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Abstract 

Background In recent years, the capacity of tumor cells to maintain high levels of glycolysis, even in the presence 
of oxygen, has emerged as one of the main metabolic traits and garnered considerable attention. The purpose of this 
meta-analysis is to investigate the prognostic value of glycolysis markers in liver cancer.

Methods PubMed, Embase, and Cochrane Library databases were searched for articles on glycolytic marker expres-
sion levels associated with the prognosis of liver cancer until April 2023. Stata SE14.0 was used to calculate the aggre-
gate hazard ratios and 95% confidence intervals.

Results Thirty-five studies were included. The worse overall survival (OS) (P < 0.001), disease-free survival (DFS) (P = 
0.001), recurrence-free survival (RFS) (P = 0.004), and time to recurrence (TTR) (P < 0.001) were significantly associated 
with elevated expression of glycolysis markers. Higher expression of PKM2 (P < 0.001), STMN1 (P = 0.002), MCT4 (P < 
0.001), GLUT1 (P = 0.025), HK-2 (P < 0.001), and CA9 (P < 0.001) were significantly related to shorter OS. Increased levels 
of PKM2 (P < 0.001), CA9 (P = 0.005), and MCT4 (P < 0.001) were associated with worse DFS. Elevated PKM2 expression 
(P = 0.002) was also associated with poorer RFS in hepatocellular carcinoma patients. GLUT2 expression was not cor-
related with the prognosis of liver cancer (P = 0.134).

Conclusions Elevated expression of glycolysis markers was associated with worse OS, DFS, RFS, and TTR in patients 
with liver cancer. Therefore, these glycolysis markers could serve as potential prognostic markers and therapeutic 
targets in liver cancer.

Trial registration PROSPERO registration: CRD42023469645.
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Introduction
Primary liver cancer, being one of the most prevalent 
malignancies worldwide, presents a substantial threat 
to human health [1]. According to statistical data, in 
the year 2012, there were approximately 780,000 newly 

diagnosed cases of liver cancer and 740,000 deaths attrib-
uted to this disease worldwide [2]. Hepatocellular carci-
noma (HCC) is the fourth leading cause of cancer-related 
mortality worldwide, accounting for 80%-90% of primary 
liver malignancies [3, 4]. Despite the significant progress 
made in cancer treatment modalities, such as surgical 
techniques, targeted therapies, chemotherapy, and radi-
otherapy, the challenges of metastasis and recurrence 
continue to pose significant clinical challenges [5, 6]. 
Therefore, the identification of clinical markers that are 
associated with prognosis is paramount for establishing 
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accurate diagnoses and designing individualized treat-
ments for patients with liver cancer.

Accumulating evidence indicates that changes in cel-
lular metabolism contribute to an increased propensity 
for tumor development. In cancer, a prominent hallmark 
involves reprogramming energy metabolism in tumor 
cells, which enables them to obtain the necessary energy 
for accelerated cellular proliferation, division, inva-
sion, and migration [7]. One of the metabolic features of 
HCC cells is that glucose metabolism always terminates 
in pyruvate and bypasses oxidation via the Krebs cycle, 
which can convert pyruvate to lactate with sufficient 
oxygen [8]. This phenomenon, commonly referred to as 
"aerobic glycolysis" or the "Warburg effect," allows cells 
to increase glucose uptake and lactate production regard-
less of the presence of oxygen [9].

Numerous studies in recent years have demonstrated 
the effectiveness of reprogramming tumor metabo-
lism as a new therapeutic approach to combat cancer 
[10]. Aerobic glycolysis is crucial for the initiation and 
progression of most malignancies. Therefore, inhibit-
ing tumor cell glycolysis and interfering with the energy 
supply have become essential research areas in cancer 
treatment [11]. In vitro, in vivo, and clinical studies have 
reported the presence of a number of enzymes which are 
involved in the glycolytic pathways, including glucose 
transporter 1 (GLUT1), glucose transporter 2 (GLUT2), 
glucose transporter 4 (GLUT4), hexokinase 2 (HK- 2), 
monocarboxylate transporter 4 (MCT4), pyruvate kinase 
M2 (PKM2), stathmin 1 (STMN1), carbonic anhydrase 
IX (CA9), choline kinase alpha (CKA), MLX-interacting 
protein-like (MLXIPL), membrane-associated protein 17 
(MAP17), Phosphofructokinase-2/fructose-2,6-bisphos-
phatase 3 (PFKFB3), phosphoglucose mutase 1 (PGM1), 
cyclin-dependent kinase 1 (CDK1), alanine-serine-
cysteine transporter 2 (ASCT2), lactate dehydrogenase B 
(LDHB), homer protein homolog 1 (Homer1), tripartite 
motif inclusion 35 (TRIM35), phosphoglycerate kinase-1 
(PGK-1), ATP-binding cassette subfamily B member 
6 (ABCB6), and cyclin-dependent kinase 1 (CDC2). 
Among these key enzymes of glycolysis, the most 
widely used glycolytic markers include GLUT1, GLUT2, 
GLUT4, HK- 2, MCT4, PKM2, CA9, MLXIPL, PFKFB3, 
PGM1, CDK1, ASCT2, LDHB, PGK-1, CDC2. The glyco-
lytic regulators STMN1, MAP17, Homer1, TRIM35, and 
ABCB6 are considered as potential biomarkers for the 
prognosis of hepatocellular carcinoma.

The GLUT family mediates glucose uptake, which 
transports glucose and related hexoses into the cells [12]. 
PKM2 is one of the major rate-limiting enzymes in glyco-
lysis and has significant significance in the latter stages of 
the glycolytic pathway [13]. HK-2 catalyzes the first step 
of glycolysis. MLXIPL can be activated by carbohydrate 

metabolites, and transactivates glucose metabolism by 
regulating glycolysis during the circulation of sugars [14]. 
PFKFB3 is a metabolic enzyme that sustains glycolysis 
[15, 16].

Previous studies have shown that a risk signature con-
sisting of six glycolysis-related genes can accurately 
predict the prognosis of HCC patients [17]. Despite the 
increasing number of studies on glycolysis markers, there 
is a need for a comprehensive review to summarize their 
prognostic value in liver cancer. Consequently, this meta-
analysis aims to determine the relationship between gly-
colysis markers and the prognosis of patients with liver 
cancer.

Methods
This systematic review and meta-analysis was regis-
tered on the Prospective Registry for Systematic Reviews 
(PROSPERO, CRD42023469645) and conducted accord-
ing to Preferred Reporting Items for Systematic Reviews 
and Meta-analyses (PRISMA) [18, 19].

Literature Retrieval Strategy
We searched PubMed, Embase, and Cochrane Library 
online databases for studies published from the estab-
lishment of each database to April 2023 that evaluated 
glycolysis markers concerning survival outcomes in 
liver cancer. The search was restricted to articles pub-
lished in the English language. The search keywords 
comprised: “hepatocellular carcinoma”, “HCC”, “glucose 
transporter 1”, “GLUT1”, “monocarboxylate transporter”, 
“MCT4”, “hexokinase 2”, “HK2”, “pyruvate kinase M2”, 
“PKM2”, “Enolase 1”, “ENO1”, “L-lactate dehydrogenase B 
chain”, “LDHB”, “lactate dehydrogenase 5”, “LDH5”, “car-
bonic anhydrase 9”, “CA9”, “dihydropyrimidinase-like 
4”, “DPYSL4”, “Homer protein homolog 1”, “HOMER1”, 
“ATP-binding cassette subfamily B member 6”, “ABCB6”, 
“centromeric protein A”, “CENPA”, “cyclin-dependent 
kinase 1”, “CDK1”, “stathmin 1”, “STMN1”, “glucose trans-
porters”, “prognosis”, “prognostic”, and “outcome”. After 
removing duplicates from all identified articles, those 
that did not meet the inclusion criteria based on title 
and abstract were excluded. Then, the full text was read 
and evaluated carefully to identify the included literature 
based on the inclusion and exclusion criteria. Any differ-
ences that arose were resolved through consensus.

Selection of Studies
The following inclusion criteria were established: (1) The 
diagnosis of liver cancer was based on established guide-
lines, such as histopathology or other relevant diagnos-
tic criteria. (2) The study investigated the relationship 
between the expression levels of glycolysis markers and 
survival outcomes in patients with liver cancer. (3) The 
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study was a cohort study in which patients were divided 
into high and low expression groups based on the expres-
sion levels of glycolytic markers. (4) The study docu-
mented the survival outcomes of HCC patients, including 
OS, DFS, RFS, and TTR. (5) The study presented HR and 
95% CI or provided sufficient data for calculating the HR 
and 95% CI.

Exclusion criteria were as follows: (1) Case reports, 
systematic reviews, meta-analyses, letters, or conference 
presentations. (2) Patients included in the study with 
other malignancies. (3) Publications written in languages 
other than English. (4) Studies utilized duplicate data or 
analyses. (5) Studies that did not present available data. 
(6) The studies with a sample size of less than 20.

Data Extraction Process
Two researchers independently extracted pertinent data 
from eligible studies. The extracted data for each study 
included the first author, publication year, population 
source, sample size, gender distribution, age range, gly-
colysis markers, detection method, duration of follow-
up, and survival outcomes. OS, DFS, RFS, and TTR were 
the recorded survival outcomes. In instances where the 
original data or corresponding HR was not provided, the 
Engauge Digitizer v4.1 was used to extract the neces-
sary information from the Kaplan-Meier survival curve, 
allowing the calculation of HR and its corresponding 95% 
CI [20].

Quality Assessment of Studies
The quality of all the included studies was evaluated using 
the Newcastle-Ottawa Scale (NOS) [21]. The NOS scale 
assessed the quality of each study across three domains: 
selection (0–4 points), comparability (0–2 points), and 
exposure (0–3 points). Studies with an NOS score greater 
than 7 were classified as high quality, while those with a 
score between 5 and 7 were classified as medium quality. 
Studies scoring below 5 were deemed to be of poor qual-
ity [22].

Statistical Analysis
All statistical analyses and graphical representations were 
performed using STATA 16.0. The association between 
the expression levels of glycolysis markers and OS, DFS, 
RFS, and TTR in patients with liver cancer was evaluated 
by pooled HRs and corresponding 95% CIs. The pooled 
HRs and corresponding 95% CIs were calculated using 
the random-effects model [23]. The heterogeneity among 
studies was assessed using the Cochran Q test and the  I2 
statistic [24]. An  I2 value ≤ 25% indicated low heteroge-
neity, 25% <  I2 < 50% showed moderate heterogeneity, 
and  I2 ≥ 50% indicated high heterogeneity [24]. Subgroup 
analyses were conducted based on glycolysis markers and 

study regions. The robustness of this meta-analysis was 
evaluated by sequentially excluding individual studies 
and assessing their impact on the pooled results. Publica-
tion bias was evaluated using Begg’s test and Egger’s test. 
All statistical tests were two-tailed, and a significance 
level of P < 0.05 was considered statistically significant.

Results
Search Results
Figure 1 presents the results of the literature search and 
screening procedure. Initial identification yielded a total 
of 1182 studies. After removing duplicates, 834 investi-
gations remained. Following a review of the titles and 
abstracts, 763 studies were determined to be irrelevant to 
the topic and were therefore excluded. The remaining 71 
studies were subsequently subjected to thoroughly exam-
ining the full text. In the end, a total of 35 studies satisfied 
the inclusion criteria for this meta-analysis [25–59].

Characteristics and Quality of the Included Studies
We included 35 eligible studies with a total of 5234 
patients. All studies were published between 2000 and 
2023, covering seven regions. A total of 22 investigations 
were conducted in China, 6 in Japan, 2 in Germany, 1 in 
South Korea, 1 in the United States, 3 in Taiwan, and 1 
in Hong Kong. The sample sizes ranged from 30 to 638 
individuals. In 34 investigations, tumor samples were 
utilized, while serum samples were utilized in only two. 
To measure the expression levels of glycolysis mark-
ers, 29 studies used the immunohistochemistry method, 
whereas 4 studies used qRT-PCR, 1 used the immuno-
fluorescence method, and 1 used the ELISA. Glycoly-
sis markers assessed in these studies included: MLXIPL 
(n = 1), GLUT4 (n = 1), PKM2 (n = 9), MAP17 (n = 1), 
PFKFB3 (n = 1), STMN1 (n = 3), PGM1 (n = 1), MCT4 
(n = 3), GLUT1 (n = 2), CDK1 (n = 1), HK-2 (n = 4), CA9 
(n = 4), Homer1 (n = 1), ASCT2 (n = 1), LDHB (n = 1), 
TRIM35 (n = 1), ABCB6 (n = 1), PGK-1 (n = 1), GLUT2 
(n = 2), CDC2 (n = 1). The prognostic value of glycoly-
sis markers was assessed by examining OS in 32 studies, 
DFS in 14 studies, RFS in 3 studies, and TTR in 3 stud-
ies. Supplementary Table 1 presented the characteristics 
of all eligible studies, including publication region, year, 
sample size, gender, age, and other relevant details.

The NOS score for the 10 studies exceeded 7, while the 
NOS score for the 25 studies ranged from 5 to 7.

Correlation between Glycolysis Markers and OS in Liver 
Cancer
In 32 studies involving 19 glycolysis markers, the asso-
ciation between the expression levels and OS in patients 
with liver cancer was investigated. The meta-analysis, 
using a random-effects model  (I2 = 57.0%, P < 0.001), 
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revealed that elevated expression of glycolysis markers 
was significantly associated with worse OS in patients 
with liver cancer (HR = 1.78, 95% CI: 1.58-2.01, P < 
0.001) (Fig. 2).

Subgroup analysis based on specific glycolysis mark-
ers revealed that higher expression of PKM2 (P < 0.001), 
STMN1 (P = 0.002), MCT4 (P < 0.001), GLUT1 (P = 
0.025), HK-2 (P < 0.001), and CA9 (P < 0.001) was signifi-
cantly correlated with poor OS in liver cancer. However, 
elevated GLUT2 expression was not significantly asso-
ciated with OS in patients with liver cancer (P = 0.134). 
The regional subgroup analysis suggested that high 
expression levels of glycolytic markers were associated 
with poorer OS in HCC patients from China (P < 0.001), 
Japan (P = 0.001), Germany (P < 0.001), and Taiwan (P 
< 0.001). Subgroup analysis of samples showed that ele-
vated expression of glycolytic markers in tumor tissues (P 
< 0.001) and serum samples (P = 0.001) was associated 

with poor prognosis. In the assay-based subgroup analy-
sis, high expression levels of glycolytic markers detected 
by IHC (P < 0.001) and qRT-PCR (P < 0.001) were associ-
ated with poorer OS in HCC patients. In addition, heter-
ogeneity between studies could be attributable to specific 
glycolysis markers (Table  1). The results revealed that 
regions, samples, and assays were not the predominant 
source of heterogeneity (Table 1).

Correlation between Glycolysis Markers and DFS in Liver 
Cancer
The correlation between glycolysis markers and DFS in 
HCC patients was investigated in 14 studies, including 
1421 patients. High heterogeneity was observed among 
the studies  (I2 = 75.8%, P < 0.001). The pooled HR was 
1.89 (95% CI: 1.17-1.81, P = 0.001), indicating that liver 
cancer patients with elevated expression of glycolysis 
markers had a shorter DFS (Fig. 3).

Fig. 1 Flow diagram for selection strategy of articles in this meta-analysis
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High expression of PKM2 (P < 0.001), CA9 (P = 0.005), 
and MCT4 (P < 0.001) predicted a poor DFS in patients 
with liver cancer, as determined by subgroup analy-
sis based on specific glycolysis markers. The regional 
subgroup analysis indicated that high expression lev-
els of glycolytic markers correlated with poorer DFS in 
China (P = 0.019), Japan (P < 0.001), and Taiwan (P < 
0.001). The results of subgroup analysis based on detec-
tion methods suggested that high expression levels of 
glycolytic markers detected using IHC (P < 0.001) and 

qRT-PCR (P = 0.003) were associated with poor DFS. 
Furthermore, the heterogeneity between studies can be 
attributed to changes in glycolytic markers, rather than 
the study regions or detection methods (Supplementary 
Table 2).

Correlation between Glycolysis Markers and RFS in Liver 
Cancer
We analyzed data from three studies, including 636 
patients, to investigate the correlation between PKM2, 

Fig. 2 Forest plot showing the correlation between the expression levels of glycolysis markers and OS in patients with liver cancer. 
A random-effects model was employed. [25–39, 41–58]
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GLUT1, ASCT2, and CA9 expression levels and RFS in 
patients with liver cancer. The pooled results demon-
strated moderate heterogeneity  (I2 = 34.1%, P = 0.194), 

and elevated expression levels of these four glycolysis 
markers were significantly associated with a shorter RFS 
(HR = 1.49, 95% CI: 1.13-1.97, P = 0.004) (Fig. 4).

A subgroup analysis based on various glycolysis mark-
ers revealed that overexpression of PKM2 (P = 0.002) 
indicated a poor RFS (Supplementary Table 3).

Correlation between Glycolysis Markers and TTR in Liver 
Cancer
Using data from three studies, we examined the relation-
ship between the expression levels of PGM1, MCT4, 
GLUT1, and PKM2 and TTR in HCC patients. The 
pooled results, with low heterogeneity  (I2 = 0.0%, P = 
0.814), revealed that the high expression of these four 
glycolysis markers in liver cancer was associated with a 
higher TTR rate (HR = 1.48, 95% CI: 1.25-1.75, P < 0.001) 
(Supplementary Figure  1). However, subgroup analyses 
could not be conducted due to the limited number of 
studies reporting on TTR.

Sensitivity Analysis
The results of sensitivity analysis showed that our results 
were robust (Supplementary figure 2, and Supplementary 
figure 3).

Publication Bias
Begg’s and Egger’s tests were employed to evaluate pub-
lication bias in this meta-analysis. OS (P = 0.059 and 
P = 0.105, respectively), DFS (P = 0.189 and P = 0.065, 
respectively), RFS (P = 0.221 and P = 0.307, respectively), 
and TTR (P = 0.734 and P = 0.070, respectively) showed 
no significant publication bias.

Discussion
HCC is a global disease with significant consequences. 
Early detection is crucial for effective HCC management 
because it not only improves patient prognosis but also 
preserves valuable societal resources [60]. The rewir-
ing of energy metabolism is a defining feature of cancer, 
with aerobic glycolysis playing a crucial role in promoting 
cancer cell proliferation, invasion, and migration [7, 61]. 
Various tumor types have been observed to exhibit dys-
regulation of glucose metabolism, most notably through 
aerobic glycolysis. This meta-analysis examined the rela-
tionship between glycolysis markers and survival out-
comes in HCC patients.

Within the field of oncology, significant attention has 
been dedicated to studying metabolic changes in cancer. 
Following our inclusion criteria, we identified 36 studies 
examining the effect of glycolytic marker levels on the 
prognosis of HCC patients. Our findings demonstrated 
that increased expression of glycolytic markers was asso-
ciated with decreased OS, DFS, RFS, and TTR in HCC 

Table 1 Subgroup analysis of the correlation between the 
expression levels of glycolysis markers and OS according to 
the specific glycolysis markers, region, sample, and detection 
method

MLXIPL MLX interacting protein like, GLUT4 glucose transporter 4, PKM2 
pyruvate kinase M2, MAP17 membrane-associated protein 17, PFKFB3 
phosphofructokinase-2/fructose-2,6-bisphosphatase 3, STMN1 stathmin 1, 
PGM1 phosphoglucomutase 1, MCT4 monocarboxylic acid transporter 4, 
GLUT1 glucose transporter 1, CDK1 cyclin dependent kinase 1, HK-2 hexokinase 
2, CA9 carbonic anhydrase IX, ASCT2, alanine-serine-cysteine transporter 2, 
LDHB lactate dehydrogenase B, TRIM35, tripartite motif-containing 35, PGK-1 
phosphoglycerate kinase-1, GLUT2 glucose transporter 2, HR hazard ratio, 
IHC immunohistochemistry, qRT-PCR quantitative real time polymerase chain 
reaction, IF immunofluorescence, ELISA enzyme linked immunosorbent assay

Subgroup HR (95% CI) Heterogeneity  I2 (%), P

Indicators:
MLXIPL 1.88 (1.02, 3.47) NA

GLUT4 1.44 (0.40, 5.20) NA

PKM2 1.93 (1.70, 2.18) I2 = 0.0%, P = 0.704

MAP17 1.64 (1.36, 1.98) NA

PFKFB3 2.45 (1.09, 5.52) NA

STMN1 2.57 (1.43, 4.65) I2 = 49.6%, P = 0.138

PGM1 1.71 (1.11, 2.63) NA

MCT4 1.64 (1.30, 2.07) I2 = 0.0%, P = 0.755

GLUT1 1.47 (1.05, 2.05) I2 = 44.1%, P = 0.181

CDK1 1.99 (0.37, 10.70) NA

HK-2 2.12 (1.66, 2.71) I2 = 0.0%, P = 0.604

CA9 2.26 (1.47, 3.47) I2 = 41.1%, P = 0.165

Homer1 1.66 (0.78, 3.54) NA

ASCT2 1.76 (1.12, 2.76) NA

LDHB 0.66 (0.46, 0.93) NA

TRIM35 0.60 (0.39, 0.92) NA

PGK-1 3.09 (1.31, 7.29) NA

GLUT2 1.65 (0.86, 3.20) I2 = 0.0%, P = 0.347

Region:
China 1.66 (1.43, 1.94) I2 = 67.4%, P < 0.001

Japan 2.37 (1.44, 3.88) I2 = 28.1%, P = 0.234

Germany 1.95 (1.34, 2.83) I2 = 0.0%, P = 0.493

Taiwan 2.70 (1.64, 4.45) I2 = 21.5%, P = 0.280

South Korea 2.19 (1.14, 4.20) NA

Hong Kong 1.75 (1.02, 3.00) NA

US 1.86 (1.23, 2.82) NA

Sample:
Tissue 1.80 (1.57, 2.05) I2 = 60.3%, P < 0.001

Serum 1.82 (1.29, 2.56) I2 = 0.0%, P = 0.704

Detection method:
IHC 1.80 (1.56, 2.07) I2 = 63.4%, P < 0.001

qRT-PCR 1.80 (1.30, 2.50) I2 = 0.0%, P = 0.885

IF 2.45 (1.09, 5.52) NA

ELISA 1.69 (1.02, 2.81) NA
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Fig. 3 Forest plot showing the correlation between the expression levels of glycolysis markers and DFS in patients with liver cancer. 
A random-effects model was employed

Fig. 4 Forest plot showing the correlation between the expression levels of glycolysis markers and RFS in patients with liver cancer. 
A random-effects model was employed
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patients. These results are consistent with the findings 
of the majority of the studies included in our analysis. In 
addition, subgroup analysis of distinct glycolysis markers 
revealed a relationship between PKM2, STMN1, MCT4, 
GLUT1, HK-2, CA9, and GLUT2 and the clinical out-
come of HCC patients.

PKM2, a crucial rate-limiting enzyme in glycolysis, is 
highly active in the latter stages of the glycolytic path-
way [13]. It is predominantly expressed in differentiated 
tissues, such as adipose tissue, lung tissue, and retinal 
tissue, as well as in cells with high rates of nucleic acid 
synthesis, such as proliferating cells, embryonic cells, 
and tumor cells [62, 63]. The concentration of pyruvate 
directly influences lactate production. PKM2 serves a 
vital role in tumorigenesis by catalyzing the conver-
sion of phosphoenolpyruvate to pyruvate and releasing 
energy [64]. Numerous studies have reported that over-
expression of PKM2 is correlated with an unfavorable 
prognosis and chemotherapy resistance in various tumor 
types [27]. Consistent with previous findings, increased 
PKM2 expression in HCC patients was associated with 
decreased OS, DFS, and RFS. In addition, PKM2-induced 
phosphorylation of histone H3 in HCC promotes the 
transcription of programmed death-ligand 1 (PD-L1) 
via epidermal growth factor (EGF). This leads to immu-
nosuppression and tumor development within the HCC 
tumor microenvironment [65].

STMN1 is essential for regulating microtubule motil-
ity and is implicated in cancer cell division and prolifera-
tion [66]. Published studies have consistently reported 
that elevated STMN1 expression is associated with 
poorer survival in various cancers, including head and 
neck squamous cell carcinoma, gallbladder carcinoma, 
esophageal squamous cell carcinoma, breast cancer, and 
endometrial carcinoma. In addition, Zhang et  al. dem-
onstrated that eight glycolysis-related genes, namely 
AURKA (aurora kinase A), CDK1, CENPA, DEPDC1 
(DEP domain containing 1), HMMR (hyaluronan-
mediated motility receptor), KIF20A (kinesin family 
member 20A), PFKFB4 (6-Phosphofructo-2-Kinase/
Fructose-2,6-Biphosphatase 4), and STMN1, are corre-
lated with both OS and DFS in patients with HCC, which 
is consistent with our findings [67].

Lactic acid has been identified as a major energy source 
in cancer [68]. MCT4 is responsible for transporting 
pyruvate, lactate, and ketones as a monocarboxylate 
transporter [69]. It exports monocarboxylates accompa-
nied by protons [70]. MCT4 is frequently upregulated in 
various malignancies, and its increased expression cor-
relates with a poor prognosis. In liver cancer, abnormal 
MCT4 expression has been associated with early recur-
rence and a poor prognosis after radical resection [38]. 
This meta-analysis supports previous research findings, 

indicating that MCT4 can serve as both a therapeutic tar-
get and a prognostic marker for hepatocellular carcinoma 
[48].

The GLUT family, which consists of 14 members, plays 
a crucial role in the uptake of glucose and facilitates the 
transportation of glucose and related hexoses into cells 
[12]. Glucose is the primary energy source for cells and 
satisfies the elevated energy requirements of cancer cells 
involved in various biochemical processes [71, 72]. Mul-
tiple varieties of cancer have been linked to an upregu-
lation of the glucose transporter GLUT1, which has a 
high affinity for glucose [73]. Amann et al. demonstrated 
that GLUT1 is essential for the proliferation and migra-
tion of HCC cells [74]. Consistent with previous research, 
our findings indicate that elevated GLUT1 expression is 
associated with decreased overall survival in liver cancer 
patients and can serve as a prognostic indicator for the 
disease [44]. In contrast to GLUT1, GLUT2 has a com-
paratively low affinity for glucose, mannose, galactose, 
and fructose, but a high affinity for glucosamine [75, 76]. 
Two investigations conducted in 2017 and 2022 demon-
strated that GLUT2 is not only a negative prognostic fac-
tor in HCC but also a diagnostic imaging target for the 
disease [57, 77]. However, our meta-analysis revealed no 
correlation between the expression levels of GLUT2 and 
the overall survival of patients with HCC. This observa-
tion could be attributed to the limited number of studies 
and sample sizes in the analysis.

HK-2, the rate-limiting enzyme in the first stage of 
glycolysis, is essential for converting glucose to glucose-
6-phosphate [78]. Overexpression of HK-2 frequently 
occurs in various tumors, resulting in enhanced glucose 
metabolism, resistance to cell apoptosis, and tumor-
invading capacity. The regulatory function of HK-2 in 
cancer cells is complex. HK-2 overexpression initially 
increases glycolytic flux. HK-2 also translocates to the 
mitochondrial outer membrane, binds to the voltage-
dependent anion channel (VDAC) porin, and inhibits 
apoptosis by preventing the formation of the mitochon-
drial permeability transition pore [79, 80]. Given HK-2’s 
dual function in cancer cells, it is an attractive target 
for anticancer therapies. According to a study by Kwee 
et al. [55], HK-2 expression has biological and prognos-
tic significance in HCC and may serve as an independent 
predictor of HCC survival. Our results also corroborate 
this theory, demonstrating that elevated levels of HK-2 
expression are linked to reduced overall survival in HCC 
patients.

This meta-analysis demonstrated that elevated CA9 
expression was associated with OS and DFS in HCC 
patients. A transmembrane protein, CA9, with an extra-
cellular catalytic domain, CA9, is regulated by HIF-1 and 
plays a role in pH regulation under hypoxic conditions, 
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such as hypoxia, acidosis, and oncogenic alterations [37]. 
As an adaptive response to hypoxia, the upregulation of 
CA9 in tumors significantly contributes to the malignant 
transformation of cancer and precancerous lesions [81, 
82]. Hyuga et al. observed that CA9 is a crucial predictor 
of a poor prognosis after radical resection of liver cancer 
and can enhance the malignant potential of HCC cells 
by regulating epithelial-mesenchymal transition [41]. 
Genetic variation in the 3’ untranslated region (3’UTR) of 
CA9 regulates the expression of CA9 and the progression 
of cancer, and serves as a novel determinant and target 
for HCC metastasis and prognosis, according to a study 
conducted in Taiwan [42].

With the development of cancer research, the metabolic 
reprogramming of tumors is now recognized as a prom-
ising therapeutic target, leading to significant advances 
in anticancer treatment. In this meta-analysis, we evalu-
ated the effect of alterations in glycolysis markers expres-
sion on the prognosis of patients with liver cancer. The 
results indicated that glycolysis markers, including PKM2, 
STMN1, MCT4, GLUT1, HK-2, CA9, and GLUT2, can 
serve as potential prognostic biomarkers and therapeutic 
targets for liver cancer. Future research should investigate 
the role of glycolysis markers in the differentiation, migra-
tion, invasion, and stemness of tumor cells. These findings 
have significant implications for the development of novel 
prognostic biomarkers and the advancement of adjuvant 
therapies for liver cancer.

Limitations
First, we found significant heterogeneity among stud-
ies related to OS and DFS. Despite employing random-
effects models for analysis and performing subgroup 
analysis to investigate the sources of heterogeneity, these 
effects could not be completely eliminated or explained. 
Significant heterogeneity suggested that study results 
need to be treated with caution. In addition, due to the 
lack of standardized cutoff values for various glyco-
lysis markers, different studies included in our analysis 
might have used different cutoff values, which might 
have a potential impact on our results. Furthermore, the 
majority of the patient data included in this study origi-
nated from research conducted on Asian populations. 
This introduces the possibility of group selection bias 
and limits the applicability of the conclusions to other 
populations. Additionally, the data selected for the meta-
analysis could be subject to potential publication bias. 
Although neither Begg’s test nor Egger’s test showed sig-
nificant publication bias, the majority of the studies we 
included reported positive results. Finally, the included 
studies lacked crucial information regarding survival out-
comes. Even though we estimated HR and their corre-
sponding 95% CIs by extracting data from Kaplan-Meier 

survival curves, it was vital to note that these calculated 
values were inherently less precise than those directly 
provided by the original studies.

Conclusions
This meta-analysis demonstrated that the high expres-
sion of glycolysis markers was strongly associated 
with decreased OS, DFS, RFS, and TTR in liver cancer 
patients. Higher expression levels of PKM2, STMN1, 
MCT4, GLUT1, HK-2, and CA9 were significantly asso-
ciated with reduced OS, as determined by subgroup anal-
ysis based on specific glycolysis markers. Patients with 
high expression levels of PKM2, CA9, and MCT4 were 
predicted to have a poorer DFS. Furthermore, elevated 
PKM2 expression was associated with reduced RFS in 
patients with liver cancer.
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