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Abstract 

Background Hepatocellular carcinoma (HCC) is one of the most common cancers in the digestive system with rapid 
progression and poor prognosis. Recent studies have shown that RPL27A could be used as a biomarker for a variety 
of cancers, but its role in HCC is not clear.

Method We analyzed the expression of RPL27A in the pan-cancer analysis and analyzed the relationship 
between the expression of RPL27A and the clinical features and prognosis of patients with HCC. We evaluated 
the expression difference of RPL27A in HCC tissues and paired normal adjacent tissues using immunohistochemistry. 
Furthermore, we analyzed the co-expression genes of RPL27A and used them to explore the possible mechanism 
of RPL27A and screen hub genes effecting HCC. In addition, we studied the role of RPL27A in immune infiltration 
and mutation.

Results We found that the expression level of RPL27A increased in a variety of cancers, including HCC. In HCC 
patients, the high expression of RPL27A was related to progression and poor prognosis as an independent predictor. 
We also constructed a protein interaction network through co-expression gene analysis of RPL27A and screened 9 
hub genes. Enrichment analysis showed that co-expression genes were associated with ribosome pathway, viral rep-
lication, nuclear-transcribed mRNA catabolic process, and nonsense-mediated decay. We found that the expression 
level of RPL27A was closely related to TP53 mutation and immune infiltration in HCC.

Conclusion RPL27A might become a biomarker in the diagnosis, treatment, and follow-up of patients with HCC.
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Introduction
Liver cancer which mainly includes hepatocellular carci-
noma (HCC) (75–85%) and intrahepatic cholangiocarci-
noma (10–15%) ranks seventh in the incidence and fifth 
in mortality of cancers in the world [1]. Although many 
prevention measures such as hepatitis B virus (HBV) 
vaccination have been taken and treatment methods 
have been continuously enriched, the increasing trend of 
morbidity and mortality of HCC has not been effectively 
curbed. HCC, as one of the three most common and high-
est mortality cancers in the digestive system, has been a 
focus of public health worldwide for a long time [2]. Early 
detection, early diagnosis, and early treatment are very 
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important for the management of HCC, and effective bio-
markers may be one of the breakthroughs.

Cancer cells tend to have strong proliferative ability and 
high metabolic levels. Protein, as the executor of biologi-
cal function, is related to the occurrence and progression 
of cancer. The ribosome which is composed of ribosome 
RNAs (rRNA) and ribosomal proteins (RPs) plays an 
important role in intracellular protein biosynthesis, and 
RPs genes are the most highly expressed genes in most 
cell types, especially in cancer cells [3–5]. The abnormal 
expression of RPs in some cancers can promote tumor 
progression such as proliferation and metastasis and 
could act as a tumor biomarker [6–9]. RPL27A, as one 
kind of large subunit RPs, belongs to the universal ribo-
somal protein uL15 family and is closely correlated with 
some cancers, such as breast cancer and colorectal can-
cer [10, 11]. Weighted gene co-expression network analy-
sis and multi-dataset verification showed RPL27A was 
highly expressed in HCC [12], but there were no further 
studies to explore the value of RPL27A in HCC.

In this study, we took full advantage of The Cancer 
Genome Atlas (TCGA) database and tissue microar-
ray (TMA) to analyze the role of RPL27A in evaluating 
the prognosis of patients with HCC. We performed co-
expression gene analyses, function enrichment analyses, 
and immune cell infiltration analyses to explore the role 
of RPL27A in HCC.

Methods
Pan‑cancer analysis of RPL27 and expression of RPL27A 
in HCC
TIMER (https:// cistr ome. shiny apps. io/ timer/) is a web 
server for comprehensive analysis of tumor-infiltrating 
immune cells based on the TCGA database [13, 14]. After 
submitting the gene of interest in the DiffExp module of 
TIMER, the expression levels of the gene between tumor 
and adjacent normal tissues in many kinds of cancers can 
be obtained.

UALCAN (http:// ualcan. path. uab. edu/) is an interac-
tive web resource and allows users to verify the value of 
genes of interest in the target cancer based on the TCGA 
database [15]. We analyzed the relationship of RPL27A 
and clinicopathologic characteristics such as grades and 
stages in HCC.

Survival analysis about RPL27A in HCC
Survival curves were plotted in Kaplan–Meier Plotter 
(https:// kmplot. com/ analy sis/) which is an online tool to 
study the effect of the gene of interest on survival in the 
target cancer based on the TCGA database [16]. We used 
survival curves to evaluate the role of RPL27A in the 
prognosis of HCC.

RPL27A expression levels in HCC
We used TMA to further verify the expression level 
and prognostic role of RPL27A in patients with HCC. 
TMA containing 180 tissues, including 92 HCC tis-
sues and 88 peritumoral normal liver tissues, was 
purchased from Outdo Biotech (Shanghai, China). 
The above tissues were from 92 patients with HCC, 
of which 88 pairs were paired samples. TMA was 
processed for immunohistochemistry (IHC) accord-
ing to standard procedures. Primary antibody against 
RPL27A was purchased from Huabio (ER64831, 
1:1300, Hangzhou, China). We used the Fromowitz 
semiquantitative method to assess the expression level 
of RPL27A in IHC [17]. In short, the TMA was used to 
analyze the difference in RPL27A expression between 
HCC tissues and peritumoral liver tissues and evalu-
ate the relationship between RPL27A and prognosis of 
HCC patients.

Co‑expression genes analysis of RPL27A
LinkedOmics (http:// www. linke domics. org/) includes 
multi-omics data from TCGA and Clinical Proteom-
ics Tumor Analysis Consortium (CPTAC) [18]. We 
performed co-expression gene analysis of RPL27A 
and plotted heat maps and correlation scatter plots by 
LinkedOmics. We screened out the genes strongly cor-
related with RPL27A, which were used for Gene Ontol-
ogy (GO), Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analyses, and gene set enrichment 
analyses (GSEA). In addition, the above genes were 
used to construct the protein–protein interaction (PPI) 
network using the STRING (https:// string- db. org/), 
whose analysis result was imported into Cytoscape 
(https:// cytos cape. org/) to screen hub genes. In brief, 
we used the above methods to explore the possible 
mechanism of RPL27A in HCC.

The role of RPL27A in immune infiltration
We explored the correlation between the expression 
of RPL27A and abundance of immune infiltrates (B 
cells, CD4 + T cells, CD8 + T cells, neutrophils, mac-
rophages, and dendritic cells) in pan-caner analysis 
including HCC through the Gene module in TIMER.

Mutation analysis about RPL27A
The mutation type of RPL27A was analyzed using the 
cBioPortal database (https:// www. cbiop ortal. org/) which 
is a visual tool for studying and analyzing cancer gene 
data and can help researchers understand epigenetics, 
gene mutation, and proteomics about cancer histology 
and cytology studies [19, 20]. In addition, we analyzed 
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the relationship between the expression of RPL27A and 
mutation of tumor protein 53 (TP53) using UALCAN.

Statistical analysis
The expression data of RPL27A in UALCAN and 
TIMER is the continuous data with the Gauss distri-
bution, and T-test was used to analyze the differences 
of RPL27A expression between tumor and peritumoral 
groups and between different clinicopathologic char-
acteristic groups. For TMA, chi-square test was used 
to analyze the differences in baseline features among 
groups with different RPL27A expression levels, and 
McNemar’s chi-squared test was used to access the 
difference in RPL27A expression between paired sam-
ples. Kaplan–Meier method was used to plot survival 
curves and log-rank method was used to analyze prog-
nosis differences among groups with different expres-
sion levels of RPL27A. To explore the prognostic value 
of RPL27A in HCC, the factors with P value < 0.05 in 
the univariate Cox regression analysis were used in the 
multivariate Cox regression analysis, and those with P 
value < 0.05 in the multivariate analysis were consid-
ered as prognostic factors. We used the area under the 
curve (AUC) by plotting receiver operator characteris-
tic (ROC) curves to further assess the prognostic value 
of RPL27A in HCC. Spearman correlation analysis 
was used in co-expression gene analysis of RPL27A in 
LinkedOmics. Immune infiltration analysis of RPL27A 
in HCC was estimated by TIMER algorithm in TIMER. 
P value < 0.05 was considered statistically significant 
and Spearman correlation coefficient ≥ 0.6 was con-
sidered a strong correlation. GO, KEGG, GSEA, and 
ROC curves plotting were performed by R software 
(https:// www.r- proje ct. org/) using survival, survminer, 
timeROC, rms, tableone, clusterProfiler, and ggplot2 
packages.

Results
The relationship between RPL27A expression 
and progression in HCC
We found that RPL27A was significantly highly 
expressed in many kinds of cancers (P < 0.05), includ-
ing breast invasive carcinoma (BRCA), cholangio-
carcinoma (CHOL), colon adenocarcinoma (COAD), 
esophageal carcinoma (ESCA), kidney chromophobe 
(KICH), kidney renal clear cell carcinoma (KIRC), kid-
ney renal papillary cell carcinoma (KIRP), HCC, lung 
adenocarcinoma (LUAD), lung squamous cell car-
cinoma (LUSC), prostate adenocarcinoma (PRAD), 
and rectum adenocarcinoma (READ) (Fig.  1a). The 
expression of RPL27A in HCC tissues was significantly 

higher than that in normal tissues (P < 0.05) (Fig.  1a, 
b). In HCC patients, the expression of RPL27 was sig-
nificantly increased in 41–61 years old, Asian, Cauca-
sian, greater grade, and American Joint Committee on 
Cancer (AJCC) stage III groups (P < 0.05) (Fig. 1c, e–g). 
However, its expression levels were not significantly 
different between different gender groups and nodal 
metastasis status groups in HCC patients (P > 0.05) 
(Fig.  1d, h). Survival curves of overall survival (OS), 
progression-free survival (PFS) rate, and disease-free 
survival (DFS) showed that HCC patients with higher 
level of RPL27A expression had poorer survival out-
come (P < 0.05) (Fig. 2a–c).

We further verified the RPL27A expression level 
in HCC using IHC in TMA. Excluding patients with 
insufficient clinical data, we analyzed the clinicopatho-
logical data of 76 patients with HCC. We found that 
there were different expression levels of RPL27A in 
all tumor and peritumoral tissues in TMA. So, 1 + and 
2 + were regarded as low expression levels, while 
3 + was regarded as high expression levels in this study 
(Fig. 3a). We found that there was no significant differ-
ence in baseline characteristics including age, gender, 
hepatitis B surface antigen (HBsAg), AFP, tumor size, 
cirrhosis, grade and AJCC stage, and programmed 
cell death protein 1 (PD-1) among groups with differ-
ent RPL27 expression levels (P > 0.05) (Table  1). We 
found that RPL27A mainly expresses in the cytoplasm 
(Fig. 3a–c), and the expression of RPL27A in HCC tis-
sues was significantly higher than that in paratumoral 
tissues (P = 0.011) (Fig.  3d, the gray shadow con-
nects the paired samples). The results of univariate 
and multivariate Cox regression analyses showed that 
high expression level of RPL27A (HR = 2.123, 95%CI 
1.115–4.046, P = 0.043) and stage II and III (HR = 1.890, 
95%CI 1.020–3.503, P = 0.022) were independent pre-
dictors of shorter OS (Table  2, Fig.  4e, f ). We further 
found that the stability of RPL27A was better than the 
AJCC stage in evaluating the prognosis of patients with 
HCC (Fig. 3g vs Fig. 3h), and RPL27A could be a good 
addition for the AJCC stage (Fig. 3i).

The co‑expression genes analysis of RPL27A in HCC
In the co-expression gene analysis, 367 strong related 
genes were screened out, of which the top 50 positively 
and negatively correlated genes were showed in the 
heatmaps respectively (Fig.  4a, b). The above 367 genes 
were used to perform GO and KEGG enrichment analy-
ses (Fig.  4c, d). We found that these genes were mainly 
enriched in biological process (BP) such as translational 
initiation, viral gene expression, nuclear-transcribed 

https://www.r-project.org/
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Fig. 1 The expression of RPL27A in pan-cancer and HCC based on the TCGA database. a The pan-cancer analysis of RPL27A. b The expression 
of RPL27A between HCC and normal tissues. c–h The expression of RPL27A in HCC among different age, gender, race, grade, stage, and nodal 
metastasis status groups. P value significant codes: 0 ≤ *** < 0.001 ≤ ** < 0.01 ≤ * < 0.05

Fig. 2 Survival curves among different levels of RPL27A expression in HCC based on the TCGA database. a OS of HCC patients among groups 
with different expression levels of RPL27A. b PFS of HCC patients among groups with different expression levels of RPL27A. c DFS of HCC patients 
among groups with different expression levels of RPL27A
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Fig. 3 RPL27A expression in HCC in TMA. a–c Examples of different RPL27A IHC scores in TMA. d The difference of RPL27A expression among HCC 
and paracancerous tissues using McNemar’s chi-squared test. e Survival curve of HCC patients. f Survival curves of HCC patients among groups 
with different expression levels of RPL27A. g–i ROC curves drawn using RPL27A only, AJCC stage only, and both RPL27A and AJCC stage 
for evaluating the prognosis of patients with HCC
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mRNA catabolic process, and nonsense-mediated decay 
(NMD); in cellular component (CC) such as ribosome, 
ribosomal subunit, and cytosolic ribosome; in molecu-
lar function (MF) such as structural constituent of ribo-
some; and in pathway such as ribosome, COVID-19, 
and spliceosome. We found that these genes were nega-
tively associated with 7 BPs mainly nuclear-transcribed 
mRNA catabolic process, protein targeting, viral gene 
expression, and transcription through GSEA, because 
the curve was funnel-shaped (Fig. 4e). These genes were 
positively associated with pathways in cancer through 
GSEA (Fig. 4f ). Therefore, RPL27A may play a potential 
role in HCC through regulating the above functions or 
pathways.

The above 367 genes were used to construct the PPI 
network in STRING, in which there were 351 nodes and 
4689 edges under minimum required interaction score 
of 0.400 (Fig. 5a). The analysis result was imported into 
Cytoscape to be calculated in the cytoHubba app. There 

were 9 hub genes screened in the method of degree, 
including RPS27A, UBA52, RPS8, RPS5, RPS6, RPS3, 
RPS13, RPS15A, and RPS16 (Fig. 5b, Table 3). We plotted 
scatter maps of RPL27A and 9 hub genes, which showed 
that the expression of RPL27A was positively correlated 
with those of above hub genes (Fig. 5c–k). In short, the 
above hub genes may be closely related to the mechanism 
of RPL27A in HCC.

The relationship between RPL27A and immune infiltration 
in HCC
In the pan-cancer analysis based on the TCGA data-
base, we used TIMER to study the role of RPL27A 
in immune infiltration. We found that expression of 
RPL27A was significantly correlated with immune 
infiltration in many kinds of cancers such as PRAD, 
thymoma (THCA), COAD, uterine corpus endome-
trial carcinoma (UCEC), BRCA, KIRC, LUSC, LUAD, 
HCC, head-neck squamous cell carcinoma (HNSC), and 

Table 1 Clinicopathological characteristics of patients with HCC between groups with different RPL27A expression levels

Overall (n = 76) Low‑level (n = 34) High‑level (n = 42) P value

Age of diagnosis
  ≤ 50 years 32 (42.1%) 16 (47.1%) 16 (38.1%) 0.580

  > 50 years 44 (57.9%) 18 (52.9%) 26 (61.9%)

Gender
 Male 70 (92.1%) 30 (88.2%) 40 (95.2%) 0.485

 Female 6 (7.9%) 4 (11.8%) 2 (4.8%)

HBsAg
 Negative 15 (19.7%) 7 (20.6%) 8 (19.0%) 1.000

 Positive 61 (80.3%) 27 (79.4%) 34 (81.0%)

AFP
 Negative 32 (42.1%) 18 (52.9%) 14 (33.3%) 0.137

 Positive 44 (57.9%) 16 (47.1%) 28 (66.7%)

Tumor size
  ≤ 50 mm 53 (69.7%) 23 (67.6%) 30 (71.4%) 0.916

  > 50 mm 23 (30.3%) 11 (32.4%) 12 (28.6%)

Cirrhosis
 Negative 9 (11.8%) 6 (17.6%) 3 (7.1%) 0.293

 Positive 67 (88.2%) 28 (82.4%) 39 (92.9%)

Grade
 Grades I and III 34 (44.7%) 18 (52.9%) 16 (38.1%) 0.288

 Grade II 42 (55.3%) 16 (47.1%) 26 (61.9%)

Stage
 I 50 (65.8%) 23 (67.6%) 27 (64.3%) 0.949

 II and III 26 (34.2%) 11 (32.4%) 15 (35.7%)

PD‑1
 Negative 38 (50.0%) 18 (52.9%) 20 (47.6%) 0.818

 Positive 38 (50.0%) 16 (47.1%) 22 (52.4%)
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bladder urothelial carcinoma (BLCA) (Fig. 6a). In addi-
tion, we evaluated the relationship between RPL27A 
and immune infiltration in HCC, including B cells, 
CD4 + T cells, CD8 + T cells, neutrophils, macrophages, 
and dendritic cells (Fig.  6b–h). Among them, RPL27A 
was significantly positively correlated with CD8 + T 
cells (partial.cor = 0.257, P = 1.48E − 06), B cells (par-
tial.cor = 0.247, P = 3.37E − 06), macrophages (partial.
cor = 0.219, P = 4.69E − 05), and dendritic cells (partial.
cor = 0.187, P = 5.44E − 04).

RPL27A and mutation in HCC
We performed mutation analysis about RPL27A using 
the cBioPortal database. The frequency of somatic 
mutations was 0.3% (1/360) in HCC patients from the 

TCGA database, the mutation type was missense, and 
copy number alteration was gained (Fig.  7a, b). We 
found that the expression level of RPL27A in the TP53 
mutation group was significantly higher than that 
in the TP53 non-mutation group in HCC (P < 0.05) 
(Fig. 7c).

Discussion
With the application of public health measures such 
as HBV immunization, treatment of chronic HBV and 
HCV, and reduction of aflatoxin exposure, and the con-
tinuous development of treatment technology for HCC, 
human beings seem to be increasingly optimistic in the 
face of HCC [2, 21–23]. However, the global burden 
caused by HCC is still an arduous challenge, attributed 

Table 2 Univariate and multivariate Cox regression analysis in patients with HCC

Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

Age at diagnosis
  ≤ 50 years 1.000 [Reference] - - -

  > 50 years 1.358 [0.734, 2.512] 0.329 - -

Gender
 Male 1.000 [Reference] - - -

 Female 0.442 [0.107, 1.829] 0.260 - -

HBsAg
 Negative 1.000 [Reference] -

 Positive 1.097 [0.509, 2.365] 0.814

AFP
 Negative 1.000 [Reference] - - -

 Positive 1.512 [0.817, 2.797] 0.188 - -

Tumor size
  < 50 mm 1.000 [Reference] - - -

  ≥ 50 mm 1.676 [0.904, 3.108] 0.101 - -

Cirrhosis
 Negative 1.000 [Reference] - - -

 Positive 1.589 [0.568, 4.446] 0.377 - -

Grade
 Grade I and II 1.000 [Reference] - 1.000 [Reference] -

 Grade III 1.970 [1.063, 3.650] 0.031 1.733 [0.930, 3.228] 0.083

AJCC stage
 I 1.000 [Reference] - 1.000 [Reference] -

 II and III 1.861 [1.018, 3.402] 0.044 1.890 [1.020, 3.503] 0.022

RPL27A
 Low-level 1.000 [Reference] - 1.000 [Reference] -

 High-level 2.137 [1.131, 4.037] 0.019 2.123 [1.115, 4.046] 0.043

PD‑1
 Negative 1.000 [Reference] - - -

 Positive 0.689 [0.379, 1.253] 0.222 - -
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Fig. 4 Co-expression gene analysis of RPL27A in HCC based on TCGA. a, b The heat map of the top 50 significant genes of positively correlated 
with and negatively correlated with RPL27A in HCC. c The GO enrichment analysis of significant genes of strongly correlated with RPL27A in HCC. 
d The KEGG enrichment analysis of significant genes of strongly correlated with RPL27A in HCC. e, f The GSEA BP and pathway enrichment analysis 
of significant genes of strongly correlated with RPL27A in HCC
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to the large patient number, alcoholism, obesity, diabe-
tes, nonalcoholic fatty liver disease, and other non-viral 
factors [2, 23]. HCC patients are often at an advanced 
stage when they are diagnosed, and they have a poor 

prognosis in the world with a very poor 5-year survival 
rate of only 18% and a 5-year recurrence rate of more 
than 60% [1, 2, 23–25]. Effective biomarkers, targeted 
therapy, and immunotherapy may be breakthroughs in 

Fig. 5 PPI analysis of co-expression genes related with RPL27A in HCC. a The PPI network of significant genes of strongly correlated with RPL27A 
in HCC. b Network of top 9 hub gene strongly correlated with RPL27A in HCC. c–k Scatter plots of top 9 hub genes and RPL27A based on TCGA 
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the treatment of HCC, which have become hot research 
fields.

We found that the expression of RPL27A was sig-
nificantly increased in a variety of cancers, suggesting 
that RPL27A may play an important role in the occur-
rence and development of cancers. Many studies have 
confirmed that RPL27A could be a potential biomarker 
of lung cancer, triple-negative breast cancer, squa-
mous cervical cancer, colorectal cancer, and KIRC [8, 
10, 11, 26–28]. We found that the expression level of 
RPL27A in HCC tissues was significantly higher than 
that in normal tissues. Our results showed that the 
high expression of RPL27A was related to the late stage 
and high grade of HCC, so RPL27A may be considered 
as a complementary biomarker of the occurrence and 
development for patients with HCC. Furthermore, we 
found that the prognosis of the high RPL27A expres-
sion group was worse than that of the low RPL27A 
expression group, and RPL27A could perform bet-
ter than the AJCC stage in evaluating the prognosis 
of patients with HCC. Therefore, RPL27A could play 
a good auxiliary role and addition in the follow-up of 
patients with HCC.

To explore the possible mechanism of RPL27A in 
HCC, we analyzed the co-expression genes of RPL27A 
and the relationship between RPL27A and TP53 muta-
tion. We found these genes mainly enriched the ribo-
some pathway and were mainly involved in viral gene 
expression, viral transcription, NMD, and proteins 
localization to endoplasmic reticulum (ER). NMD is 
a very conservative mRNA surveillance pathway to 
ensure the stability and quality of transcripts [29]. 
However, some cancers can exploit NMD to inactivate 
tumor suppressor genes, and NMD is involved in tumor 
adaptation to the harsh tumor microenvironment 

(TME), such as various stresses including hypoxia and 
reactive oxygen species [30–32]. The imbalance of RPs 
in cancer may be involved in the pathogenesis of ER 
stress [33]. In addition, active transcription and transla-
tion of HBV favor its replication and are crucial in its 
pathogenic and carcinogenic mechanism [34]. In this 
study, all hub genes from the co-expression gene analy-
sis of RPL27A in HCC belong to RPs. Many studies also 
supported the role of our hub genes in the occurrence 
and development of HCC [35–40]. Furthermore, we 
found the HCC patients with TP53 mutation had sig-
nificantly higher expression level of RPL27A and co-
expression genes of RPL27A could regulate the activity 
of the ubiquitin-protein transferase. TP53 as one of the 
most important tumor suppressor genes is involved in 
cell differentiation, cell cycle regulation, and apopto-
sis, and TP53 loss-of-function is associated with can-
cer progression and poor prognosis in HCC patients 
[41]. Mutation, NMD, and ubiquitin can cause the 
loss of tumor suppressor function of TP53 [42–44]. In 
short, RPL27A might affect HCC by the above direct 
or indirect pathways which could be directions of HCC 
research in the future.

Immune microenvironment is one important part 
of TME, and immune escape mechanism is one of the 
most important hallmarks of cancer [45]. In recent 
years, immunotherapy has shown satisfactory results 
in some cancers and has become a promising method 
for cancer treatment, including immune checkpoint 
modulators and adoptive immune cells [46]. We found 
that RPL27A expression was related to a variety of 
immune cells in HCC, including B cells, CD4 + T cells, 
CD8 + T cells, neutrophils, macrophages, and den-
dritic cells. Studies have shown that tumor-infiltrating 
immune cells can behave as either tumor-promoting 
or tumor-suppressive, possibly associated with the 
dysfunction of immune cells caused by themselves or 
tumors [46, 47]. Regulatory B cells, a subset of B cells, 
are associated with advanced stage and poor progno-
sis and can mediate immune escape of HCC [48, 49]. 
Many studies have found that CD4 + T cells are closely 
related to the occurrence and development of HCC, 
and the injury or depletion of CD4 + T cells can pro-
mote the above processes [50, 51]. Like CD4 + T cells, 
CD8 + T cell dysfunction can promote the growth 
and metastasis of HCC and is closely related to the 
prognosis of patients with HCC [52, 53]. In addition, 
tumor-associated macrophages are associated with 
drug resistance, cancer progression, and poor prog-
nosis, including HCC [54–56]. Altogether, RPL27A 

Table 3 Top 9 hub genes correlated with RPL27A in HCC based 
on the TCGA database

Gene Spearman P value FDR (BH) Degree

RPS27A 0.7919 4.58E − 81 2.61E − 78 113

UBA52 0.7776 2.36E − 76 1.05E − 73 105

RPS8 0.8038 3.00E − 85 2.30E − 82 100

RPS5 0.7712 2.24E − 74 9.31E − 72 99

RPS6 0.7423 3.88E − 66 1.15E − 63 99

RPS3 0.8181 1.08E − 90 1.34E − 87 99

RPS13 0.8648 1.91E − 112 1.27E − 108 98

RPS15A 0.7177 5.67E − 60 1.31E − 57 98

RPS16 0.8308 6.12E − 96 1.02E − 92 98
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might affect HCC by immune infiltration, but further 
research are needed to confirm it.

Currently, this study and our understanding of 
RPL27A in HCC have several limitations. First, this 
study mainly used several online databases to explore 

the possible mechanism of the effect of RPL27A on 
HCC, but lack of further studies in  vitro or in  vivo 
to verify our hypotheses. Second, although this study 
through several online databases and TMA showed 
that RPL27A may be a prognostic marker for patients 
with HCC, more basic research and large sample 

Fig. 6 Immune infiltration analysis of RPL27A in HCC based on TCGA. a Immune infiltration associated with RPL27A in the pan-cancer analysis. b–h 
Immune infiltration associated with RPL27A in HCC
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clinical studies should be performed to further con-
firm if it was to be used for patients. In the future, we 
will extend the present studies to explore the role of 
RPL27A in HCC.

Conclusion
In this study, we discussed the role of RPL27A in HCC 
from multiple angles and speculated that it may become 
a biomarker in the diagnosis, treatment, and follow-up 
of patients with HCC, but further studies are required to 
verify it.
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