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Abstract 

Background  Tumor immunotherapy is a new treatment breakthrough for retroperitoneal liposarcoma (RPLS), which 
is highly invasive and has few effective treatment options other than tumor resection. However, the heterogene-
ity of the tumor immune microenvironment (TIME) leads to missed clinical diagnosis and inappropriate treatment. 
Therefore, it is crucial to evaluate whether the TIME of a certain part of the tumor reliably represents the whole tumor, 
particularly for very large tumors, such as RPLS.

Methods  We conducted a prospective study to evaluate the TIME in different regions of dedifferentiated RPLS 
(DDRPLS) by detecting the expressions of markers such as CD4+, CD8+, Foxp3+, CD20+, CD68+, LAMP3+, PD-1+ tumor-
infiltrating lymphocytes (TILs), and PD-L1 in tumors and corresponding paratumor tissues via immunohistochemistry 
and RNA sequencing.

Results  In DDRPLS, very few TILs were observed. Differentially expressed genes were significantly enriched in cell 
part and cell functions, as well as the metabolic pathway and PI3K-Akt signaling pathway. In addition, for most tumors 
(70–80%), the TIME was similar in different tumor regions.

Conclusions  For most tumors (70–80%), the TIME in any region of the tumor reliably represents the whole tumor. 
DDRPLS may regulate cell functions by modulating the metabolic and PI3K-Akt signaling pathways to promote its 
malignant behavior.
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Introduction
Retroperitoneal liposarcoma (RPLS) is the most com-
mon type of retroperitoneal tumor and is characterized 
by rapid growth and high invasiveness [1]. At present, 
there is no effective treatment of RPLS except for surgi-
cal resection of the tumor [2, 3]. Moreover, surgery often 
leads to trauma due to the need for extensive resection 
of several surrounding organs and tissues [4]. In addition, 
R0 resection is difficult because the tumor is extremely 
large and has an unclear boundary. Thus, RPLS, espe-
cially dedifferentiated RPLS (DDRPLS), has a high 
recurrence rate and a poor prognosis [5]. Therefore, it is 
essential to identify new treatment methods.

Tumor immunotherapy has demonstrated positive 
therapeutic effects in several tumors [6–10]. Therefore, 
tumor immunotherapy may represent a promising thera-
peutic approach for RPLS. However, PD-L1 expression 
varies across tumor regions [11–13], leading to errone-
ous classification of some PD-L1–positive tumors as 
PD-L1–negative tumors. In such situations, patients do 
not receive PD-1/PD-L1 blockers, resulting in the loss 
of opportunity for possible treatment. Furthermore, the 
characteristics of the whole tumor cannot be detected. 
Therefore, evaluation of the tumor immune microenvi-
ronment (TIME) before tumor immunotherapy should 
be based on clinical tumor specimens that accurately 
reflect the overall tumor characteristics. As a result, it is 
determined which tumor region accurately reflects the 
TIME characteristics of the whole tumor. Thus, in this 
prospective study, we analyzed the TIME characteristics 
of various tumor regions.

We found that there were very few tumor-infiltrating 
lymphocytes (TILs) in DDRPLS. Differentially expressed 
genes (DEGs) were significantly enriched in cell part 
and cell functions, as well as the metabolic and PI3K-
Akt signaling pathways. For most tumors (70–80%), the 
TIME was similar across different tumor regions. In 
other words, for most tumors (70–80%), the TIME in any 
tumor region could reliably represent the whole tumor. 
DDRPLS may regulate cell functions by modulating the 
metabolic and PI3K-Akt signaling pathways to promote 
its malignant behavior.

Materials and methods
Specimen collection and clinicopathological data 
of patients with DDRPLS
The surgical specimens were obtained from patients with 
DDRPLS who were treated at Xiang’an Hospital of Xia-
men University and the International Hospital of Peking 
University. All patients provided their written informed 
consent, and the study protocol was approved by the Eth-
ics Committee of Xiang’an Hospital of Xiamen Univer-
sity. The study was conducted in line with the Declaration 

of Helsinki. DDRPLS was diagnosed on the basis of 
standard clinical and histological criteria. All patients 
underwent tumor resection. Finally, 50 tumor speci-
mens from 10 newly resected tumors and 10 correspond-
ing paratumor tissues were obtained from 10 patients 
(Fig.  1). The median tumor diameter was 22.75  cm 
(range, 10–29.9  cm). The clinicopathological data of 
patients and their tumors are presented in Table 1. Fifty 
specimens (T1-5) were used for immunohistochemistry 
(IHC) analysis and 30 specimens (T1, T3, and T5) with 
corresponding paratumor specimens were used for RNA 
sequencing (RNA-seq) (Fig. 1).

RPLS is generally large, which makes it challenging 
to obtain several samples. Therefore, we hypothesized 
that RPLS is a round or oval tumor growing from the 
center to the periphery. In other words, we considered 
the center and periphery of RPLS to be old and new tis-
sues, respectively. In this case, the largest difference in 
the TIME within the tumor tissue should be between 
the center and periphery; that is, if the TIME is similar 
between the tumor center and periphery, we can infer 
that the TIME of the whole RPLS is homogeneous. 
Therefore, we obtained samples from the abovemen-
tioned five locations.

IHC
The tissues were routinely dehydrated, embedded, and 
sliced. After baking the slices, the sections were suc-
cessively dewaxed, hydrated, permeated, sealed, anti-
gen-repaired, incubated with primary and secondary 
antibodies, color-rendered, counterstained, and sealed.

Proportion of positive cells: We randomly obtained 
10 high-power vision fields (× 400) from each slice, cal-
culated the number of positive cells among 100 cells in 
each high-power vision field, and determined the aver-
age value from 10 high-power vision fields (positive 
index, expressed as a percentage). The cells were scored 
as follows: < 1%, score 0; 1–10%, score 1; 10–50%, score 2; 
and > 50%, score 3.

Cell density (positive cells/mm2): Ten high-power 
vision fields (× 400; area, 0.0788  mm2) were randomly 
obtained from each slice. We calculated the number of 
positive cells in each high-power vision field and deter-
mined the average value from 10 high-power fields. Sup-
plementary Table S1 presents the information related to 
antibodies.

RNA‑seq
The total RNA of the samples was extracted using a TRI-
zol kit (Promega, USA) in line with the manufacturer’s 
instructions. Residual DNA was removed by digestion 
with DNase I (TaKaRa Bio, Japan). A260/A280 value 
was measured to estimate the RNA concentration. A 
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small quantity of RNA product was for agarose gel elec-
trophoresis to determine the RNA quality. Next, the 
qualified RNAs were quantified using Qubit3.0 with the 
Qubit™ RNA Broad Range Assay kit (Life Technolo-
gies, Q10210). A total of 2  μg total RNA was used for 
stranded RNA sequencing library preparation using 
KC™ Stranded mRNA Library Prep Kit for Illumina® 
(Wuhan Seqhealth, China) in accordance with the 

manufacturer’s instructions. PCR products with 200–
500 bps were enriched, quantified, and finally sequenced 
on a Novaseq 6000 sequencer (Illumina) using a PE150 
model. Raw sequencing data were filtered using Trimmo-
matic (version 0.36). Low-quality reads were discarded, 
and the reads contaminated with adaptor sequences 
were trimmed. Reads mapped to the exon regions of each 
gene were counted using featureCounts (Subread-1.5.1; 

Fig. 1  Experimental flowchart. First, the newly resected tumors were cut along their long axis. Next, specimens were obtained from T1-5 sites 
on the long axis (T1 is the midpoint of the long axis of a tumor; T5 is the outer edge of the long axis of the tumor; T3 is the midpoint of the line 
between T1 and T5; T2 is the midpoint of the line between T1 and T3; T4 is the midpoint of the line between T3 and T5), and were divided into two 
groups. In one group, the specimens were placed in 10% formalin for subsequent immunohistochemistry, and in another group, the specimens 
were placed in liquid nitrogen for subsequent RNA-seq. Finally, the IHC and RNA-seq results were quantified, and the similarity of the TIME 
in different tumor regions was analyzed using the Mahalanobis distance. FFPE, formalin-fixed and paraffin-embedded; IHC, Immunohistochemistry; 
and RNA-seq, RNA sequencing

Table 1  Clinicopathological features of patients and their tumors

M male, F female, CD complete dedifferentiation, PD partial dedifferentiation, P primary tumor, R recurrent tumor, S single tumor, M multiple tumor

Case no Age (years) Gender Maximum diameter 
(cm)

Pathological type Primary or 
recurrent

Single or 
multiple

1 60 M 29.9 CD P M

2 66 M 10 CD R M

3 52 F 10.9 CD R S

4 57 F 25.7 CD P S

5 57 F 25.2 PD R M

6 63 M 14.8 PD R M

7 56 F 11.9 CD R S

8 62 M 24.3 PD P M

9 57 M 24.3 CD R M

10 65 M 21.2 CD R M
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Bioconductor). The abundance of each immune cell type 
was estimated as the average expression level of the cor-
responding genes [14] (Supplementary Table S2).

Statistical analysis
Differences between groups, correlations between fac-
tors, and the similarity of the TIME in different tumor 
regions were analyzed using the Mann–Whitney U test, 
Spearman’s correlation coefficients, and Mahalanobis 
distance analysis on SPSS version 23.0 (SPSS Inc., IL, 
USA) and GraphPad Prism software version 8.0 (Graph-
Pad Software Inc., San Diego, CA, USA). Statistical sig-
nificance was defined as p < 0.05.

Mahalanobis distance is the covariance distance in 
data. It is used to effectively determine the similarity 
between two unknown sample sets and to effectively 
evaluate the outliers and similarities among individuals in 
a population [14]. Additionally, compared with the com-
mon Euclidean distance, Mahalanobis distance has two 
advantages. First, its scale remains unchanged, and thus 
the differences in unit measurement values of different 
biomarkers will not affect the analysis results. Second, 
it also evaluates correlations between covariates, which 
can capture not only the difference in a single variable 
but also the differences between a group of variables[15]. 
In summary, Mahalanobis distance analysis is an ideal 
method for evaluating the similarity between unknown 
sample sets [14].

Results
Characteristics of TIME in DDRPLS
To analyze the characteristics of the TIME in differ-
ent tumor regions, we first detected the expression 
of immune markers including CD4+, CD8+, Foxp3+, 
CD20+, CD68+, LAMP3+, PD-1+ TILs, and PD-L1 in 
different tumor regions using IHC. As shown in Fig. 2A, 
the TIME was significantly heterogeneous between 
patients. However, the TIME was similar in different 
tumor regions (Fig. 2A). Furthermore, for most tumors, 
the distribution range of immune cells in different tumor 
regions was narrow (Fig. 2B, Supplementary Fig. 1), indi-
cating similar TIME in these regions.

In addition, very few TILs were observed in DDRPLS 
(Fig. 2, Supplementary Figures S1–S4), which is consist-
ent with a previous report [16]. CD4+ T cells were the 
most common, followed by CD68+ macrophages and 
PD-1+ cells, while Foxp3+ Tregs were the least common, 
followed by CD8+ T cells and PD-L1+ cells (Supplemen-
tary Figures S2–S4). Interestingly, PD-1+ cells were found 
in all DDRPLS specimens (Table  2). However, PD-L1+ 
cells were very rare and not found in many specimens 
(Table  3). Additionally, PD-L1 expression was closely 
related to other TILs and was associated with increased 

numbers of CD8+ T cells, Foxp3+ Tregs, CD20+ B cells, 
CD68+ macrophages, and LAMP3+ dendritic cells (DCs) 
(Fig. 3A).

The tertiary lymphoid structure (TLS) is the region 
of lymphocyte aggregation [17, 18], and it can provide 
an important functional environment for cellular and 
humoral immunity to maintain and promote the antitu-
mor immune response [17–19]. A higher number of TLS 
is associated with a stronger antitumor immune response 
[20, 21]. Therefore, to analyze TLS in the TIME of DDR-
PLS, the number of TLS per tissue section was deter-
mined. As shown in Fig.  3B, 56 TLSs were found in 50 
regions of 10 tumors. The highest number of TLS found 
in one region was 9. Interestingly, compared with tumors 
without TLS, the numbers of CD4+ T cells, CD8+ T cells, 
CD68+ macrophages, and PD-L1+ cells in the tumors 
with TLS were significantly increased (Fig. 3C).

Relationships between immune characteristics 
and clinicopathological features of DDRPLS patients
As shown in Supplementary Figures S5 and S6 and Sup-
plementary Table  S3, the immune characteristics of 
tumors were related to the clinicopathological features 
of DDRPLS patients. Higher numbers of CD4+ T cells, 
CD8+ T cells, CD20+ B cells, CD68+ macrophages, 
LAMP3+ DCs, PD-L1+ cells, and TLSs were detected 
in patients with a single tumor than in those with mul-
tiple tumors (Supplementary Figure  S5). The den-
sity of CD4+ T cells (r =  − 0.5187, p = 0.0001), CD8+ 
T cells (r =  − 0.3221, p = 0.0225), CD68+ macrophages 
(r =  − 0.4097, p = 0.0031), and PD-L1+ cells (r =  − 0.4119, 
p = 0.003), and the number of TLSs (r =  − 0.4665, 
p = 0.0006), were negatively correlated with tumor size 
(Supplementary Figure S6). However, no significant cor-
relation was found between immune characteristics and 
diagnostic status (primary or recurrent tumor) (Sup-
plementary Table  S3). In addition, higher densities of 
CD8+ T cells (p = 0.0193), Foxp3+ Tregs (p = 0.0029), 
CD68+ macrophages (p = 0.0028), and PD-L1+ cells 
(p = 0.0439) were detected in older patients than in 
younger patients. Furthermore, higher densities of CD4+ 
T cells (p = 0.0003), CD8+ T cells (p = 0.0188), CD20+ B 
cells (p = 0.0193), CD68+ macrophages (p = 0.03), and 
PD-L1+ cells (p = 0.0034), and a greater number of TLSs 
(p = 0.0044), were detected in female patients than in 
male patients (Supplementary Table S3).

Similarities in TIME between different regions of DDRPLS
The abovementioned results demonstrated that the 
TIME was similar in different regions of DDRPLS. To 
further confirm this finding, IHC data were analyzed 
to determine the Mahalanobis distance. As shown 
in Figure  4A, for most tumors, the TIME was similar 
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across different tumor regions. In 7 of 10 tumors (70%; 
nos. 1, 2, 4, 5, 6, 9, and 10), the distribution range of 
Mahalanobis distance was narrow for different tumor 
regions, while in 3 of 10 tumors (30%; nos. 3, 7, and 
8), the distribution range of Mahalanobis distance was 

wide for different tumor regions (Fig. 4A). In addition, 
in 8 of 10 tumors (80%; nos. 1, 2, 4, 5, 6, 8, 9, and 10), 
the Mahalanobis distance for all tumor regions was 
0–22 (critical value), while it was more than 22 (critical 
value) in 2 of 10 tumors (20%; Nos. 3 and 7) (Fig. 4A). 

Fig. 2  TIME of DDRPLS. A The TIME between different patients was heterogeneous; however, TIME in different tumor regions was similar 
(IHC, represented by CD4). B Immune cell constitution in DDRPLS using IHC data. For most tumors, the distribution range of immune cells 
was narrow for different tumor regions. Each dot denotes the immune cell density of a sample. TIME, tumor immune microenvironment; DDRPLS, 
dedifferentiated retroperitoneal liposarcoma; and IHC, immunohistochemistry
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These data indicated that for most tumors (70–80%), 
the TIME was similar for different tumor regions.

To analyze the factors affecting the similarity of 
TIME across different tumor regions, Mahalanobis 
distance was calculated again after removing markers 
one by one. As shown in Fig. 4B, after removing CD8+ 
T cells, Foxp3+ Tregs, LAMP3+ DCs, and PD-1+ cells, 
the Mahalanobis distance for different tumor regions 
(no. 8) was significantly narrowed, indicating that 
CD8+ T cells, Foxp3+ Tregs, LAMP3+ DCs, and PD-1+ 
cells were the main influencing factors leading to the 
TIME heterogeneity in different tumor regions (no. 
8). For tumor no. 3, not only the distribution range of 
the Mahalanobis distance for different tumor regions 
was wide, but also the Mahalanobis distance did not 

decrease to less than 22 (critical value), regardless of 
removing the markers (Fig.  4B). This indicated that 
the TIME was highly heterogeneous across the differ-
ent regions of tumor no. 3. However, for tumor No. 7, 
the Mahalanobis distance in all regions decreased to 
less than 22 (critical value) after removing PD-1+ cells 
(Fig.  4B), indicating that PD-1+ cells were the main 
influencing factor leading to the heterogeneity in the 
TIME across different regions of tumor no. 7.

RNA-seq results showed that in 8 of 10 tumors (80%; 
nos. 1, 2, 4, 5, 6, 7, 8, and 10), the distribution range of 
the Mahalanobis distance was narrow for different tumor 
regions, while in 2 of 10 tumors (20%; nos. 3 and 9), the 
distribution range of the Mahalanobis distance was wide 
for different tumor regions (Fig.  5A). Furthermore, in 
8 of 10 tumors (80%; nos. 1, 2, 4, 5, 6, 8, 9, and 10), the 
Mahalanobis distance for all tumor regions was 0–22 
(critical value), and in 2 of 10 tumors (20%; nos. 3 and 
7), the Mahalanobis distance for some tumor regions 
exceeded 22 (critical value) (Fig.  5A). These data indi-
cated that for most tumors (80%), the TIME was similar 
for different tumor regions. Similarly, for tumor no. 3, the 
distribution range of the Mahalanobis distance in differ-
ent regions was narrowed, whereas the Mahalanobis dis-
tance in all regions was decreased to less than 22 (critical 
value) after removing CD20+ B cells (Fig.  5B), indicat-
ing that CD20+ B cells were the main influencing factor 
leading to the heterogeneity in TIME among different 
regions of the tumor no. 3. However, for tumor No. 7, the 
Mahalanobis distance for some regions did not decrease 
to less than 22 (critical value), regardless of removing the 
markers (Fig.  5B), indicating that the TIME was highly 
heterogeneous for different regions of the tumor no. 7. In 
addition, for tumor no. 9, regardless of removing any of 
the markers, the distribution range of the Mahalanobis 
distance was not narrowed for different regions, although 
they were all within 22 (critical value) (Fig. 5B).

As shown in Supplementary Figure  S7, there was a 
strong correlation between IHC and RNA-seq data for 
the evaluation of TIME. For CD4+ T cells, CD8+ T cells, 
CD20+ B cells, LAMP3+ DCs, and PD-1+ cells, RNA-seq 
was positively correlated with IHC (Supplementary Fig-
ure S7). In addition, the IHC results showed that in 7 of 
10 tumors (70%; nos. 1, 2, 4, 5, 6, 9, and 10), the distri-
bution range of the Mahalanobis distance was narrow 
for different tumor regions, and in 3 of 10 tumors (30%; 
nos. 3, 7, and 8), the distribution range of the Mahalano-
bis distance was wide for different tumor regions (Sup-
plementary Figure S8A). RNA-seq results showed that 
in 8 of 10 tumors (80%; nos. 1, 2, 4, 5, 6, 7, 8, and 10), 
the distribution range of the Mahalanobis distance 
was narrow for different tumor regions, and in 2 of 10 
tumors (20%; Nos. 3 and 9), the distribution range of 

Table 2  PD-1 expression

Tumor no Number 
of 
samples

Score 0 Score 1 Score 2 Score 3

Number 
(%)

Number 
(%)

Number 
(%)

Number 
(%)

1 5 1(20%) 4(80%)

2 5 2(40%) 3(60%)

3 5 5(100%)

4 5 5(100%)

5 5 5(100%)

6 5 5(100%)

7 5 2(40%) 3(60%)

8 5 5(100%)

9 5 5(100%)

10 5 4(80%) 1(20%)

Table 3  PD-L1 expression

Tumor no Number 
of 
samples

Score 0 Score 1 Score 2 Score 3

Number 
(%)

Number 
(%)

Number 
(%)

Number 
(%)

1 5 3(60%) 1(20%) 1(20%)

2 5 5(100%)

3 5 5(100%)

4 5 5(100%)

5 5 2(40%) 1(20%) 2(40%)

6 5 1(20%) 1(20%) 1(20%) 2(40%)

7 5 5(100%)

8 5 3(60%) 2(40%)

9 5 2(40%) 2(40%) 1(20%)

10 5 5(100%)
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the Mahalanobis distance was wide for different tumor 
regions(Supplementary Figure S8B). Moreover, both IHC 
and RNA-seq results showed that in 8 of 10 tumors (80%; 
nos. 1, 2, 4, 5, 6, 8, 9, and 10), the Mahalanobis distance 
in all tumor regions was within 22 (critical value), and in 
2 of 10 tumors (20%; Nos. 3 and 7), the Mahalanobis dis-
tance for some tumor regions was more than 22 (critical 
value) (Supplementary Figure  S8A, B). These data indi-
cated good correlation and consistency between IHC and 
RNA-seq data for the evaluation of TIME in DDRPLS.

Interestingly, for regions used for RNA-seq detec-
tion (T1, T3, and T5), IHC results showed that in 9 of 10 
tumors (90%; nos. 1, 2, 3, 4, 5, 6, 7, 9, and 10), the dis-
tribution range of the Mahalanobis distance was narrow 
for different tumor regions, and in 1 of 10 tumors (10%; 
no. 8), the distribution range of the Mahalanobis distance 
was wide for different tumor regions(Supplementary Fig-
ure S8C). RNA-seq results showed that in 8 of 10 tumors 
(80%; nos. 1, 2, 4, 5, 6, 7, 8, and 10), the distribution range 
of the Mahalanobis distance was narrow for different 

Fig. 3  PD-L1 and TLS in DDRPLS. A PD-L1 expression increases CD8+ T cells, Foxp3+ Tregs, CD20+ B cells, CD68+ macrophages, and LAMP3+ 
DCs. B Number or relative gene expression of TLS per sample (left: IHC data; right: RNA-seq data). Each dot denotes the number or relative 
gene expression of a sample. C TLS increases CD4+ T cells, CD8+ T cells, CD68+ macrophages, and PD-L1+ cells in DDRPLS. *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001. TLS, tertiary lymphatic structure; DDRPLS, dedifferentiated retroperitoneal liposarcoma; DCs, dendritic cells; IHC, 
immunohistochemistry; and RNA-seq, RNA sequencing
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tumor regions, and in 2 of 10 tumors (20%; Nos. 3 and 
9), the distribution range of the Mahalanobis distance 
was wide for different tumor regions (Supplementary 
Figure  S8B). Moreover, both IHC and RNA-seq results 
showed that in 8 of 10 tumors (80%; nos. 1, 2, 4, 5, 6, 8, 
9, and 10), the Mahalanobis distance in all tumor regions 

was within 22 (critical value), and in 2 of 10 tumors (20%; 
Nos. 3 and 7), the Mahalanobis distance in some tumor 
regions was more than 22 (critical value) (Supplementary 
Figure S8B, C). These data also indicated very good con-
sistency between IHC and RNA-seq data for evaluating 
the TIME of DDRPLS.

Fig. 4  Similarity of the TIME across different tumor regions using IHC data. A Mahalanobis distance of all immune markers (including eight immune 
cells and TLS). B Mahalanobis distance of all immune markers except one. Each dot denotes the Mahalanobis distance of a region. Dotted lines 
denote the critical value of Mahalanobis distance. TIME, tumor immune microenvironment; IHC, immunohistochemistry; and TLS, tertiary lymphatic 
structure
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Characteristics of related pathways in DDRPLS
The abovementioned results showed very good correlation 
and consistency between IHC and RNA-seq data for evalu-
ating the TIME of DDRLPS. Moreover, RNA-seq data were 
more comprehensive and extensive than IHC data. Thus, 
we used RNA-seq data alone to analyze immune-related 

pathways in the TIME of DDRPLS, including antigen 
presentation, cell adhesion, co-stimulator, co-inhibitor, 
cytokine, receptor, and ligand [22] (Fig. 6, Supplementary 
Figures  S9 and S10). The results showed that immune-
related pathways in different tumor regions were also simi-
lar (Fig. 6, Supplementary Figure S10).

Fig. 5  Similarity of the TIME across different tumor regions using RNA-seq data. A Mahalanobis distance of all immune markers (including eight 
immune cells and TLS). B Mahalanobis distance of all immune markers except one. Each dot denotes the Mahalanobis distance of a region. Dotted 
lines denote the critical value of Mahalanobis distance. TIME, tumor immune microenvironment; RNA-seq, RNA sequencing; and TLS, tertiary 
lymphatic structure
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Gene Ontology (GO) enrichment analysis of DEGs in 
the tumor and corresponding paratumor tissues detected 
via RNA-seq showed that, compared to paratumor tis-
sues, DEGs in DDRPLS were significantly enriched in the 
intracellular part, intracellular, cellular process, cell part, 
cell, binding, and single organism process functions, with 
cell part and cell functions exhibiting especially signifi-
cant enrichment in almost all DDRPLS (Supplementary 
Figure  S11). These findings suggest that DDRPLS may 
undergo malignant transformation primarily through the 
regulation of cell parts and cell functions.

In addition, further Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis of 
DEGs in the tumor and corresponding paratumor tis-
sues showed that, compared to paratumor tissues, DEGs 
in DDRPLS were mainly enriched in pathways such as 
ribosomes, metabolic pathway, PI3K-Akt signaling path-
way, cell adhesion molecules (CAMs), phagosome, and 
pathways in cancer (Fig. 7). The metabolic pathway and 

PI3K-Akt signaling pathway exhibited especially signifi-
cant enrichment in almost all DDRPLS (Fig.  7). These 
findings suggest that DDRPLS may regulate cell functions 
primarily by regulating the metabolic and PI3K-Akt sign-
aling pathways, leading to malignant transformation.

Discussion
In this study, we showed that in DDRPLS, the number of 
TILs was very low, and CD4+ T cells were the most com-
mon, while Foxp3+ Tregs were the least common. DEGs 
were significantly enriched in cell part and cell functions, 
as well as the metabolic and PI3K-Akt signaling path-
ways. For most tumors (70–80%), the TIME in different 
tumor regions was similar.

Studies evaluating the TIME have mainly focused on 
inter-patient or inter-tumor heterogeneity and the rela-
tionship between the TIME and clinicopathological fea-
tures of patients [23–33]. Few studies have focused on 
intratumor similarity [34, 35], especially for very large 

Fig. 6  Similarity of the immune-related pathways in different tumor regions using RNA-seq data alone. Immune-related pathways in different 
tumor regions were similar. Each dot denotes the Mahalanobis distance of a region. Dotted lines denote the critical value of Mahalanobis distance. 
RNA-seq, RNA sequencing
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Fig. 7  KEGG pathway enrichment analysis of DEGs in DDRPLS. Compared to paratumor tissues, DEGs in DDRPLS were significantly enriched 
in several pathways, such as the ribosome, metabolic, PI3K-Akt signaling, cell adhesion molecules (CAMs), phagosome, and cancer pathways, 
with the most significant enrichment in the metabolic pathway and the PI3K-Akt signaling pathway. KEGG, Kyoto Encyclopedia of Genes 
and Genomes; DEGs, differentially expressed genes; DDRPLS, dedifferentiated retroperitoneal liposarcoma
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tumors such as RPLS. The PD-L1 expression [11–13] var-
ies across different regions of some tumors, which may 
lead to misclassification of some PD-L1–positive tumors 
as PD-L1–negative tumors, hindering possible treatment 
with PD-1/PD-L1. Therefore, in both clinical and experi-
mental research, we often need to obtain tumor speci-
mens to reliably reflect the TIME of the whole tumor, 
especially for large tumors, such as RPLS. Therefore, to 
overcome this challenge and provide guidance for clini-
cal diagnosis and treatment, the characteristics of the 
TIME in different tumor regions were investigated. The 
results showed that for most tumors (70–80%), the TIME 
was similar in different tumor regions. In other words, 
for most tumors (70–80%), the obtained specimen can 
reliably represent the TIME of the whole tumor, regard-
less of the region it is obtained from. Therefore, for most 
tumors (70–80%), the TIME of any tumor region can reli-
ably represent the whole tumor.

However, we found two tumors (nos. 3 and 7) using IHC 
and two tumors (nos. 3 and 7) using RNA-seq that dis-
played significant heterogeneity in different tumor regions, 
for which the TIME in any tumor region could not reli-
ably represent the whole tumor. We thought that the het-
erogeneity had little to do with tumor size or type, but was 
related to the inherent tumor characteristics. These results 
are supported by a study that demonstrated that different 
tumor regions might undergo different stages of immune-
editing of neoantigen-harboring cancer cells [36].

In addition, our results showed that the TIME of DDR-
PLS contained very few TILs, which is consistent with a 
previous report [16]. This might be related to the large 
volume of tumor cells, as they occupy a large space in 
the tumor, especially well-differentiated liposarcoma 
(data not shown), which might explain why many reports 
have shown that tumor immunotherapy was ineffective 
for well-differentiated liposarcoma [37, 38]. These find-
ings also indicate that it is essential to develop strate-
gies to increase immune cells for tumor immunotherapy 
of RPLS. Similarly, TILs in multiple tumors are reduced 
because many of these tumors are partially dedifferenti-
ated (Table 1) with a large number of tumor cells.

Moreover, we found that the number of TLSs was asso-
ciated with the number of CD4+T cells, CD8+ T cells, 
CD20+ B cells, and CD68+ macrophages. In other words, 
in tumors with a greater number of TLSs, the density of 
CD4+T cells, CD8+ T cells, CD20+ B cells, and CD68+ 
macrophages were also higher. These phenomena were 
mainly related to strong anti-tumor immune responses 
[21, 39]. In addition, compared to multiple and large 
tumors, the number of TLSs was greater and the density 
of CD4+T cells, CD8+ T cells, CD20+ B cells, and CD68+ 
macrophages was higher in single and small tumors. 
These findings indicate that, in patients with high levels 

of TLSs, CD4+T cells, CD8+ T cells, CD20+ B cells, and 
CD68+ macrophages, tumor growth may be inhibited.

Furthermore, to avoid the unreliability of a single 
method, such as IHC alone, we evaluated the correla-
tion and consistency between IHC and RNA-seq for 
evaluating the TIME. Interestingly, our results showed a 
very good correlation and consistency between IHC and 
RNA-seq for evaluating the TIME. Moreover, compared 
to the IHC data, RNA-seq data were more comprehen-
sive and extensive. These findings indicate that the use of 
RNA-seq data alone to evaluate the TIME is feasible and 
comprehensive.

Our study also had some limitations. First, the sample 
size was relatively small, although it was consistent with 
statistical principles and the sample size of many previ-
ous studies [40–42]. Therefore, it is necessary to expand 
the sample size in future studies. Second, conventional 
IHC cannot fully characterize the functional status of 
immune cells and fully detect the components of TIME, 
such as naive, effector, memory, or exhausted T cells, 
M1 or M2 polarized macrophages, and granulocytic or 
monocytic myeloid-derived suppressor cells. Ideal evalu-
ation methods applicable to FFPE specimens include 
multiplexed fluorescent IHC [35] and mass spectrome-
try-based multiplexed ion beam imaging [43, 44]. How-
ever, they are not routinely used in the clinical setting 
and are very expensive. The correlation and consistency 
between RNA-seq and IHC for evaluating the TIME were 
very good, and RNA-seq data were very comprehensive 
and extensive. Therefore, RNA-seq can be used alone to 
evaluate the TIME in a future larger study. Third, this 
study suggested that DDRPLS may regulate cell functions 
by modulating the metabolic and PI3K-Akt signaling 
pathways to promote its malignant behavior. However, 
this needs to be further investigated in the future.

Conclusions
In this study, very few TILs were found in DDRPLS. 
DEGs were significantly enriched in cell part and cell 
functions, as well as the metabolic and PI3K-Akt sign-
aling pathways. For most tumors (70–80%), the TIME 
in different tumor regions was similar. Therefore, the 
TIME in any tumor region could reliably represent 
the whole tumor. DDRPLS may regulate cell functions 
by modulating the metabolic and PI3K-Akt signaling 
pathways to promote its malignant behavior. This is 
important to consider when obtaining a tumor speci-
men to reliably represent the TIME of the whole tumor 
in clinical or experimental research. Furthermore, these 
findings may provide guidance for the clinical diagnosis 
and treatment, as well as for research into the mecha-
nism of RPLS.
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