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Abstract
Background Non-small cell lung cancer (NSCLC) is a prevalent and heterogeneous disease with significant genomic 
variations between the early and advanced stages. The identification of key genes and pathways driving NSCLC tumor 
progression is critical for improving the diagnosis and treatment outcomes of this disease.

Methods In this study, we conducted single-cell transcriptome analysis on 93,406 cells from 22 NSCLC patients 
to characterize malignant NSCLC cancer cells. Utilizing cNMF, we classified these cells into distinct modules, thus 
identifying the diverse molecular profiles within NSCLC. Through pseudotime analysis, we delineated temporal gene 
expression changes during NSCLC evolution, thus demonstrating genes associated with disease progression. Using 
the XGBoost model, we assessed the significance of these genes in the pseudotime trajectory. Our findings were 
validated by using transcriptome sequencing data from The Cancer Genome Atlas (TCGA), supplemented via LASSO 
regression to refine the selection of characteristic genes. Subsequently, we established a risk score model based on 
these genes, thus providing a potential tool for cancer risk assessment and personalized treatment strategies.

Results We used cNMF to classify malignant NSCLC cells into three functional modules, including the metabolic 
reprogramming module, cell cycle module, and cell stemness module, which can be used for the functional 
classification of malignant tumor cells in NSCLC. These findings also indicate that metabolism, the cell cycle, and 
tumor stemness play important driving roles in the malignant evolution of NSCLC. We integrated cNMF and XGBoost 
to select marker genes that are indicative of both early and advanced NSCLC stages. The expression of genes such 
as CHCHD2, GAPDH, and CD24 was strongly correlated with the malignant evolution of NSCLC at the single-cell data 
level. These genes have been validated via histological data. The risk score model that we established (represented by 
eight genes) was ultimately validated with GEO data.
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Introduction
Non-small cell lung cancer (NSCLC) is the primary path-
ological type of lung cancer, accounting for more than 
80% of all lung cancer cases; moreover, its development 
is a complex process involving genetic and environmen-
tal factors [1, 2]. Early detection and treatment of NSCLC 
are critical factors that significantly improve patient out-
comes. More importantly, NSCLC is a disease with high 
temporal heterogeneity. The genomes of early-stage and 
advanced-stage NSCLC patients exhibit notable varia-
tions [3, 4]. These variations ultimately contribute to 
alterations in the tumor microenvironment, the metasta-
sis of cancer cells, and the emergence of drug resistance.

In recent years, extensive research has focused on elu-
cidating heterogeneously derived mechanisms in NSCLC 
patients and understanding their implications for clini-
cal practice. EGFR, KRAS, ALK, and TP53 are commonly 
mutated in NSCLC and play crucial roles in its progres-
sion [5, 6]. For example, genetic mutations (such as those 
in EGFR) can affect patient prognosis and responses to 
targeted therapies [7–9]. Chabon et al. utilized CAPP-
Seq ctDNA analysis to examine resistance mechanisms 
in 43 NSCLC patients treated with a third-generation 
EGFR inhibitor. Following treatment with first-line 
inhibitors, 46% of the patients exhibited multiple resis-
tance mechanisms, thus indicating significant intrapa-
tient heterogeneity [10]. KRAS has a high mutation rate, 
particularly in lung cancer, wherein it occurs in 31–35% 
of patients. Point mutations are prevalent in the KRAS 
gene, thus leading to a constantly active GTP-bound 
state and activation of downstream oncogenic pathways. 
Despite extensive preclinical and clinical research, there 
are currently no approved therapies specifically target-
ing mutated KRAS or its downstream signaling pathways. 
Alterations in ALK and TP53 also warrant attention 
in the diagnosis and treatment of NSCLC [11]. Briefly, 
the emergence of heterogeneity in NSCLC is a complex 
process involving many gene alterations. Therefore, the 
accurate prediction of the progression of NSCLC and the 
identification of genes that can affect the progression of 
NSCLC are highly important for the diagnosis and treat-
ment of this disease.

The tumor microenvironment (TME), which encom-
passes various cell types, stromal elements, and immune 
cells, also plays a crucial role in NSCLC heterogeneity. 
Interactions within the tumor microenvironment can 
influence treatment responses and the development of 
resistance to therapy, thus highlighting the importance 

of considering tumor-host interactions in clinical prac-
tice. Cords et al. utilized single-cell imaging mass cytom-
etry to analyze cancer-associated fibroblasts (CAFs) in 
1,070 NSCLC patients and identified four prognostic 
groups based on 11 phenotypes. The presence of tumor-
like CAFs is correlated with poor prognosis, whereas 
the presence of inflammatory and interferon-responsive 
CAFs predicts better outcomes. A high matrix CAF 
density is correlated with low immune infiltration and 
reduced survival. These findings emphasize the need for 
therapies targeting CAFs with poor prognosis or sup-
porting those associated with favorable outcomes [12]. 
Using single-cell RNA sequencing (scRNA-seq), Wu 
et al. described the landscape of immune cells, stromal 
cells, and cancer cells in advanced NSCLC. These authors 
found that neutrophils were enriched in LUSC, which is 
consistent with previous studies showing higher neutro-
phil levels in LUSC than in LUAD due to variations in 
the TME. However, LUAD patients exhibited stronger 
cancer-neutrophil interactions. These findings suggest 
diverse roles for neutrophils in the TME, thus highlight-
ing their potential impacts on immunotherapy efficacy 
[13]. Moreover, epigenetic alterations contribute to the 
heterogeneity of NSCLC by modulating gene expression 
patterns. An understanding of the epigenetic landscape 
of lung tumors may offer insights into novel therapeutic 
targets and predictive biomarkers [14, 15]. In summary, 
NSCLC is significantly associated with tumor hetero-
geneity. An understanding of the temporal dynamics of 
NSCLC can provide valuable insights into the potential 
mechanisms driving tumor evolution, drug resistance, 
and disease recurrence.

The prediction of the development and evolution of 
cancer is a feasible and essential area of research. In addi-
tion to pathological staging, other tools, such as genetic 
testing and imaging, can be used to predict cancer pro-
gression. Advances in technology and data analysis are 
also making it possible to predict cancer progression with 
increasing accuracy. Machine learning algorithms have 
also shown outstanding performance in discovering gene 
expression patterns, identifying biomarkers, and anno-
tating the genome. Moreover, substantial advancements 
in single-cell sequencing technology have significantly 
contributed to the extensive investigation of tumor het-
erogeneity and evolution in recent research [16, 17]. In 
a study by Wu et al. using scRNA-seq and spatial tran-
scriptomics data from 24 patients, the authors explored 
the immune atlas of colorectal cancer liver metastasis. 

Conclusion In summary, our study contributes to the identification of temporal heterogeneous biomarkers in 
NSCLC, thus offering insights into disease progression mechanisms and potential therapeutic targets. The developed 
workflow demonstrates promise for future applications in clinical practice.
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They demonstrated that the immune microenvironment 
underwent dynamic cellular and spatial changes from the 
primary tumor to the metastatic microenvironment [18].

The aim of this study was to integrate single-cell tran-
scriptome and bulk transcriptome data by employ-
ing various machine learning algorithms to discern 
gene markers distinguishing between early-stage and 
advanced-stage of NSCLC tumors. Concurrently, we 
investigated the underlying biological mechanisms that 
contribute to the development of NSCLC. In the analy-
sis of the scRNA-seq data, we conducted consensus non-
negative matrix factorization (cNMF) on the identified 
NSCLC cells, thus resulting in a total of 12 expression 
programs. Through enrichment analysis of the top 50 
genes with the highest weight in each expression pro-
gram, we identified relevant pathways. Pathways such as 
metabolic reprogramming, the cell cycle, and cell stem-
ness pathways exhibited increased activity in NSCLC. 
We examined variations in the composition of single-cell 
transcriptomes between early-stage and advanced-stage 
NSCLC. Utilizing pseudotime analysis, we identified 
2037 genes associated with cancer progression. Subse-
quently, we utilized XGBoost to assess the significance 
of these genes in the temporal development of cancer 
cells. We then employed these overlapping selected genes 
to develop a LASSO regression model using the TCGA 
training set. Afterwards, we validated the accuracy of the 
model by using GEO data. The workflow of this study is 
illustrated in Fig. 1.

Materials and methods
Data sources
The scRNA-seq data from 22 NSCLC patients were 
obtained from the Gene Expression Omnibus (GEO) 
database (GSE131907, GSE127465, and GSE136246). The 
information of the 22 patients is listed in Supplementary 
Table S1. We obtained a bulk transcriptome dataset and 
survival data from The Cancer Genome Atlas (TCGA) 
and the Gene Expression Omnibus database (GSE30219).

Identification of major cell types
The single-cell gene expression matrices were converted 
to Seurat objects via the R package [19]. The propor-
tions of gene numbers, cell counts, and mitochondrial 
sequencing counts were then computed. Only genes that 
were observed in at least three cells were retained. Cells 
with fewer than 200 or more than 5000 identified genes, 
as well as those with a high mitochondrial concentra-
tion (> 30%), were removed. A total of 93,406 cells were 
kept for further investigation after low-quality cells were 
discarded. We normalized expression matrices and cor-
rected variation regression for factors. Subsequently, we 
identified the top 2000 variable genes and performed 
principal component analysis. We used the Harmony 

package to debatch the data. We used the first 15 princi-
pal components to compute the k.param nearest neigh-
bors and identified 7 cell clusters.

Based on the normalized expression of the following 
canonical markers, we identified cell types and ultimately 
distinguished 7 major cell types. All of the utilized gene 
markers are displayed in Supplementary Figure S1.

InferCNV analysis
InferCNV offers a robust solution for detecting CNV 
events at the single-cell level, thereby enabling the 
identification of genomic alterations and heterogene-
ity within cellular populations [20, 21]. The utilization 
of InferCNV in our study is grounded in its efficacy as 
a tool designed for single-cell analysis, particularly for 
inferring CNVs from scRNA-seq data. This capability is 
pivotal for identifying genetic mechanisms underlying 
disease progression. Overall, the adoption of InferCNV 
aligns with our objective of comprehensively dissect-
ing the genetic architecture of cellular populations and 
elucidating its implications in disease pathogenesis. For 
the InferCNV analysis (version 1.14.2), we used nonma-
lignant cells including endothelial cells as baselines to 
estimate the CNV of malignant cells. Briefly, genes were 
sorted by their genomic locations on each chromosome. 
We utilized the default Hidden Markov Model (HMM) 
cutoff set to 0.1 for the denoising step. We filtered out 
CNVs with low probability by using a default threshold 
of 0.5. Afterwards, we used GRCh38 chromosome frag-
ment information and annotated it as either increased or 
absent. Overall, our approach allowed us to accurately 
infer large-scale CNVs from scRNA-seq data and dis-
tinguish malignant cells from normal cells. To identify 
CNVs, we used endothelial cells as the reference group 
and epithelial cells as the observation group.

Trajectory analysis
We applied the Monocle2 (2.24.0) package to identify lin-
eage differentiation of cell subtypes with potential devel-
opmental relationships [22]. Monocle is a widely used 
software tool for analyzing single-cell data, particularly 
for reconstructing developmental trajectories or pseu-
dotime ordering. Monocle utilizes various algorithms to 
infer cellular trajectories and identify genes that drive 
cell fate decisions during development or other biological 
processes. It is valuable for studying dynamic processes 
such as cell differentiation, development, and disease 
progression at the single-cell level [23–25]. To track the 
evolutionary trajectory of LUAD tumors, we employed 
AT2 cells and LUAD cancer cell clusters for both nor-
mal epithelial cells and cancer cells [26]. The “celldata-
set” object was created by using the single-cell expression 
matrix, and the size and dispersion of the data were 
assessed. We identified cluster-specific DEGs with a q 
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Fig. 1 The flowchart for this study
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value < 0.01 to determine cell differentiation. After reduc-
ing the dimensionality, the cells are ordered in a pseudo-
time sequence to obtain a cell trajectory. Subsequently, 
we identified pseudotime-dependent genes expressed in 
more than 1000 cells with a q value < 0.01. We visualized 
these genes and clustered them based on their expression 
patterns by using a heatmap.

Consensus NMF molecular subtype construction
In this study, we employed Consensus Nonnegative 
Matrix Factorization (cNMF) (version 1.4), which is a 
method that is specifically designed for the analysis of 
scRNA-seq data, to infer the activity program of tumor 
cells [27, 28]. Single-cell data often exhibit challenges 
due to their high dimensionality and sparsity, thus ren-
dering their analysis highly intricate. cNMF is notable as 
being a robust method for both dimensionality reduction 
and feature extraction, thus offering an effective solution 
for single-cell data analysis. Primarily, cNMF accom-
plishes the transformation of high-dimensional data 
into a lower-dimensional representation through matrix 
factorization, thereby streamlining the data structure 
for subsequent analysis. Second, the nonnegativity con-
straint inherent in cNMF ensures that the decomposed 
matrix retains clear biological significance, such as gene 
and cell features, thus facilitating the extraction of cru-
cial information from the data and identifying intercellu-
lar heterogeneity. Third, given the prevalence of zero or 
near-zero values in single-cell data, which is attributed to 
the sparsity of gene expression data for individual cells, 
cNMF adeptly addresses this sparsity issue, thereby pre-
serving essential information within the dataset. Our 
analysis of NSCLC tumor cells adhered to the workflow 
outlined by cNMF. We initiated the process with the pre-
processing of raw count data, followed by matrix factor-
ization to identify distinctive gene expression patterns. 
To mitigate potential batch effects that could impact the 
integrity of our analysis, we conducted cNMF analysis on 
two distinct datasets separately. The determination of the 
optimal number of components, which is denoted as K, 
played a pivotal role. We relied on assessing the model’s 
stability and reconstruction error by using K-selection 
plots to identify the most suitable value for K. After 
determining a suitable K value, we performed consensus 
analysis on the expression programs for each sample to 
affirm patterns that are consistently present across mul-
tiple NMF decompositions. Furthermore, we filtered for 
core expression programs that are extensively expressed 
across the cell population by setting a threshold for usage 
frequency (0.1), thus ensuring biological significance and 
reliability in our data.

Functional and pathway enrichment analysis
Using the enrichGO function of the clusterProfiler pack-
age, the reference genome was called through the org.
Hs.eg.db package, and GO terms with p values and q 
values less than 0.05 were obtained via GO enrichment 
analysis of the pseudotime-dependent genes that were 
obtained in the previous step. The R programs “digest” 
and “GOplot” were used to perform the GO enrichment 
analysis. The names of the marker genes were trans-
ferred to gene IDs. Significant enrichment was set as a p 
value < 0.05.

Evaluating the importance of genes with pseudotime 
clustering using XGBoost
To further identify genes associated with the develop-
ment of NSCLC, we utilized the XGBoost R package to 
screen for marker genes that distinguish between early-
stage NSCLC and advanced-stage NSCLC. In selecting 
XGBoost as the primary tool for our study, we aimed to 
leverage its well-documented effectiveness in handling 
complex datasets and addressing classification tasks. 
XGBoost is renowned for its scalability and efficiency, 
particularly when considering large volumes of data. 
Given the diverse nature of cancer cell datasets, which 
are characterized by numerous features and variables, 
we sought a tool that could accommodate such com-
plexity without compromising computational perfor-
mance. Many previous studies have successfully utilized 
XGBoost for feature gene selection, thus demonstrating 
its efficacy [29–31]. Therefore, our application of this 
method to screen for key genes involved in the temporal 
heterogeneity of NSCLC is justified. This screening was 
based on gene clustering results obtained from pseu-
dotime analysis. All of the identified cancer cells, which 
are categorized into early and advanced stages based on 
patient source, were randomly divided into a training set 
(70%) and a validation set (30%). This division allows us 
to train our predictive model on a substantial portion of 
the data while retaining a separate subset for evaluating 
its performance. By iteratively adjusting these parameters 
based on the performance metrics observed on the train-
ing set, we aimed to develop a model that effectively cap-
tures the underlying patterns in the data. Subsequently, 
the validation set plays a crucial role in assessing the 
generalizability of our model. By evaluating how well the 
model performs on data that were not used for training, 
we can assess its capacity to accurately classify cancer 
cells across various subsets of the dataset. This step helps 
in mitigating the risk of overfitting, wherein the model 
performs well on the training data but fails to generalize 
to unseen data. In our study, we employed the XGBoost 
feature importance score derived from the training set to 
aid in the selection of genes during the screening process. 
By identifying the most informative features, our model 
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can prioritize genetic markers associated with cancer 
progression, thus enhancing the reliability of our find-
ings. Overall, the inclusion of both training and valida-
tion sets strengthens the credibility of our study findings 
by ensuring the robustness and generalizability of our 
predictive model. We configured the XGBoost model 
with a learning rate of 0.01 and introduced a gamma 
value of 0.2. The maximum tree depth was constrained 
to 6, and the minimum child weight was set to 3. The 
XGBoost feature importance score was used to aid in the 
selection of genes during the screening process.

The human protein atlas
The immunohistochemistry data of CHCHD2, 
CEACAM5, GAPDH and CD24 expression in NSCLC 
and corresponding normal tissues were also retrieved 
from the Human Protein Atlas (HPA) database [32].

Construction of the risk score
The overlap between genes identified through cNMF and 
genes selected by XGBoost was utilized to construct the 
risk score. LASSO regularized regression was performed 
to select for smaller features that were most strongly 
associated with OS in patients in the TCGA-LUAD 
cohort. Cox regression analysis was also used for gene 
set selection. We conducted LASSO regression by using 
the R “glmnet” package, and the genes that were screened 
out were utilized to establish a prognostic model. Specifi-
cally, gene names of interest were chosen as the inputs to 
generate survival curves for overall patient survival. We 
used “median” as the group cutoff metric to assign the 
lower and higher halves of the patients to the low and 
high groups, respectively. The log-rank test was used to 
determine whether there were significant differences 
in the survival distributions between the two groups. A 
p value < 0.05 was statistically significant. Patients were 
dichotomized into a high-risk group and a low-risk group 
by using the median risk score and subsequently analyzed 
for differences in overall survival by using the R “survival” 
package. The dataset from GSE30219 (n = 307) was used 
to test the model.

Cell–cell interaction prediction in single-cell transcriptomic 
data
To explore the potential cell interactome in our data, we 
used the CellChat package (version 1.6.1) to predict inter-
actions between different cell types based on single-cell 
RNA sequencing data [33]. By utilizing network analysis 
and pattern recognition techniques, CellChat predicts 
the primary signal inputs and outputs of cells, thus eluci-
dating the coordination of cell functions and signal inter-
actions. It has been widely applied in the field of cell‒cell 
interactions [34–36]. This package infers enriched recep-
tor‒ligand interactions between two types of cells based 

on the expression levels of binding ligands in one type of 
cell and the expression levels of receptors in another type 
of cell, thereby simulating communication between cells.

First, we used immune cells, epithelial cells, and can-
cer cells to construct a CellChat model. We then used 
“CellChatDB.human” to evaluate the major signal inputs 
and outputs of the cell populations in all the samples. We 
identified overexpressed genes and subsequently identi-
fied overexpressed ligand‒receptor interactions. By sum-
marizing the communication probabilities of all of the 
ligand‒receptor interactions, we computed the commu-
nication probability at the signaling pathway level and 
calculated the aggregated cell‒cell communication net-
work. Although interactions were computed among all of 
the identified subclusters, our interpretation and analysis 
focused on interactions between malignant tumor cells 
and other cell types, including both immune and non-
immune cell types. The communication networks were 
ultimately depicted by using a circle plot, and signaling 
pathways were represented by using a bubble plot.

Results
Single-cell transcriptome profiling of NSCLC cells
To understand NSCLC heterogeneity at single-cell reso-
lution and determine the changes in gene expression 
related to cancer progression, we collected scRNA-seq 
datasets from 3 studies and 22 patients. After quality fil-
tering, 93,406 cells were retained for subsequent analy-
sis. We identified seven major cell types, including three 
immune cell types (B cells [12.6%], T cells [39.6%], and 
myeloid cells [26.6%]) and four nonimmune cell types 
(endothelial cells [1.5%], epithelial cells [13.6%], mast 
cells [2.9%] and fibroblasts [3.2%]). Clusters were manu-
ally annotated by using normal markers and curated 
gene signatures that defined their identities. Specifically, 
T cells were distinguished by using the following marker 
genes: exhausted CD8 + T cells (CD8A, LAG3, and 
TIGIT), CD8 + T cells (CD8A, GNLY, GZMA, GZMK, 
GZMB, and GZMH), CD4 + T cells (CCR7, LEF1, IL7R, 
and SELL), and NK T cells (CD8A and NKG7). We ini-
tially performed graph-based cell clustering on the sin-
gle-cell dataset to identify the primary cell populations of 
early and advanced NSCLC (Fig. 2). Principal component 
analysis (PCA) demonstrated that the positions of the 
samples at a given illness stage significantly overlapped 
regardless of their origin.

In tumor tissue, epithelial cells may contain residual 
normal cells from the malignant tumor cell popula-
tion. To define malignant cells, we calculated large-scale 
chromosomal CNVs in each cell type based on aver-
age expression patterns across intervals of the genome. 
Compared with early-stage patients, advanced-stage 
patients have a greater proportion of malignant tumor 
cells. When comparing the transcriptomes of malignant 
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cells in early NSCLC tumors and advanced NSCLC 
tumors, we noticed that a series of genes were specifically 
expressed in malignant cells of advanced NSCLC but 
not in early NSCLC. The InferCNV results for the iden-
tified malignant NSCLC cells are shown in Fig.  3. GO 
enrichment analysis demonstrated that these genes were 
enriched in ATP synthesis coupled with electron trans-
port. This result indicates that malignant tumor cells 
grow and proliferate rapidly and require a large amount 
of energy to maintain this active state. As the main 
energy molecule within cells, ATP plays a crucial role in 
supporting the growth and division of malignant tumor 

cells. Furthermore, large-scale chromosome CNVs were 
detected in advanced NSCLC tumor cells. We observed 
that many CNVs had already occurred in malignant 
cells, most notably on chromosome 6 with a deletion, 
which has been well described in aggressive NSCLC. In 
addition, chromosomes 1, 7, and 8 exhibited significant 
gene amplification. The consistency of these findings is 
reinforced by similar results reported in previous stud-
ies [37–39]. However, chromosomes 2 and 4 showed no 
significant CNVs. Specifically, throughout the process of 
cancer progression, the number of chromosome gain/loss 
events gradually increased in advanced NSCLC tumor 

Fig. 2 Identification of cell subsets (A) UMAP plot of all cells from 22 patients, colored by major cell types. (B) UMAP plot of all cells from 22 patients, 
colored by patients. (C) Violin plots showing the expression level of known cell-type-specific markers to demonstrate the identity of each cluster
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cells, whereas somatic cell CNVs did not occur in other 
epithelial cell subtypes.

Transcriptional trajectory of cancer cells
Pseudotime analysis of the epithelial cells using Monocle 
2 suggested two diverging cell fates, starting at Cluster A 
and progressing toward Cluster B at one end and Cluster 
C at the other end. Cluster A mainly comprised normal 
cells, whereas Clusters B and C were primarily malignant 
epithelial cells namely cancer cells. From the perspec-
tive of time, Cluster A was found at the starting point 

of the pseudotime sequence, whereas Clusters B and C 
were found at the endpoint of the pseudotime sequence 
(Fig. 4A and B).

Indeed, differential gene expression analysis attributed 
malignant epithelial cells to the four subtypes concordant 
with pseudotime states. We further analyzed the gene 
expression patterns of all of the genes along the trajectory 
of malignant cell progression and identified 2037 genes 
with dynamic expression changes. The DEGs along the 
pseudotime trajectory were clustered hierarchically into 
four profiles (Fig. 4C).

Fig. 4 Pseudotime trajectory inferred by Monocle2 (A) Simulation of the development trajectory of malignant cells, colored by development stage. (B) 
Simulation of the development trajectory of malignant cells, colored by cell types. (C) Heatmap showing expression of representative identified genes 
across single cells. The color key from blue to red indicates relative expression levels from low to high

 

Fig. 3 The CNV profile analysis distinguishes tumor cells. Mapping chromosome amplification (red) and deletion (blue) to each chromosome position in 
malignant tumor cells. (A) InferCNV of GSE131907 (10X sequencing platform) (B) InferCNV of GSE127465 and GSE136246 (inDrop sequencing platform)
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Functional enrichment analyses
Further enrichment analyses were performed by using 
GO terms to compare the molecular functions and sig-
naling pathways between the early NSCLC and advanced 
NSCLC groups. With pseudotime sequencing, genes 
(Cluster 1) with expression levels that gradually increased 
mainly participated in ATP synthesis coupled with 
electron transport (Fig.  5), whereas with pseudotime 
sequencing, genes (Cluster 3) with expression levels that 
gradually decreased participated in glycometabolism, 
including hexose metabolic processes, glucose metabolic 
processes, and monosaccharide metabolic processes. 
These metabolic processes contribute to the adaptation of 
NSCLC cells to the tumor microenvironment and facili-
tate immune evasion, thus promoting malignancy and 
resistance to therapy. We identified multiple pathways 
related to intracellular transport, signal transduction, and 
intercellular communication (including pathways related 
to multivesicular bodies and lamellar bodies) in Cluster 

4. Dysregulation of these pathways may promote tumor 
growth, invasion, metastasis, and resistance to therapy 
[40].

Cell–cell communication network among different cell 
types in early and advanced NSCLC patients
The cell‒cell communication network among different 
cell types in early and advanced NSCLC cells is shown in 
Fig. 6. The results showed that there were varying degrees 
of interactions between all types of cells. Detailed analy-
sis of early NSCLC single-cell sequencing data demon-
strated that early NSCLC cells mainly interacted with cell 
types, including macrophages and dendritic cells (DCs). 
Other types of immune cells, such as CD4+, CD8+, and 
exhausted CD8 + T cells, also interacted with cancer cells; 
however, these interactions are not as strong as interac-
tions between DCs and macrophages with cancer cells. 
Tumor cells express tumor associated-antigens, which 
can be captured by DCs and presented to T cells [41, 42]. 

Fig. 5 Histogram of GO enrichment analysis for differential genes across single cells. (A) The enrichment pathway of Cluster (1) (B) The enrichment path-
way of Cluster (2) (C) The enrichment pathway of Cluster (3) (D) The enrichment pathway of Cluster 4
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However, the role of macrophages in cancer is complex 
and diverse [43, 44]. They can fight against tumors and 
promote tumor growth and metastasis, depending on 
the characteristics of the tumor microenvironment and 
the functional status of the macrophages. The role of 
these two types of immune cells in NSCLC has also been 
explored [45]. As shown in Fig.  6D, advanced NSCLC 
cells also interacted with these immune cells; however, 
their interactions were less intense than those between 
early NSCLC cells and immune cells. We infer that this 
may result from immune escape in the cancer cells of 
the selected advanced patients. Cellular communica-
tion between advanced cancer cells and immune cells is 
weaker than that between early cancer cells and immune 
cells, which can be attributed to various factors, such as 

immune escape mechanisms, interference from cyto-
kines and chemical mediators, and changes in the tumor 
microenvironment [13, 46, 47]. In summary, from our 
results on cell‒cell communication, during the develop-
ment of NSCLC, tumor cells gradually develop a series of 
mechanisms to evade the attack of the immune system.

Figure  7 shows the relationship between the primary 
receptors and ligands in the interaction between NSCLC 
cells and other types of cells. We found that compared to 
early NSCLC cells, advanced NSCLC cells interact sig-
nificantly differently with different types of cells. In the 
early stage, DCs and macrophages inhibit the growth 
of malignant tumor cells. For example, early NSCLC 
cells strongly communicate with DCs and macrophages, 
which is mainly due to the interaction between CD4 and 

Fig. 6 Interaction plot of tumor cells and intercellular communication networks. (A) The circle plot shows the inferred intercellular communication net-
work for all cell types. (B) The circle plot shows the communication network between advanced NSCLC cells and other cells. (C) The circle plot shows the 
communication network between early NSCLC cells and other cells. (D) The heat map of the communication intensity between various cells
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HLA-DRA. However, this interaction between advanced 
NSCLC cells and DCs, as well as between advanced 
NSCLC cells and macrophages, disappears. In addition, 
although the cellular communication between exhausted 
CD8 + T cells and NSCLC cells is not strong, the interac-
tion between NSCLC cells and exhausted CD8 + T cells 
changes to a lesser degree in both the early and advanced 
stages of NSCLC. The interaction between NSCLC cells 
and exhausted CD8 + T cells is mainly dependent on the 
interaction between CD8 + T cells (CD8A and CD8B) and 
HLA-A, HLA-B, and HLA-C.

Gene expression programs obtained using cNMF
We performed cNMF analysis on cancer cells from two 
datasets dataset1 (GSE131907), dataset2 (GSE136246), 
and dataset3 (GSE127465). We used K-selection plots to 
determine the most suitable value for K (Fig. 8A, B and 
C). Finally, we obtained a total of 12 expression programs. 
According to the heatmap (Fig. 8E, F and G), there were 
significant differences in the activity of the cells in these 
different expression programs. The annotated genes have 

a greater weight in the corresponding expression pro-
grams, which indicates that these genes may play a cru-
cial role in defining these expression programs.

To explore the interconnections among expression 
programs, Pearson correlation analysis was employed to 
group highly correlated expression programs into distinct 
modules (Fig.  8D). This process yielded a total of three 
modules. By conducting enrichment analysis on the top 
50 genes with the highest weight in each expression pro-
gram, relevant pathways were identified. These pathways 
were used to define three modules: the metabolic repro-
gramming module, cell cycle module, and cell stemness 
module. The top 50 genes in each program and the path-
ways enriched by these genes are listed in Supplementary 
Table S2.

Evaluating the importance of genes with pseudotime 
clustering using XGBoost
When comparing the transcriptomes of malignant cells 
in early NSCLC tumors and advanced NSCLC tumors, 
we noticed that a series of genes were specifically 

Fig. 7 Bubble diagram showing the top receptor-ligand pairs in early and advanced NSCLC cells
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expressed in malignant cells of advanced NSCLC but not 
in early NSCLC. The results of the pseudotime analysis 
also indicated that the expression levels of some genes 
change with the development of the disease. Therefore, 

we used XGBoost to build candidate gene models with 
the training set and evaluated them on the validation 
set. The accuracy of the model reached 0.973. The model 
utilizes the importance of XGBoost as a foundation for 

Fig. 8 (A) K-selection plot of dataset1. (B) K-selection plot of dataset2. (C) K-selection plot of dataset3. (D) Pearson correlation matrix for selected pro-
grams. (E) Heatmap showing correlation of programs derived from cNMF analysis of single cell dataset1 (F) Heatmap showing correlation of programs 
derived from cNMF analysis of single cell dataset2. (G) Heatmap showing correlation of programs derived from cNMF analysis of single cell dataset3
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gene screening. Out of 2037 genes, 596 ultimately yielded 
importance scores. These identified genes can be further 
explored to elucidate the characteristics influencing the 
prediction model. Using cNMF analysis, we identified a 
total of 731 specific genes. Subsequently, we compared 
this gene set with those identified by XGBoost. The over-
lap between the gene sets obtained through both meth-
ods demonstrated a total of 136 genes (Supplementary 
Table S3). HN1, AQP3, and GSTP1 were the top three 
genes in the rankings.

Proteins overexpressed in NSCLC
We searched for the screened genes in the HPA database. 
In immunohistochemistry experiments, the expression 
levels of multiple genes, including CHCHD2, CEACAM5, 
GAPDH, and CD24, were significantly upregulated in 
lung cancer tissues compared to normal tissues (Fig. 9).

Construction of the prognostic risk score
To promote the clinical application of identifying genes 
in evaluating survival prognosis, we used LASSO fea-
ture selection to further select the most important fea-
ture from all of the genes (Fig.  10). The optimal model 
included GGTLC1, SLPI, SFTPB, CXCL17, POLR2F, 
KRT18, CHCHD2, and GPRC5A. The coefficients of each 
gene are listed in Supplementary Table S4. Furthermore, 
the prognostic value of these genes was also evaluated. 
To further assess the robustness of the risk score, we 
selected an independent dataset (GSE30219) to validate 
the prognostic predictive power of the risk score. In both 
datasets (TCGA and GSE30219), the KM curve showed 

that the high-risk group had significantly worse overall 
survival (Fig. 11).

Discussion
NSCLC is a highly heterogeneous cancer with high mor-
tality and recurrence rates. In this study, we integrated 
the scRNA-seq transcriptional profiles of NSCLC at vari-
ous disease stages to discover novel features of this dis-
ease. Single-cell sequencing data have demonstrated the 
developmental trajectory leading from early NSCLC to 
advanced NSCLC. The results will assist us in identifying 
the essential genes and signaling pathways that influence 
the development of this illness. Additional analysis based 
on CNV suggested that in comparison to early NSCLC, 
advanced NSCLC exhibits a heightened degree of epithe-
lial cell degeneration.

Through pseudotime analysis, we identified a correla-
tion between 2037 genes and the development of malig-
nant epithelial cells in NSCLC. These genes are classified 
into four clusters. Using gene enrichment analysis, we 
found that ATP synthesis, metabolic processes, and cel-
lular transport are key driving factors for the malig-
nant progression of NSCLC. Pseudotime analysis has 
also demonstrated many genes related to the dynamic 
changes in NSCLC, and some genes are expected to be 
used to indicate the developmental status of NSCLC. 
We evaluated the importance of these genes by using the 
machine learning algorithm XGBoost. Using cNMF, we 
categorized NSCLC single cells into three distinct mod-
ules, including the metabolic reprogramming module, 
cell cycle module, and cell stemness module. This further 

Fig. 9 Immunohistochemical staining analysis of CHCHD2, CEACAM5, GAPDH, and CD24 in normal lung and lung cancer tissues
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Fig. 10 Identification of prognostic biomarkers related to the temporal heterogeneity of NSCLC. (A) Determination of the number of factors by the 
LASSO algorithm. (B) The genes obtained from LASSO regression downscaling
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confirms that metabolic issues are worthy of attention 
in the development of NSCLC, which is consistent with 
previous research [48–50].

The metabolic reprogramming module, which is char-
acterized by the enrichment of pathways such as glycoly-
sis, heme metabolism, and cholesterol homeostasis, plays 
a crucial role in fueling the rapid growth and proliferation 
of cancer cells. Dysregulation of these metabolic path-
ways is a hallmark of cancer, including NSCLC, wherein 
altered metabolism contributes to tumor progression, 
metastasis, and therapy resistance [51–53]. Similarly, 
the cell cycle module, which was enriched with genes 
involved in cell cycle regulation, reflects the dysregulated 
proliferation characteristic of NSCLC. Aberrant cell cycle 
progression is a hallmark of cancer, and the dysregulated 
expression of cell cycle genes promotes uncontrolled cell 
proliferation and tumor growth [54, 55]. Additionally, the 
enrichment of genes associated with stem cell-like prop-
erties (including epithelial–mesenchymal transition and 
estrogen response) in the stemness module highlights the 

presence of cancer stem cells (CSCs) in NSCLC. CSCs 
are a subpopulation of tumor cells with enhanced tumor-
igenicity and therapeutic resistance that contribute to 
tumor metastasis and recurrence [56, 57].

Subsequently, we identified and extracted significant 
characteristic genes associated with these subtypes. 
MET, GAPDH, and GLUL were identified as being highly 
variable in the cNMF analysis, and they have been con-
firmed to participate in metabolic processes. MET 
influences cellular metabolism by activating signaling 
pathways that regulate glucose uptake and utilization. 
GAPDH is a key enzyme in glycolysis. GLUL encodes 
glutamine synthetase, which supports cancer cell prolif-
eration by promoting glutamine metabolism. Together, 
these genes contribute to tumor growth, survival, and 
metastasis through their roles in cellular metabolism and 
signaling pathways. Furthermore, previous studies have 
also established their correlation with NSCLC [58–60]. 
The expression of EGR1 and JUN influences cancer pro-
gression by regulating cell cycle processes and promoting 

Fig. 11 (A) The distribution of risk score and survival status and the heatmap of 8 genes in the TCGA_LUAD cohort. (B) Kaplan–Meier curve depicts the 
OS difference between highrisk and lowrisk groups in TCGA. (C) Kaplan–Meier curve depicts the OS difference between highrisk and lowrisk groups in 
GSE30219.
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cell proliferation. Both EGR1 and JUN are implicated in 
NSCLC, thus driving oncogenic transformation and dis-
ease [61, 62].

Although cNMF identified many highly variable 
genes, we conducted a comparison with the results from 
XGBoost. This approach aids us in the more effective 
identification of key biomarkers. The XGBoost evalua-
tion yielded 596 genes, and the intersection with genes 
obtained from cNMF analysis resulted in a set of 136 
genes. The top three genes in the rankings were HN1, 
AQP3, and GSTP1. Previous research has established a 
significant association between AQP3 and GSTP1 and 
the onset, progression, and therapeutic resistance of 
NSCLC [63–66]. These molecules exhibit promise as 
being prospective biomarkers or therapeutic targets. 
Conversely, investigations into the interplay between 
HN1 and NSCLC are limited. Our novel findings indicate 
the potential involvement of HN1 in the genesis and pro-
gression of NSCLC, thus warranting further exploration 
into its mechanistic contributions to disease pathology.

We also investigated the disparities in the tumor micro-
environment between early-stage and advanced-stage 
NSCLC patients. By examining individual cells within the 
tumor microenvironment, we were able to identify sub-
tle differences in gene expression profiles that may have 
been overlooked in previous bulk tissue analyses.

Cell‒cell interaction analysis demonstrated interactions 
between immune cells (DCs and macrophages) and can-
cer cells in both early and advanced NSCLC. However, 
the interaction between immune cells and early NSCLC 
tumor cells was stronger than that between immune cells 
and advanced NSCLC tumor cells. In the early stages of 
NSCLC, the number of tumor cells is relatively small, 
thus making it easier for DCs and macrophages to detect 
and recognize these abnormal cells. As tumors develop, 
the number of cancer cells increases; however, due to the 
immune escape mechanism, the ability of immune cells 
to monitor cancer cells may decrease [67–69]. This factor 
may weaken the immune response of DCs and macro-
phages to advanced cancer cells. We observed no interac-
tion between HLA-DRA and CD4, both between tumor 
cells and macrophages and between tumor cells and 
DCs, which may explain this phenomenon in advanced 
NSCLC patients. Furthermore, as tumors develop, the 
heterogeneity of tumor cells increases, and some sub-
groups may become more resistant to immunotherapy. 
These subgroups may dominate in the advanced stage, 
thus limiting the role of immune cells. In summary, inter-
cellular interactions indicate a close relationship between 
immune cell dynamics and the molecular characteristics 
of cancer cells, which may determine the prognosis and 
treatment response of NSCLC patients.

We established a Lasso model by using the identified 
genes associated with temporal heterogeneity in NSCLC. 

The optimal model included genes such as GGTLC1, 
SLPI, SFTPB, CXCL17, POLR2F, KRT18, CHCHD2, and 
GPRC5A. Immunohistochemical data demonstrated 
elevated expression levels of CHCHD2 in lung cancer 
tissues compared to normal tissues [70, 71]. However, 
the negative Lasso coefficient of CXCL17 suggested 
that its low expression may increase disease risk. These 
results demonstrate the efficacy of our feature selec-
tion approach in identifying key genes associated with 
NSCLC progression.

Admittedly, limitations existed in this research. We 
employed various methods to identify marker genes 
and pathways associated with temporal heterogeneity 
in NSCLC at the single-cell level. Despite an adequate 
number of single cells, the sparsity inherent in single-cell 
sequencing data remains a concern that could impact the 
accuracy of machine learning prediction results. Addi-
tionally, although our study identified key gene signatures 
associated with NSCLC progression, we did not perform 
functional validation of these genes. Experimental valida-
tion, such as in vitro and in vivo assays, is necessary to 
elucidate the biological roles of these genes and validate 
their potential as therapeutic targets or prognostic mark-
ers. Future research should aim to validate our findings in 
independent cohorts and explore the functional signifi-
cance of the identified genes in NSCLC progression.

Conclusion
In conclusion, our study provides valuable insights into 
the temporal heterogeneity of NSCLC and highlights 
significant genomic disparities between its early and 
advanced stages. Through comprehensive single-cell 
transcriptomic analysis, we identified distinct cancer cell 
subtypes and delineated temporal gene expression pat-
terns associated with NSCLC progression. The establish-
ment of a risk score model based on these genes offers 
potential clinical utility in cancer risk assessment and 
prognostication for NSCLC patients. Our findings under-
score the importance of understanding the molecular 
mechanisms underlying NSCLC progression and provide 
a foundation for further research aimed at improving 
clinical management and personalized treatment strate-
gies for NSCLC patients. Furthermore, our approach has 
the potential to provide valuable insights into the tem-
poral dynamics of biological systems and can be used to 
identify key biological pathways.
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