the two groups. We found 353 DEGs, which 192 
were up and 161 were down regulated in AAM in con-
trast to EAM. The expression matrix of these 353 DEGs 
was considered as input for WGCNA analysis.

Weighted Gene Co‑expression Network Analysis (WGCNA)
The connectivity graph, depicted in the right plot in 
Fig. 2a, demonstrates the correlation between the power 
of soft-thresholding and the scale independence of the 
network. The left plot in Fig. 2a displays the relationship 
between the scale-free topology model fit (R2) and sev-
eral soft-thresholding powers. A greater R2 value signi-
fies superior adherence to the scale-free topology, which 
is a characteristic feature of resilient biological networks. 
Our analysis identified an optimal soft-thresholding 
power (5) where the network achieves high-scale inde-
pendence while maintaining a moderate level of mean 
connectivity. This threshold guarantees that the network 
achieves an optimal balance between sparsity and den-
sity, thereby enabling precise identification of gene mod-
ules through their co-expression patterns.

The cluster dendrogram (Fig. 2c) depicts the hierarchi-
cal clustering of genes. The vertical axis of the dendro-
gram reflects the dissimilarity metric, which indicates the 
degree of difference across gene modules. Every branch 
in the dendrogram corresponds to a specific gene, and 
the point at which branches combine indicates the level 
of similarity between the corresponding gene expression 
profiles. The dynamic tree cut exhibited in the dendro-
gram revealed the presence of multiple unique clusters. 
These clusters denote collections of genes with analo-
gous expression patterns. These modules are particu-
larly intriguing because they may contain genes that 
have essential functions in the distinct development or 
advancement of cancer in different population groups. 
A total of 353 DEGs out of the 639 applied to construct 
a dendrogram resulted in the identification of 6 modules 
based on average dynamic tree clipping and hierarchical 
clustering (Fig. 2b).
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The network TOM plot has been visualized in Fig. 2d, 
where the x-axis and y-axis correspond to the logarithm 
of whole network connectivity and the corresponding 
frequency distribution, respectively. In this plot, modules 
are formed separately as ’fingers’, and genes with high 
intramodular connectivity are located at the tips of the 
module branches.

Module‑Trait relationship analysis
The module-trait association is the most pivotal part of 
our findings, as it establishes a correlation between gene 
modules and distinct populatio groups.

The research revealed six modules that have a robust 
positive or negative connection with AAM and EAM. 
This suggests that these genes may have a substan-
tial impact on the observed population differences in 
prostate cancer (supplementary Sheet 1 and 2). These 
modules were visualized in Fig.  3. The yellow (r = 0.28, 
p = 3 × 10−13) and green (r = -0.33, p = 2 × 10−17) mod-
ules were most positively and negatively correlated, 
respectively, with prostate cancer. Subsequently, six co-
expression modules were clustered, with the blue module 
having the strongest similarity to the turquoise module 
(Fig. 3).

Fig. 2  Analysis of network topology for various soft-thresholding powers (a). The left and right plots display the scale-free fit index and mean 
connectivity (y-axis), respectively, as a function of the thresholding power (x-axis). Gene dendrogram obtained by average linkage hierarchical 
clustering (b). The color row underneath the dendrogram shows the module assignment determined by the Dynamic Tree Cut and merged 
dynamic. Hierarchical clustering and heatmap plots of module eigengenes (c). Each row and column in the heatmap corresponds to one module 
eigengene (labeled by color) or weight. In the heatmap, blue color represents low adjacency (negative correlation), while red represents high 
adjacency (positive correlation). Network heatmap plot (d). Branches in the hierarchical clustering dendrograms correspond to modules displayed 
in the color bars below and to the right of the dendrograms. High co-expression blocks of interconnected genes are indicated by lighter colors. 
Genes with high intramodular connectivity are located at the tip of the module branches since they display the highest interconnectedness 
with the rest of the genes in the module. Dark color denotes low topological overlap, and progressively lighter red denotes higher topological 
overlap. Lighter squares along the diagonal correspond to modules
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Pathway enrichment analysis
Figure  4 presents the pathway enrichment analysis of 
major modules. The blue and yellow modules exhibit a 
strong correlation with the prostate cancer pathway.

Least absolute shrinkage and selection operator
Using LASSO on the gene expression matrix of 353 
DEGs, a set of 104 genes was identified (Fig. 5). The gene 
list of 104 selected genes has been reported in Supple-
mentary Sheet 3.

Correlation‑based feature selection
Employing CFS with a correlation threshold of 1, a set of 
10 genes was identified. The discriminative genes selected 
through CFS are GI_10092618-S-4, GI_10835022-S-8, 
GI_37059795-S-1, GI_37059795-S-5, GI_46255021-A-6, 
GI_51477209-S-8, GI_53729348-S-2, GI_56119169-S-5, 
GI_71773149-A-8, GI_9945331-S-4 (NFKBIA, ITPR1, 
MGC26963, MGC26963, ERG, BEXL1, PLAU, CCL2, 
APRT, and GADD45B, respectively).

Validation based on the high‑correlated modules
In our experiment, we performed a comparison of the 
XGBoost classifier, setting the parameters of XGBoost as 
default (learning_rate = 0.3, gamma = 0, max_depth = 6, 
and λ = 1). The number of rounds and cv.nfold were set 
to 50 and 5, respectively. Table 1 gives the performance 

of XGBoost results for validation in train and test sam-
ples. The model archives 0.7516 and 0.7125% prediction 
accuracy in train and test sets, respectively, indicating 
satisfactory results. The ROC curve for validation based 
on the high-correlated modules in discriminating Euro-
pean-American Men (EAM) and African-American Men 
(AAM) samples can be observed in Fig.  6. Clearly, the 
XGBoost classifier performs much better in sensitivity 
and recall compared to the other parameters (Table  1). 
The confusion matrix for XGBoost, performed on the 
out-of-fold (OOF) predicted class probabilities in the 
training data and test data, is provided in Fig. 7a and b, 
respectively. Importance ranking of the genes in blue and 
yellow modules was performed, since these two modules 
exhibited a strong correlation with pathways involved in 
prostate cancer. The top 30 genes affecting prostate can-
cer based on the blue and yellow modules are presented 
in Fig. 7c.

Discussion
The dendrogram identifies six modules based on the 
similarity of expression patterns among their genes. The 
modules are denoted by various colors (e.g., MEyellow, 
MEblue, MEturquoise, etc.), and their association with 
the population groups is indicated by numerical values 
and significance levels (Fig.  4). Based on the analysis of 
the link between modules and traits, a significant positive 

Fig. 3  Consensus network modules correlated with population in European-American Men (EAM) and African-American Men (AAM). Correlation 
coefficients along with p-value in parenthesis underneath are presented. The legend at right is modules correlated to the population
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Fig. 4  Pathway enrichment analysis of major modules obtained through weighted gene co-expression network analysis (WGCNA) in prostate 
cancer between European-American Men (EAM) and African-American Men (AAM)
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or negative association with either group is observed. A 
positive number signifies that the genes within this mod-
ule have more expression in AAM compared to EAM. A 
negative number signifies that the genes within the mod-
ule have lower levels of expression in AAM compared to 
EAM.

This implies that the genes inside these modules exhibit 
distinct behavior among different population groups, 
indicating the presence of biological processes or mech-
anisms in cancer that are affected by these difference. 

These modules are crucial for comprehending the dis-
tinct manifestation or progression of cancer in various 
populations.

The blue and yellow modules exhibit a strong correla-
tion with the prostate cancer pathway, suggesting that 
the genes within these modules might contribute to the 
development and progression of prostate cancer. By pri-
oritizing the modules that are enhanced in prostate can-
cer pathways, we may potentially discover crucial genes 
and molecular interactions that are unique to the disease. 
These findings could serve as possible biomarkers for 
diagnosis or targets for treatment. Conducting functional 
tests to validate the functions of these genes and path-
ways in prostate cancer is crucial.

A total of 104 genes were discovered using LASSO. 
Using CFS with a correlation threshold of 1, a group of 
10 genes was subsequently found. Notably, six genes were 
found to be common between these two approaches. The 
precision rate of the six shared genes achieved a level of 
73%. The identification of these six genes, through the 
combined utilization of LASSO and CFS techniques, 
signifies a momentous advancement in comprehending 
the essential genetic elements that contribute to prostate 
cancer. The presence of these often-found genes sug-
gests a significant connection to the studied condition, 
as they are supported by both research methods. Addi-
tional investigation and examination of these genes may 
provide a crucial understanding of their functional roles, 
pathways, and their significance in relation to the causes, 

Fig. 5  Genes were screened by Least absolute shrinkage and selection operator (LASSO) regression analysis (a). The LASSO model 
and cross validation method were used to screen genes. Cross validation plot indicated when the number of variables was 104, the partial 
likelihood deviation was the minimum (b). Dotted vertical lines were drawn at the optimal values by using the minimum criteria and the 1 standard 
error (SE) of the minimum criteria

Table 1  Comparison of performance metrics for the XGBoost 
classifier to distinguish European-American Men (EAM) and 
African-American Men (AAM)

Parameters train Test

Accuracy 0.7516 0.7125

Sensitivity 0.8159 0.8043

Specificity 0.6634 0.5882

Pos Pred Value 0.7687 0.7255

Neg Pred Value 0.7243 0.6897

Precision 0.7687 0.7255

Recall 0.8159 0.8043

F1 0.7916 0.7629

Prevalence 0.5783 0.5750

Detection Rate 0.4718 0.4625

Detection Prevalence 0.6138 0.6375

Balanced Accuracy 0.7396 0.6963
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prognosis, or therapy approaches for prostate cancer. 
Furthermore, exploring the regulatory networks or inter-
actions involving these genes could reveal new insights 
into comprehending the process of the disease.

Adenine phosphoribosyltransferase (APRT) is a meta-
bolic enzyme that participates in the production of poly-
amines, which are essential for the rapid growth of cancer 
cells. APRT (Adenine Phosphoribosyltransferase) has the 
potential to be a target for cancer treatment, as suppress-
ing the APRT gene has harmful effects on leukemia cell 
lines [18].

CCL2 is involved in the onset and advancement of sev-
eral types of malignancies. It can stimulate the growth 
and multiplication of tumor cells through various 
mechanisms and facilitate the migration of cancer cells. 
Additionally, it can attract cells that inhibit the immune 
system to the surrounding environment of the tumor, 
thereby promoting the progression of cancer [19]. CCL2 
is the most potent chemoattractant in the tumor micro-
environment, responsible for attracting macrophages and 
initiating inflammation. It exerts chemotactic effects on 
neighboring host cells inside the tumor microenviron-
ment and collaboratively influences their differentia-
tion with other cytokines. Nevertheless, the presence of 
CCL2 in tumor patients leads to a detrimental impact 
on their prognosis, as it leads to the buildup of cell sub-
types that suppress the immune system [20]. In addi-
tion, CCL2 attracts immune cells, specifically monocytes 
and macrophages, which subsequently transform into 
immunosuppressive myeloid-derived suppressor cells 

(MDSCs) and M2 macrophages. This recruitment wors-
ens the immunosuppressive tumor microenvironment 
and undermines the effectiveness of treatment. In their 
2021 study, Liu and colleagues discovered that CCL2 is 
the primary mediator released by tumor-associated adi-
pocytes into the surrounding extracellular environment. 
They also developed a protein trap that effectively binds 
to CCL2 with strong affinity and specificity, allowing for 
the manipulation of CCL2-mediated immune responses. 
This approach demonstrated improved treatment effec-
tiveness and significant suppression of tumor develop-
ment [21].

BEX2 and its homolog BEX1 have a strong correlation 
in their expression and are members of a cluster that is 
enriched with genes involved in the ER response and 
apoptosis. The gene BEX2 has been recognized as being 
expressed at higher levels in a specific group of breast 
tumors that have estrogen receptors (ER). Additionally, it 
has been linked to better results following treatment with 
tamoxifen [22]. Nevertheless, there is a lack of explicit 
data about the involvement of BEXL1 in cancer.

MGC26963, alternatively referred to as Sphingomy-
elin synthase 2 (SGMS2), is a genetic element that has 
been associated with multiple forms of cancer. Research 
has demonstrated a significant association between 
the expression of SGMS2 mRNA and the presence of 
tumor-associated macrophages (TAMs), as well as a 
negative impact on the prognosis of patients with pan-
creatic ductal adenocarcinoma (PDAC) [23]. High lev-
els of M2-polarized macrophages in the original tumor 

Fig. 6  ROC curve analysis to test the validity of gene expression of high-correlated modules in discriminating European-American Men (EAM) 
and African-American Men (AAM) samples
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of triple-negative breast cancer (TNBC) are linked to 
a dismal prognosis. Blocking SGMS2 or genetically 
eliminating its expression decreases the M2 polariza-
tion of tumor-associated macrophages and hinders the 

advancement of tumors in triple-negative breast cancer 
(TNBC) [24]. Ovarian cancer exhibits a unique upregu-
lation of SMS2, which actively promotes the migration, 
development, and survival of cancer cells. Suppression 

Fig. 7  Confusion matrices for XGBoost, performed on the Out-of-fold (OOF) predicted class probabilities in the training data (a) on the test data (b). 
Importance ranking of top-30 genes affecting prostate cancer occurrence derived from applying the XGBoost model predictions based on the blue 
and yellow modules identified through weighted gene co-expression network analysis (WGCNA) (c)
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of SMS2 by depletion or inhibition hinders the migra-
tion, development, and survival of ovarian cancer cells 
[25]. SGMS2 enhances the growth and spread of cancer 
cells in breast cancer by utilizing a mechanism connected 
with ceramide and activating the TGF-β/Smad signaling 
pathway [26]. Using a mouse model, the absence of SMS2 
hinders the development of the tumor microenvironment 
and prevents the entry of cancer cells [27].

PLAU, the urokinase-type plasminogen activator, 
exerts a substantial influence on the advancement of 
cancer. It facilitates cell growth, movement, attachment, 
and various other activities using the proteolytic sys-
tem, intracellular signal transmission, and chemokine 
activation [28]. Increased PLAU expression is linked to 
heightened aggressive characteristics, stromal score, and 
immune suppression in pancreatic ductal adenocarci-
noma (PDAC) [29]. PLAU is additionally linked to the 
movement and infiltration of cells and is controlled by 
the transcription factor YY1 in cervical cancer [30]. In 
addition, PLAU, sometimes referred to as a urokinase-
type plasminogen activator (uPA), stimulates the move-
ment, infiltration, and multiplication of colorectal cancer 
cells through the Src/ERK pathway [31]. Hence, directing 
efforts towards PLAU could potentially yield diagnos-
tic, prognostic, and therapeutic benefits in many cancer 
types [32].

Remarkably, the analysis of both the LASSO and CFS 
approaches has led to the detection of six probes, with 
four of them located within the yellow module. The sig-
nificance of the yellow module in the context of prostate 
cancer research is emphasized by this association. Fur-
thermore, it has been noted that the genes in the yel-
low module demonstrate elevated levels of expression in 
AAM in comparison to EAM. This indicates a possible 
gene expression pattern that is specific to certain popula-
tions, which could have significant ramifications for the 
susceptibility to diseases and prognosis.

We employed Weighted WGCNA to investigate the 
genetic characteristics of prostate cancer across various 
population groups. The modules revealed in the inves-
tigation of the link between modules and traits reveal 
a clear gene expression pattern that is associated with 
different population backgrounds. These findings indi-
cate that population factor (AAM vs. EAM) have a cer-
tain degree of influence on the genetic basis of prostate 
cancer. The genes found by LASSO (Linkage Analysis of 
Sequence Outliers) and CFS (Correlation-based Feature 
Selection) provide promising targets for comprehending 
the molecular mechanisms underlying these differences.

The discovery of genetically related modules in pros-
tate cancer that are associated with race is consistent 
with prior studies that have demonstrated variances in 
genes among different races. Research has indicated that 

African-American men have a greater occurrence and 
severity of prostate cancer, possibly due to the varying 
activity of specific genes. Our research emphasizes par-
ticular gene clusters and genes that may play a crucial 
role in these variances.

Further work is necessary for the noteworthy mod-
ules and genes. Their prominent position in the gene 
networks implies that they could be crucial catalysts for 
the biological processes linked to disparities in prostate 
cancer. The Gene Ontology study offered further context 
by establishing connections between these genes and 
distinct cellular processes and molecular activities, thus 
enhancing our overall comprehension of their potential 
influence.

These discoveries create opportunities for more 
focused genomic investigations and potentially individu-
alized therapeutic approaches. Gaining insight into the 
genetic determinants responsible for disparities in pros-
tate cancer among different population groups may result 
in the development of more efficient screening, diagno-
sis, and treatment procedures that are customized for 
distinct populations. Moreover, including these genetic 
markers in clinical trials has the potential to advance 
the creation of treatments that are very efficient in many 
populations. Although our study offers valuable insights, 
it does have limits. Dependence on publicly accessi-
ble microarray datasets can lead to biases and limit the 
generalizability of the findings to all population groups. 
Subsequent investigations should prioritize the verifica-
tion of these discoveries via clinical trials and broaden 
the scope of the analysis to encompass a more extensive 
range of genetic information. Incorporating environmen-
tal and lifestyle factors could provide a comprehensive 
perspective on the underlying causes of differences in 
prostate cancer.

Ultimately, our study emphasizes the significance of 
taking population characteristics into account when 
conducting a genetic analysis of prostate cancer. The 
identified gene modules and genes offer a fundamental 
comprehension of the molecular variations that could 
potentially contribute to the reported discrepancies in 
prostate cancer occurrence and advancement among 
various population groups. This research not only con-
tributes to current knowledge but also emphasizes the 
necessity for individualized approaches in cancer therapy 
and care.

Our study deepens significant differences in gene 
expression patterns of prostate cancer between African 
American men (AAM) and European American men 
(EAM). These findings may be essential to develop per-
sonalized diagnosis resulted in more effective therapeutic 
strategies. The identification of potential biomarkers such 
as APRT, CCL2, BEX2, MGC26963, and PLAU through 
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specific gene modules and key genes could enhance our 
perception of prostate cancer’s molecular mechanisms 
and targeted treatments. However, several limitations 
could introduce potential biases. The public microar-
ray gene expression profile (GSE41967) from a single 
geographic location and timeframe may not be repre-
sentative of other populations or current clinical set-
tings. The lack of information on metastatic disease and 
tumor characteristics, as well as the focus exclusively on 
AAM and EAM groups, limits the broader applicabil-
ity of the results. Lifestyle factors, environmental expo-
sures, and socioeconomic status may significantly affect 
cancer risk and progression, however, they were not 
considered in this study. Furthermore, microarray tech-
nology, while robust, has limitations compared to newer 
sequencing technologies that may potentially affect the 
resolution and sensitivity of gene expression differences. 
As well, Analytical methods such as WGCNA, LASSO 
regression, and CFS, have inherent biases related to their 
algorithmic assumptions. Reliance on publicly avail-
able datasets may introduce biases associated with sam-
ple selection and original study designs. Future studies 
is suggested to incorporate more diverse populations, 
consider environmental factors and socioeconomic, use 
advanced genomic technologies, and validate findings 
with independent datasets to enhance the robustness and 
applicability of the results.

Conclusions
This study employed Weighted Gene Co-expression Net-
work Analysis (WGCNA) to examine the gene expres-
sion patterns in cancer among two different population 
groups. Our thorough examination yielded valuable 
knowledge about the genetic foundations of cancer in 
these varied groups.

We identified gene modules that exhibit a substantial 
association with population characteristics. It is crucial 
to take into account population variety when studying 
the genetic foundation of cancer. The modules indicate 
the existence of population-specific biological pathways, 
which may be essential for customized medical strategies.

The results of this study emphasize the need to include 
population diversity in genomic research, specifically in the 
context of cancer studies. Gaining insight into the distinct 
and common genetic elements among different population 
groups can assist in the creation of improved, customized 
therapies and preventative measures. Additional investi-
gation should prioritize the examination of the biological 
pathways and potential therapeutic targets found within 
the gene modules specific to the given population group. 
This has the potential to result in significant advancements 

in comprehending the mechanisms by which cancer origi-
nates and advances in various populations.

Although our work offers valuable insights, its scope is 
constrained by the gene expression data and the specific 
population groups that were examined. Subsequent inves-
tigations should encompass a wider spectrum of popula-
tion groupings and incorporate supplementary genetic data 
types to achieve a more all-encompassing comprehension. 
By incorporating a larger sample size and incorporating 
other cancer kinds, we can enhance the credibility of our 
findings and gain a more comprehensive insight into the 
influence of population characteristics on cancer genetics.

To summarize, our research highlights the intricate 
nature of cancer genetics and the crucial influence of popu-
lation variation on the formation of gene expression pro-
files. The findings obtained from this research establish the 
foundation for implementing more individualized and effi-
cient strategies in the areas of cancer diagnosis, treatment, 
and prevention, specifically designed to cater to the distinct 
genetic composition of various population groups.
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