
Li et al. World Journal of Surgical Oncology          (2023) 21:216  
https://doi.org/10.1186/s12957-023-03090-x

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

World Journal of
Surgical Oncology

Hypoxia‑based classification and prognostic 
signature for clinical management 
of hepatocellular carcinoma
Ke Li1†, Yanfang Yang2*†, Mingwei Ma3, Suping Lu4 and Junjie Li2 

Abstract 

Objective  Intratumoral hypoxia is an essential feature of hepatocellular carcinoma (HCC). Herein, we investigated 
the hypoxia-based heterogeneity and relevant clinical implication in HCC.

Methods  Three HCC cohorts: TCGA-LIHC, LICA-FR, and LIRI-JP were retrospectively gathered. Consensus clustering 
analysis was utilized for hypoxia-based classification based upon transcriptome of hypoxia genes. Through LASSO 
algorithm, a hypoxia-relevant prognostic signature was built. Immunotherapeutic response was inferred through ana-
lyzing immune checkpoints, T cell inflamed score, TIDE score, and TMB score. RNF145 expression was measured in nor-
moxic or hypoxic HCC cells. In RNF145-knockout cells, CCK-8, TUNEL, and scratch tests were implemented.

Results  HCC patients were classified into two hypoxia subtypes, with more advanced stages and poorer progno-
sis in cluster2 than cluster1. The heterogeneity in tumor infiltrating immune cells and genetic mutation was found 
between subtypes. The hypoxia-relevant prognostic model was proposed, composed of ANLN, CBX2, DLGAP5, FBLN2, 
FTCD, HMOX1, IGLV1-44, IL33, LCAT, LPCAT1, MKI67, PFN2, RNF145, S100A9, and SPP1). It was predicted that high-
risk patients presented worse prognosis with an independent and reliable manner. Based upon high expression 
of immune checkpoints (CD209, CTLA4, HAVCR2, SIRPA, TNFRSF18, TNFRSF4, and TNFRSF9), high T cell inflamed score, 
low TIDE score and high TMB score, high-risk patients might respond to immunotherapy. Experimental validation 
showed that RNF145 was upregulated in hypoxic HCC cells, RNF145 knockdown attenuated proliferation and migra-
tion, but aggravated apoptosis in HCC cells.

Conclusion  Altogether, the hypoxia-based classification and prognostic signature might be useful for prognostica-
tion and guiding treatment of HCC.
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Introduction
Hepatocellular carcinoma (HCC) arising from hepato-
cytes is one of the most prevalent and fatal causes of 
cancer-related death across the globe, with increas-
ing incidence and mortality [1]. Although thera-
peutic advances have been recently made, including 
atezolizumab in combination with bevacizumab for unre-
sectable HCC, survival outcomes remain poor, with five-
year survival of only 15% owing to delayed diagnosis and 
limited response to existing treatment [2]. Liver trans-
plantation enables to cure HCC in specific cases, but it is 
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still a limited and resource-intensive therapeutic option, 
and most patients are ineligible for transplantation [3]. 
Therefore, it is critical to identify new approaches to 
predict the prognosis and treatment response for HCC 
patients. Due to the wide heterogeneity of risk factors 
and pathogenesis of HCC, existing predictive and prog-
nostication approaches are still of limit.

Hypoxia, a drop in oxygen, is frequent in all solid can-
cers (including HCC) owing to abnormalities in the vas-
cular system [4]. HCC is characterized by intratumoral 
hypoxia [5]. The median partial pressure of oxygen in 
HCC tissue is just 6 mmHg in comparison to 30 mmHg 
in normal liver tissue [6]. Hypoxia exerts widespread 
effects on biological behaviors and malignant phenotypes 
of HCC, involving metabolic reprogramming, stemness, 
invasion, metastases, angiogenesis, etc., thus synergisti-
cally contributing to progression and therapeutic resist-
ance of HCC [7–9]. Immunotherapy has made great 
progress in HCC. Inadequate oxygen level may restrain 
successful T-cell activation or support T cell exhaustion, 
thus contributing to resistance to immune checkpoint 
inhibitors [10]. Identification of the hypoxia-relevant 
transcriptome profiling of tumors can infer respond-
ers and inform possible combination treatment. To 
solve existing problems, the present study proposed the 
hypoxia-based classification and prognostic signature 
for assisting prognostication and clinical management 
of HCC patients, which might facilitate individual-based 
treatment.

Materials and methods
Acquisition of human HCC cohorts
From the XenaBrowser (https://​xenab​rowser.​net/​datap​
ages/), counts matrix and clinical data of the Cancer 
Genome Atlas (TCGA)-liver hepatocellular carcinoma 
(LIHC) were gathered. By use of CPM function of edgeR 
package [11], the counts data were converted into CPM. 
Genes with sample mean CPM value <10 were excluded. 
Two external transcriptome cohorts LICA-FR, and LIRI-
JP were obtained from the International Cancer Genome 
Consortium (ICGC; https://​icgc.​org/).

Consensus clustering analysis
Hypoxia genes were gathered from previous research. 
Based upon the transcriptome of hypoxia genes, consen-
sus clustering was conducted on TCGA-LIHC samples 
utilizing ConsensusClusterPlus package [12]. The opti-
mal number of clusters was determined with consensus 
matrix, consensus CDF, and tracking plot.

Gene set enrichment analysis (GSEA)
According to gene expression as well as GO [13] and 
KEGG [14] databases, GSEA software was adopted for 

determining the difference in the specified gene sets 
between groups [15].

Immune infiltration analysis
The fractions of tumor infiltrating immune cells were 
quantified in HCC tissues based upon transcriptome 
profiling by use of CIBERSORT deconvolution approach, 
with LM22 as the reference gene signatures [16].

Genetic mutation analysis
Somatic variants in Mutation Annotation Format of HCC 
samples were gathered from TCGA database, which were 
analyzed utilizing Maftools package [17]. Significantly 
mutated genes identified by MutSigCV method were 
visualized into waterfall plots. Through implementing 
mafCompare function, differentially mutated genes were 
compared between groups via Fisher’s exact test. Genes 
mutated in mutually exclusive or co-occurring manners 
were identified through somaticInteractions function. 
Tumor mutational burden (TMB) was also computed in 
each sample.

Differential expression analysis
Hypoxia-relevant genes were determined through com-
paring the gene expression between hypoxia subtypes 
based upon false discovery rate (FDR)<0.05 and |fold-
change (FC)|>2.

Prognostic signature establishment
Prognostic hypoxia-relevant genes with p<0.05 were 
screened via univariate-cox regression analysis, which 
were utilized for LASSO regression analysis using glm-
net package [18]. Genes with coefficient≠0 were included 
for building a hypoxia-relevant prognostic signature. In 
accordance with 1:1, TCGA-LIHC samples were sepa-
rated into the training and test datasets. By combin-
ing the transcript level and coefficient of each identified 
gene, hypoxia-relevant risk score was computed. Receiver 
operator characteristic curves (ROCs) were plotted for 
evaluating the predictive efficacy. Uni- and multivariate 
cox regression analyses were employed for determining 
whether the signature acted as an independent prognos-
tic factor. The reproducibility of the signature was veri-
fied in LICA-FR, and LIRI-JP datasets.

Drug sensitivity estimation
Based upon the transcriptome data and cgp2014 data-
base, IC50 of small molecular agents was inferred by use 
of pRRophetic package [19]. The lower the IC50 value, 
the more sensitive to the agent.

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://icgc.org/
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Immunotherapeutic response predictors
Immune checkpoints were gathered from previous 
research [20], and their expression was extracted. Can-
cer-testis antigens (CTA) were acquired from CTDatabae 
(http://​www.​cta. Incc.br/) [21]. Ayers et  al. proposed a 
pan-cancer T cell inflamed score that enabled to define 
pre-existing cancer immunity and infer immunothera-
peutic response. This study calculated T cell inflamed 
score as a weighted linear combination of the expression 
and coefficients of eighteen genes following the formula: 
T cell inflamed score = 0.008346 * CCL5 + 0.072293 
* CD27 + 0.042853 * CD274 + (-0.0239) * CD276 + 
0.031021 * CD8A + 0.151253 * CMKLR1 + 0.074135 * 
CXCL9 + 0.004313 * CXCR6 + 0.020091 * HLA-DQA1 + 
0.058806 * HLA-DRB1 + 0.07175 * HLA-E + 0.060679 * 
IDO1 + 0.123895 * LAG3 + 0.075524 * NKG7 + 0.003734 
* PDCD1LG2 + 0.032999 * PSMB10 + 0.250229 * STAT1 
+ 0.084767 * TIGIT [22]. TIDE computational approach 
was adopted to predict immunotherapeutic response 
based upon signatures of T cell dysfunction and exclu-
sion [23].

Cell culture and treatment
Hep3B and Huh7 (CTCC) were cultured in DMEM 
medium (L110KJ; Shanghai BasalMedia) supplemented 
with 10% fetal bovine serum (SV30087.02; Hyclone), 
which were planted onto a 6-well plate (5×105 cells/well). 
After cultivating for 24 h in a 5% CO2 incubator at 37 °C, 
cells were exposed to 5% O2 hypoxia for 48 h.

qRT‑PCR
Cells were lysed with 1 mL Trizol (15596018; Invitrogen), 
and cDNA was synthesized by use of the first-strand 
cDNA synthesis kit. qRT-PCR was then conducted on 
ABI 7500 RT-PCR instrument (ABI), and analyzed via 
ABI Prism 7500 SDS Software. The sequences of primers 
included: Human RNF145 F: GAC​TGC​TCT​GCT​CCT​
CTA​, R: ACC​ACC​AAC​TGA​CCT​ATT; human GAPDH 
F: GGA​GCG​AGA​TCC​CTC​CAA​AAT, R: GGC​TGT​TGT​
CAT​ACT​TCT​CATGG.

Western blot
Cells were lysed with 100 μL RIPA reagent plus 1 μL 
PMSF on the ice for 30 min. At 12000 rpm centrifugation 
at 4 °C for 20 min, supernatant was gathered and protein 
was quantified with BCA kit (BL521A; Biosharp). 30 μg 
protein was loaded onto each well. After electrophoresis, 
protein samples were transferred onto PVDF membrane 
(HATF00010; Millipore). The membrane was sealed with 
5% BSA (A9647; BIOSHARP) at room temperature for 1 
h, followed by incubation with RNF145 (1:500; 24524-1-
AP; Proteintech) or GAPDH (10494-1-AP; Proteintech) 

antibody at 4 °C. Next, incubation with secondary anti-
body was conducted at 37 °C for 1 h. The ECL lumines-
cent solution (ECL-0011; Beijing Dingguo) was covered 
with the membrane. Exposure and image acquisition 
were conducted on ECL luminometer.

Transfection
Cells were seeded onto a 96-well plate (1×104 cells/well) 
and cultivated in an incubator of 37 °C, 5% CO2 for 24 h. 
3 pmol siRNA of RNF145 (si-RNF145; Genepharma) or 
negative control (si-NC; Genepharma) as well as 0.3 μL 
Lipofectamine 2000 (52887; Invitrogen) was separately 
diluted with 5 μL culture medium, mixed, and incubated 
for 10 min at room temperature. The two were then 
mixed and incubated for 15 min at room temperature, 
which was added each well. After 48 h, transfection effect 
was evaluated through quantitative real-time polymerase 
chain reaction (qRT-PCR).

CCK‑8
Transfected cells were seeded onto a 96-well plate (1×104 
cells/well). After 48 h, 10 μL 5 mg/mL CCK-8 (C0038; 
Beyotime) was added to each well and incubated in a 
5% CO2 incubator for 1 h at 37 °C away from the light. 
Optical density value at 450 nm was measured by use of 
microplate reader.

TUNEL staining
Transfected cells were planted onto a 96-well plate 
(1×104 cells/well). The samples were incubated with 50 
μL TUNEL detection reagent (C1089; Beyotime) for 24 h 
at 37 °C in the dark.

Scratch assay
A marker pen was utilized to evenly draw a line on the 
back of 3.5 cm dish. 5×105 cells were seeded in 3.5-cm 
dishes and cultivated overnight. When the cell density 
reached ~90%, the scratch was made with 200 μL spear. 
The scratched cells were removed with PBS. Images were 
photographed at 0 h and 24 h under a microscope.

Statistical analysis
Comparison between two groups was measured via Stu-
dent’s t-test or Wilcoxon test. Multi-group comparison 
was implemented utilizing one- or two-way analysis of 
variance. Kaplan-Meier (K-M) curves of overall survival 
(OS), disease-free survival (DFS), disease-specific sur-
vival (DSS), and progression-free survival (PFS) were 
plotted, with log-rank test for estimating survival dif-
ference. All statistical analysis was achieved by use of R 
packages and Graph Prism 9.0.1. Pearson or Spearman 
test was utilized for investigating the correlation between 
variables P<0.05 indicated statistical significance.

http://www.cta
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Results
Establishment of two hypoxia subtypes with diverse 
clinicopathologic features and prognosis in HCC

According to the hypoxic transcriptomes, we classified 
TCGA-LIHC samples as two hypoxia subtypes by the 
use of consensus clustering approach (Fig.  1A-C). Each 

Fig. 1  Establishment of two hypoxia subtypes with diverse clinicopathologic features and prognosis in TCGA-LIHC dataset. A-C Consensus matrix, 
consensus CDF, and tracking plot at k=2 based upon the transcript levels of hypoxia genes. D-J Distribution of age, sex, race, pathologic stage, T, N, 
M stage. (K-N) K-M curves of OS, DFS, DSS, and PFS outcomes between cluster1 and cluster2. *P<0.05; ***p<0.001; ns: no significance
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hypoxia subtype possessed unique clinicopathologic 
features. In comparison to cluster2, cluster1 displayed 
older age, higher proportion of males, lower proportions 
of advanced pathologic stage and T stage, without dif-
ference in race, N, and M stage (Fig. 1D-J). Survival dif-
ference was also observed between subtypes. Cluster2 
presented worse OS, DFS, DSS and PFS outcomes rela-
tive to cluster1 (Fig. 1K-N).

Hypoxia subtypes with distinct signaling pathways, 
immune cell infiltration, PD‑L1 expression, genetic 
mutations
The heterogeneity in signaling pathways was found in 
two hypoxia subtypes, with the significant enrichment of 
primary bile acid biosynthesis, steroid hormone biosyn-
thesis, and arginine biosynthesis in cluster2 as well as the 
significant enrichment of biosynthesis-heparan sulfate, 
heparin herpes’s simplex virus 1, infection, and olfac-
tory transduction in cluster1 (Fig.  2A). The fractions of 
immune cells were inferred across TCGA-LIHC samples 
through CIBERSORT (Fig.  2B). In comparison to clus-
ter1, M0 macrophages, neutrophils, T cells CD8, T cells 
follicular helper, and T cells regulatory (Tregs) presented 
the higher fractions in cluster2, with the lower fractions 
of M1 macrophages, mast cells resting, monocytes, NK 
cells activated, and T cells CD4 memory resting (Fig. 2C, 
D). In addition, higher PD-L1 expression was measured 
in cluster2 relative to cluster1 (Fig.  2E), indicating that 
patients in cluster2 might respond to anti-PD-L1 therapy. 
TMB reflects cancer mutation quantity [24]. Here, we 
calculated TMB score in TCGA-LIHC samples (Fig. 2F). 
Cluster1 exhibited higher TMB score relative to cluster2 
(Fig. 2G). Two hypoxia subtypes had the heterogeneity in 
genetic mutation (Fig. 2H, I). Higher mutually co-occur-
ring mutated gene pairs were found in cluster1 versus 
cluster2 (Fig. 2J, K). After comparison, cluster1 displayed 
the higher frequency of CTNNB1, and KMT2D, with the 
higher frequency of TP53, TSC2, ADCY5, HIVEP1, RB1, 
ATP10D, FBF1, and MAP 4K5 in cluster2 (Fig. 2L, M).

Identification of hypoxia‑relevant genes
Notably, the heterogeneity in transcript level of hypoxia 
genes was observed in two hypoxia subtypes (Fig. 3A). 
Most hypoxia genes presented the higher expression 

in cluster2 relative to cluster1. With FDR<0.05 and 
|FC|>2, 680 up-regulated genes and 426 down-regu-
lated genes were identified in cluster1 versus cluster2, 
which were regarded as hypoxia-relevant genes (Fig. 3B, 
C). Especially, we displayed the top 20 hypoxia-relevant 
genes in each hypoxia subtype (Fig.  3D). Based upon 
univariate-cox regression results, 226 hypoxia-relevant 
genes acted as protective factors of HCC prognosis 
(Supplementary Table 1), with 258 genes as risk factors 
(Supplementary Table 2).

Definition of a hypoxia‑relevant prognostic signature
Prognostic hypoxia-relevant genes were included in 
LASSO analysis. Genes with regression coefficients not 
equal to 0 (including ANLN, CBX2, DLGAP5, FBLN2, 
FTCD, HMOX1, IGLV1-44, IL33, LCAT, LPCAT1, 
MKI67, PFN2, RNF145, S100A9, and SPP1) were 
selected for constructing a hypoxia-relevant prognostic 
signature under the minimum λ = 0.0788 (Fig.  3E, F). 
Univariate-cox regression analysis revealed the prog-
nostic implication of the identified genes (Fig.  3G). 
Through combining coefficient and transcript level of 
the identified genes, hypoxia-relevant risk score was 
computed with the formula of risk score = 0.01173193 * 
ANLN + 0.026334473 * CBX2 + 0.06567423 * DLGAP5 
+ (-0.027023234) * FBLN2 + (-0.0595385) * FTCD + 
0.006369158 * HMOX1 + (-0.048110046) * IGLV1-
44 + (-0.059442624) * IL33 + (-0.010601843) * LCAT 
+ 0.099289921 * LPCAT1 + 0.01552718 * MKI67 
+ 0.075613467 * PFN2 + 0.014509309 * RNF145 + 
0.04114437 * S100A9 + 0.029302715 * SPP1. We also 
observed the differential expression of the identified 
genes across patients (Fig. 3H). Based upon the median 
risk score, the present study stratified HCC cases into 
low- and high-risk groups (Fig.  3I). With the ratio of 
1:1, TCGA-LIHC samples were equally divided into the 
training and test datasets. In the training dataset, low-
risk group presented the better OS outcomes relative to 
high-risk group (Fig. 3J). The OS difference was proven 
in the test and entire datasets (Fig. 3K, L).

(See figure on next page.)
Fig. 2  Two hypoxia subtypes characterized by distinct signaling pathways, immune cell infiltration, PD-L1 expression, and genetic mutation 
across TCGA-LIHC samples. A GSEA of the major KEGG pathways with different enrichment in two hypoxia subtypes. B Landscape of the relative 
infiltration of immune cells across TCGA-LIHC tissues. C, D Comparison of immune cell infiltration between hypoxia subtypes. E Difference in PD-L1 
expression between cluster1 and cluster2. F Distribution of TMB score across TCGA-LIHC samples. G Difference in TMB score between subtypes. 
H, I waterfall plots of the somatic landscape in two hypoxia subtypes cluster1 and cluster2. Genes are ranked according to mutational frequency. 
Side bar plot displays the percentage of mutated samples. J, K Mutually exclusive and co-occurring mutated genes in cluster1 and cluster2. Green 
denotes co-occurrence and brown denotes exclusivity. L Comparison of mutated genes between cluster1 and cluster2. M Differentially mutated 
genes between subtypes. Bar indicates 95% confidence interval of odd ratio (OR). The right table displays the number of samples in two subtypes 
with the mutation in the indicated gene. *P<0.05; **p<0.01; ***p<0.001; ****p<0.0001
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Hypoxia‑relevant risk score correlates to clinicopathologic 
features of HCC
Next, we compared hypoxia-relevant risk score between 

different clinicopathologic factors: gender, T, N, M stage, 
histologic grade, and pathologic stage. As a result, higher 
risk score was observed in T3/4 versus T1/2, G3/4 versus 

Fig. 2  (See legend on previous page.)
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Fig. 3  Screening hypoxia-relevant genes and definition of a hypoxia-relevant prognostic signature in TCGA-LIHC dataset. A Expression difference 
of hypoxia genes in cluster1 versus cluster2. B, C Identifying hypoxia-relevant genes with differential expression between cluster1 and cluster2. D 
The top 20 hypoxia-relevant genes in cluster1 and cluster2. E LASSO coefficient results based upon prognostic hypoxia-relevant genes. F Ten-fold 
cross-validation. G Univariate-cox regression results of genes screened by LASSO. H Expression of identified genes in hypoxia-relevant risk score. I 
Distribution of hypoxia-relevant risk score. J-L K-M curves of OS in high- versus low-risk patients in the training, test and total datasets
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G1/2, stage III/IV versus I/II, without significant dif-
ference between distinct gender, N stage, and M stage 
(Fig. 4A-F). In addition, there was no significant relation-
ship of hypoxia-relevant risk score with age (Fig.  4G). 
As illustrated in Fig.  4H, hypoxia-relevant risk score 
was negatively linked with tumor purity. More dead and 
recurred/progressed cases were also found in high-risk 
group (Fig. 4I, J).

Hypoxia‑relevant risk score independently and reliably 
predicts HCC prognosis
Univariate-cox regression results demonstrated that 
hypoxia-relevant risk score, T stage, M stage, and patho-
logic stage were significantly correlated to HCC prog-
nosis (Fig.  4K). Based upon multivariate-cox regression 
results, hypoxia-relevant risk score served as an inde-
pendent risk factor of HCC prognosis (Fig.  4L). ROCs 
were plotted to evaluate the efficacy of hypoxia-relevant 
risk score in prognosis prediction. In the training data-
set, the AUC values at one-, three- and five-year survival 
were all >0.7, demonstrating the high sensitivity and 
specificity in predicting prognostic outcomes (Fig.  4M). 
The well prediction efficacy was proven in the test, and 
total datasets (Fig. 4N, O). To verify the reproducibility, 
LICA-FR, and LIRI-JP datasets were adopted. Conse-
quently, hypoxia-relevant risk score reliably predicted 
patient prognosis (Fig. 4P, Q).

Molecular mechanisms underlying hypoxia‑relevant risk 
score
For biological process, tRNA export nucleus, nuclear 
envelope disassembly, and interstrand cross-link repair 
were significantly enriched in high-risk group, with sig-
nificant enrichment of exogenous drug catabolic process, 
epoxygenase P450 pathway and short-chain fatty acid 
metabolic process in low-risk group (Fig. 5A). For cellu-
lar component, pronucleus, condensed nuclear chromo-
some kinetochore presented the significant enrichment 
in high-risk samples, while very-low-density lipoprotein 
particle, high-density lipoprotein particle, and immu-
noglobulin complex were notably enriched in low-risk 
samples (Fig.  5B). For molecular function, high-risk 
group had the prominent enrichment by 3’-5’ DNA heli-
case activity, four-way junction DNA binding, and his-
tone kinase activity (Fig. 5C). Meanwhile, low-risk group 
exhibited the significant enrichment by arachidonic 

acid epoxygenase activity, arachidonic acid monooxy-
genase activity and aromatase activity. KEGG pathway 
enrichment results showed that DNA replication, mis-
match repair, Fanconi anemia pathway were significantly 
enriched in high-risk group, with significant enrichment 
of retinol metabolism, tyrosine metabolism, and primary 
bile acid biosynthesis in low-risk group (Fig. 5D). Espe-
cially, we focused on HIF signaling pathway with signifi-
cant enrichment in high-risk group (Fig. 5E).

Prediction of possible small molecular agents based 
upon hypoxia‑relevant risk score
Small molecular agents including Doramapimod_1042, 
JAK1_8709_1718, AZD2014_1441, SB505124_1194, 
NU7441_1038, ML323_1629, MK-1775_1179, Lapat-
inib_1558, Sepantronium bromide_1941, Afatinib_1032, 
Paclitaxel_1080, WEHI-539_1997, and Wee1 Inhibi-
tor_1046 exhibited the notable difference in IC50 
between low- and high-risk HCC patients (Fig.  6A), 
which might potentially treat HCC.

Hypoxia‑relevant risk score predicts the response 
to immunotherapy
Among known immune checkpoints, CD209, CTLA4, 
HAVCR2, SIRPA, TNFRSF18, TNFRSF4, and TNFRSF9 
presented the higher transcript level in high- relative 
to low-risk group (Fig.  6B). CTA are tumor antigens 
that experience dysregulated expression in tumor and 
malignant cells. However, no remarkable difference in 
CTA numbers was found between low- and high-risk 
patients (Fig. 6C). Higher T cell inflamed score and lower 
TIDE score were observed in high-risk group (Fig.  6D, 
E). Altogether, high-risk patients might benefit from 
immunotherapy.

Heterogeneity in genetic mutation between low‑ 
and high‑risk HCC patients
TMB was calculated to reflect cancer mutation quan-
tity. The difference in TMB was observed between low- 
and high-risk patients, with higher TMB in high-risk 
patients (Fig.  6F). Overall, mutated samples occupied 
92.53% in high-risk group, and 91.57% in low-risk group 
(Fig. 6G, H). Higher co-occurrence of mutated genes was 
found in high- relative to low-risk group (Fig. 6I, J). Spe-
cifically, TP53 (43% versus 15%), ADAM12 (5% versus 
1%), FCGBP (7% versus 2%), DNAH10 (6% versus 1%), 

(See figure on next page.)
Fig. 4  Hypoxia-relevant risk score correlates to clinicopathologic features and independently and reliably predicts HCC prognosis. A-F Comparison 
of risk score between different clinicopathologic factors: gender, T, N, M stage, histologic grade, and pathologic stage in TCGA-LIHC dataset. G, 
H Relationship of risk score with age, and tumor purity across TCGA-LIHC patients. I Distribution of alive and dead status in low- and high-risk 
patients. J Distribution of disease free and recurred/progressed status in two groups. K, L Uni- and multivariate cox regression results on risk score 
and clinicopathologic factors with TCGA-LIHC prognosis. M-O ROCs at one-, three- and five-year survival in the training, test and total datasets. P, Q 
ROCs in the LICA-FR, and LIRI-JP datasets. ***P<0.001; ****p<0.0001; ns: no significance
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Fig. 4  (See legend on previous page.)
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ADRA1D (3% versus 0%), CHST3 (3% versus 0%), NLRP2 
(3% versus 0%), PIKFYVE (3% versus 0%), and SVIL (3% 
versus 0%) presented the higher mutated frequency in 
high- than low-risk patients (Fig. 6K, L). Oppositely, the 
mutated frequency of DYNC2H1 was lower in high- rela-
tive to low-risk group (1% versus 7%).

RNF145 is up‑regulated in hypoxic HCC cells
Among hypoxia-relevant genes in the signature, the role 
of RNF145 in HCC remains unexplored. We observed 
that RNF145 expression was prominently up-regulated in 
hypoxic Hep3B and Huh7 cells at the RNA and protein 
levels (Fig.  7A-C), proving that RNF145 up-regulation 
might be affected by hypoxia in HCC.

RNF145 inhibition attenuates proliferation of HCC cells
To measure whether RNF145 affects HCC progres-
sion, specific siRNAs of RNF145 were transfected into 
Hep3B and Huh7 cells. As illustrated in Fig.  7D, si-
RNF145 transfection remarkably mitigated the expres-
sion of RNF145 in HCC cells. CCK-8 was conducted 
to detect the proliferation of HCC cells. Consequently, 
RNF145-knockout HCC cells exhibited impaired 

proliferative capacity (Fig.  7E, F), demonstrating that 
RNF145 might be essential for HCC cell growth.

RNF145 suppression enhances apoptosis of HCC cells
TUNEL staining was implemented to measure the 
apoptosis of HCC cells. In RNF145-knockout Hep3B 
and Huh7 cells, percentage of TUNEL-positive nuclei 
was notably increased (Fig. 8A, B). This indicated that 
RNF145 suppression was capable of enhancing HCC 
cell apoptosis.

RNF145 knockdown mitigates migration of HCC cells
The influence of RNF145 on HCC cell migration was 
further investigated. After RNF145 was knockout in 
Hep3B and Huh7 cells, scratch assay was carried out, 
and scratched cells were photographed at 0 h and 24 
h (Fig. 9A). After quantifying, we found that RNF145-
knockout HCC cells presented remarkably lower 
migration rate (Fig.  9B). Altogether, RNF145 loss can 
attenuate migration of HCC cells, and RNF145 might 
be required for HCC cell migration.

Fig. 5  Molecular mechanisms underlying hypoxia-relevant risk score in TCGA-LIHC dataset. A-D GSEA showing the biological processes, cellular 
components, molecular functions, and KEGG pathways with different enrichment between low- and high-risk groups. E HIF signaling pathway 
with significant difference between groups
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Fig. 6  Heterogeneity in drug sensitivity, immunotherapeutic response and genetic mutation between low- and high-risk HCC patients 
in TCGA-LIHC cohort. A Difference in IC50 of small molecular agents between low- and high-risk patients. B Immune checkpoints with significant 
difference between groups. C-F Comparison of CTA, T cell inflamed score, TIDE score and TMB between groups. G Waterfall plot illustrating 
the major mutated genes in high-risk group. H Waterfall plot exhibiting the major mutated genes in low-risk group. I Interactions between mutated 
genes across high-risk patients. J Interactions between mutated genes across low-risk patients. K, L Comparison of the mutation frequency 
between low- and high-risk groups. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001; ns: no significance
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Fig. 7  RNF145 is up-regulated in hypoxic HCC cells and its inhibition attenuates proliferation of HCC cells. A The mRNA level of RNF145 in normoxic 
or hypoxic Hep3B and Huh7 cells by use of qRT-PCR. B, C The protein level of RNF145 in normoxic or hypoxic HCC cells utilizing western blot. 
D Verification of the transfection effect of si-RNF145 in HCC cells at the mRNA level. E Representative photographs of HCC cells with si-RNF145 
transfection. Bar, 50 μm. F The cell viability of RNF145-knockout HCC cells utilizing CCK-8. In comparison to si-NC group, **p<0.01; ***p<0.001; 
****p<0.0001
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Discussion
Owing to the heterogeneity and complexity of HCC, 
most patients are diagnosed at advanced stages [25]. The 
non-surgical therapeutic options are often restricted 
by primary pathophysiological factors determining 
the tumor microenvironment, especially hypoxia [26]. 
Hypoxia is a key feature of HCC microenvironment, 

which is frequent in all stages of HCC progression [27]. 
Based upon hypoxia genes, the present research classified 
HCC patients into two hypoxia subtypes, revealing the 
intratumoral heterogeneity of HCC.

Two hypoxia subtypes presented unique clinico-
pathologic features, with older age, lower proportion of 
males, higher proportions of advanced pathologic stage 

Fig. 8  RNF145 suppression enhances apoptosis of HCC cells. A Representative photographs of TUNEL staining of si-RNF145 transfected Hep3B 
and Huh7 cells. Bar, 20 μm. B Percentage of TUNEL-positive nuclei in RNF145-knockout HCC cells. **P<0.01; ***p<0.001
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and T stage, in cluster2. In addition, cluster2 exhibited 
poorer OS, DFS, DSS and PFS outcomes. Most hypoxia 
genes were up-regulated in cluster2 relative to cluster1, 
explaining the contribution of hypoxia to HCC progres-
sion. The heterogeneity in tumor infiltrating immune 
cells was also observed between hypoxia subtypes. M0 
macrophages, neutrophils, T cells CD8, T cells folli-
cular helper, and Tregs exhibited the higher infiltration 
in cluster2, with the lower infiltration of M1 mac-
rophages, mast cells resting, monocytes, NK cells acti-
vated, and T cells CD4 memory resting. Two hypoxia 
subtypes had the heterogeneity in genetic mutation. 
Particularly, cluster1 displayed the higher mutated 
frequency of CTNNB1, and KMT2D and the lower 

mutated frequency of TP53, TSC2, ADCY5, HIVEP1, 
RB1, ATP10D, FBF1, and MAP 4K5.

The hypoxia-relevant gene signature was proposed 
with LASSO method, composed of ANLN, CBX2, 
DLGAP5, FBLN2, FTCD, HMOX1, IGLV1-44, IL33, 
LCAT, LPCAT1, MKI67, PFN2, RNF145, S100A9, and 
SPP1. It was predicted that high-risk patients presented 
worse OS outcomes. Additionally, the signature indepen-
dently and reliably predicted patient prognosis. The high 
reproducibility was proven in external cohorts. HIF sign-
aling pathway was primarily enriched in high-risk group, 
demonstrating the notable association of the hypoxia-
relevant risk score with hypoxic environment of HCC. 
Based upon the risk score, we screened a few possible 

Fig. 9  RNF145 knockdown mitigates migration of HCC cells. A Representative photographs of scratched Hep3B and Huh7 cells transfected 
with specific siRNAs targeting RNF145 at 0 h and 24 h. Bar, 50 μm. B Migration rate of HCC cells with RNF145 knockdown. Compared with si-NC 
group, ***p<0.001; ****p<0.0001
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small molecule agents, comprising Doramapimod_1042, 
JAK1_8709_1718, AZD2014_1441, SB505124_1194, 
NU7441_1038, ML323_1629, MK-1775_1179, Lapat-
inib_1558, Sepantronium bromide_1941, Afatinib_1032, 
Paclitaxel_1080, WEHI-539_1997, and Wee1 Inhibi-
tor_1046. Immune checkpoint blockade has revolution-
ized the management of HCC. Nonetheless, predictive 
biomarkers are of limit. In accordance with high expres-
sion of immune checkpoints (CD209, CTLA4, HAVCR2, 
SIRPA, TNFRSF18, TNFRSF4, and TNFRSF9), high T 
cell inflamed score, low TIDE score and high TMB score, 
it was inferred that high-risk patients might respond to 
immunotherapy. Hence, the hypoxia-relevant risk score 
was potentially utilized for prediction of immunothera-
peutic response. Genetic mutations are processed into 
neoantigens and presented to T cells via MHC proteins 
[28]. To escape immune eradication, tumor cells uti-
lize checkpoints that suppress T-cell responses. Higher 
TMB leads to more neoantigens, increased chances of 
T-cell recognition, and clinically relevant better effects 
of immunotherapy. There was remarkable heterogeneity 
in genetic mutation between low- and high-risk groups. 
Specially, TP53, ADAM12, FCGBP, DNAH10, ADRA1D, 
CHST3, NLRP2, PIKFYVE, and SVIL occurred with 
the higher mutated frequency in high- relative to low-
risk patients. In contrast, the mutated frequency of 
DYNC2H1 was lower in high-risk patients.

Among hypoxia-relevant genes, ANLN is required for 
tumor growth, and targeting ANLN mitigates tumo-
rigenesis and tumor growth in HCC [29]. Overexpressed 
ANLN correlates to poor prognosis of HCC patients [30]. 
CBX2 has been proven as an independent prognostic 
factor of HCC [31]. CBX2 deficiency attenuates prolif-
eration and enhances apoptosis through phosphorylating 
YAP in HCC [32]. DLGAP5 loss lowers the proliferation 
and invasion of HCC cells [33]. A recent study demon-
strated that Gasdermin D-mediated release of IL-33 from 
senescent hepatic stellate cells facilitates obesity-associ-
ated HCC [34]. Long et al. constructed a prognostic gene 
signature through comprising two DNA methylation-
driven genes (SPP1 and LCAT) for diagnosis, predic-
tion of prognosis and recurrence for HCC [35]. LPCAT1 
may alter phospholipid composition and facilitate HCC 
progression [36]. MKI67 was found to strongly correlate 
with microvascular invasion that is a main risk factor for 
recurrence after surgery in HCC [37]. Limited evidence 
proves that PFN2 is in relation to HCC prognosis [38]. 
S100A9 expression can be up-regulated by tumor-infil-
trating monocytes/macrophages, thus enhancing HCC 
cell migration and invasion [39]. Until now, the role of 
RNF145 in HCC is unexplored. Based upon experimen-
tal verification, RNF145 was up-regulated in HCC cells 
after hypoxia, indicating that RNF145 might correlate 

with HCC hypoxic environment. RNF145 loss mitigated 
proliferation and migration, and facilitated apoptosis in 
HCC cells. This demonstrated that RNF145 might be a 
possible therapeutic target of HCC.

Considering our well-delineated hypoxia-based classi-
fication and prognostic signature, computer algorithms 
should be able to provide more powerful approaches 
for clinical management of HCC and other diseases. 
Recently, novel algorithms have been developed for 
autonomous image processing of medical images includ-
ing CT and MRI [40–42]. Combined with patient ori-
ented processing approaches [43], the classification and 
prognostic signature newly discovered by bioinformatic 
analysis can be more and more helpful for both clinicians 
and radiologists in the diagnosis, even the establishment 
of treating plans for individual patients.

The limitations of our research should be acknowl-
edged. Given that all the data for our analysis is collected 
from public database, more work should be done to vali-
date this retrospective study. For instance, the hypoxia 
subtypes and hypoxia-relevant prognostic model will 
be verified in large prospective cohorts, thus facilitating 
the clinical application. Among hypoxia-relevant genes, 
we only experimentally validated the role of RNF145 in 
HCC progression. More experiments will be presented 
on other hypoxia-relevant genes in HCC.

Conclusion
Collectively, the hypoxia-based classification and prog-
nostic signature were established, which might assist 
prognostication and individualized clinical management 
of HCC patients. In addition, RNF145 was proven as a 
possible therapeutic target of HCC.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12957-​023-​03090-x.

Additional file 1: Supplementary Table 1. Univariate-cox regression 
results of 226 hypoxia-relevant genes as protective factors of HCC patients.

Additional file 2: Supplementary Table 2. Univariate-cox regression 
results of 258 hypoxia-relevant genes as risk factors of HCC patients.

Authors’ contributions
KL, YY and JL performed all experiments. KL, YY, MM and SL performed the 
calculations. KL wrote the manuscript. All authors revised the manuscript and 
contributed to the interpretation of the results and approved the final version 
of this study. All authors contributed to the article and approved the submit-
ted version.

Funding
Not applicable.

Availability of data and materials
The original contributions presented in the study are included in the article/
Supplementary Material, further inquiries can be directed to the correspond-
ing author.

https://doi.org/10.1186/s12957-023-03090-x
https://doi.org/10.1186/s12957-023-03090-x


Page 16 of 17Li et al. World Journal of Surgical Oncology          (2023) 21:216 

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 16 February 2023   Accepted: 29 June 2023

References
	1.	 Johnson P, Zhou Q, Dao DY, Lo YMD. Circulating biomarkers in the diag-

nosis and management of hepatocellular carcinoma. Nat Rev Gastroen-
terol Hepatol. 2022;19:670–81.

	2.	 Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY, Kudo M, Breder 
V, Merle P, Kaseb AO, Li D, Verret W, Xu DZ, Hernandez S, Liu J, Huang 
C, Mulla S, Wang Y, Lim HY, Zhu AX, Cheng AL. Atezolizumab plus 
bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 
2020;382:1894–905.

	3.	 Mazzaferro V, Citterio D, Bhoori S, Bongini M, Miceli R, de Carlis L, Colledan 
M, Salizzoni M, Romagnoli R, Antonelli B, Vivarelli M, Tisone G, Rossi M, 
Gruttadauria S, di Sandro S, de Carlis R, Lucà MG, de Giorgio M, Mirabella 
S, Belli L, Fagiuoli S, Martini S, Iavarone M, SvegliatiBaroni G, Angelico M, 
GinanniCorradini S, Volpes R, Mariani L, Regalia E, Flores M, Drozdibus-
set M, Sposito C. Liver transplantation in hepatocellular carcinoma after 
tumour downstaging (XXL): a randomised, controlled, phase 2b/3 trial. 
Lancet Oncol. 2020;21:947–56.

	4.	 Zhang MS, Cui JD, Lee D, Yuen VW, Chiu DK, Goh CC, Cheu JW, Tse AP, Bao 
MH, Wong BPY, Chen CY, Wong CM, Ng IO, Wong CC. Hypoxia-induced 
macropinocytosis represents a metabolic route for liver cancer. Nat Com-
mun. 2022;13:954.

	5.	 Salman S, Meyers DJ, Wicks EE, Lee SN, Datan E, Thomas AM, Anders NM, 
Hwang Y, Lyu Y, Yang Y, Jackson W 3rd, Dordai D, Rudek MA, Semenza GL. 
HIF inhibitor 32–134D eradicates murine hepatocellular carcinoma in 
combination with anti-PD1 therapy. J Clin Invest. 2022;132:e156774.

	6.	 Yao B, Li Y, Chen T, Niu Y, Wang Y, Yang Y, Wei X, Liu Q, Tu K. Hypoxia-
induced cofilin 1 promotes hepatocellular carcinoma progression by 
regulating the PLD1/AKT pathway. Clin Transl Med. 2021;11:e366.

	7.	 Fang Y, Zhan Y, Xie Y, Du S, Chen Y, Zeng Z, Zhang Y, Chen K, Wang Y, Liang 
L, Ding Y, Wu D. Integration of glucose and cardiolipin anabolism confers 
radiation resistance of HCC. Hepatology. 2022;75:1386–401.

	8.	 Suthen S, Lim CJ, Nguyen PHD, Dutertre CA, Lai HLH, Wasser M, Chua C, 
Lim TKH, Leow WQ, Loh TJ, Wan WK, Pang YH, Soon G, Cheow PC, Kam 
JH, Iyer S, Kow A, Tam WL, Shuen TWH, Toh HC, Dan YY, Bonney GK, Chan 
CY, Chung A, Goh BKP, Zhai W, Ginhoux F, Chow PKH, Albani S, Chew V. 
Hypoxia-driven immunosuppression by Treg and type-2 conventional 
dendritic cells in HCC. Hepatology. 2022;76(5):1329–44.

	9.	 Wang S, Wu Q, Chen T, Su R, Pan C, Qian J, Huang H, Yin S, Xie H, Zhou 
L, Zheng S. Blocking CD47 promotes antitumour immunity through 
CD103(+) dendritic cell-NK cell axis in murine hepatocellular carcinoma 
model. J Hepatol. 2022;77:467–78.

	10.	 DePeaux K, Delgoffe GM. Metabolic barriers to cancer immunotherapy. 
Nat Rev Immunol. 2021;21:785–97.

	11.	 Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package 
for differential expression analysis of digital gene expression data. Bioin-
formatics. 2010;26:139–40.

	12.	 Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool 
with confidence assessments and item tracking. Bioinformatics (Oxford, 
England). 2010;26:1572–3.

	13.	 Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, 
Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis 
A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. 
Gene ontology: tool for the unification of biology. The gene ontology 
consortium. Nat Genet. 2000;25:25–9.

	14.	 Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. 
Nucleic acids research. 2000;28:27–30.

	15.	 Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette 
MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene 
set enrichment analysis: a knowledge-based approach for interpreting 
genome-wide expression profiles. Proc Natl Acad Sci. 2005;102:15545–50.

	16.	 Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, 
Diehn M, Alizadeh AA. Robust enumeration of cell subsets from tissue 
expression profiles. Nat Methods. 2015;12:453–7.

	17.	 Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient 
and comprehensive analysis of somatic variants in cancer. Genome Res. 
2018;28:1747–56.

	18.	 Engebretsen S, Bohlin J. Statistical predictions with glmnet. Clin Epigenet-
ics. 2019;11:123.

	19.	 Geeleher P, Cox N, Huang RS. pRRophetic: an R package for prediction of 
clinical chemotherapeutic response from tumor gene expression levels. 
PLoS One. 2014;9:e107468.

	20.	 Chen L, Niu X, Qiao X, Liu S, Ma H, Shi X, He X, Zhong M. Characterization 
of interplay between autophagy and ferroptosis and their synergisti-
cal roles on manipulating immunological tumor microenvironment in 
squamous cell carcinomas. Front Immunol. 2021;12:739039.

	21.	 Almeida LG, Sakabe NJ, de Oliveira AR, Silva MC, Mundstein AS, Cohen T, 
Chen YT, Chua R, Gurung S, Gnjatic S, Jungbluth AA, Caballero OL, Bairoch 
A, Kiesler E, White SL, Simpson AJ, Old LJ, Camargo AA, Vasconcelos AT. 
CTdatabase: a knowledge-base of high-throughput and curated data on 
cancer-testis antigens. Nucleic Acids Res. 2009;37:D816-9.

	22.	 Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, 
Albright A, Cheng JD, Kang SP, Shankaran V, Piha-Paul SA, Yearley J, 
Seiwert TY, Ribas A, McClanahan TK. IFN-γ-related mRNA profile predicts 
clinical response to PD-1 blockade. J Clin Invest. 2017;127:2930–40.

	23.	 Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, Li Z, Traugh N, Bu X, Li B, Liu J, 
Freeman GJ, Brown MA, Wucherpfennig KW, Liu XS. Signatures of T cell 
dysfunction and exclusion predict cancer immunotherapy response. Nat 
Med. 2018;24:1550–8.

	24.	 Jardim DL, Goodman A, de Melogagliato D, Kurzrock R. The challenges of 
tumor mutational burden as an immunotherapy biomarker. Cancer Cell. 
2021;39:154–73.

	25.	 Liu X, Niu X, Qiu Z. A five-gene signature based on stromal/immune 
scores in the tumor microenvironment and its clinical implications for 
liver cancer. DNA Cell Biol. 2020;39:1621–38.

	26.	 Du D, Liu C, Qin M, Zhang X, Xi T, Yuan S, Hao H, Xiong J. Metabolic 
dysregulation and emerging therapeutical targets for hepatocellular 
carcinoma. Acta Pharm Sin B. 2022;12:558–80.

	27.	 Yuen VW, Wong CC. Hypoxia-inducible factors and innate immunity in 
liver cancer. J Clin Invest. 2020;130:5052–62.

	28.	 Zhao J, Zhong S, Niu X, Jiang J, Zhang R, Li Q. The MHC class I-LILRB1 
signalling axis as a promising target in cancer therapy. Scand J Immunol. 
2019;90:e12804.

	29.	 Chen J, Li Z, Jia X, Song W, Wu H, Zhu H, Xuan Z, Du Y, Zhu X, Song G, 
Dong H, Bian S, Wang S, Zhao Y, Xie H, Zheng S, Song P. Targeting anillin 
inhibits tumorigenesis and tumor growth in hepatocellular carcinoma via 
impairing cytokinesis fidelity. Oncogene. 2022;41:3118–30.

	30.	 Zhang LH, Wang D, Li Z, Wang G, Chen DB, Cheng Q, Hu SH, Zhu JY. 
Overexpression of anillin is related to poor prognosis in patients with 
hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int. 2021;20:337–44.

	31.	 Wu ZH, Yang DL, Wang L, Liu J. Epigenetic and immune-cell infiltration 
changes in the tumor microenvironment in hepatocellular carcinoma. 
Front Immunol. 2021;12:793343.

	32.	 Mao J, Tian Y, Wang C, Jiang K, Li R, Yao Y, Zhang R, Sun D, Liang R, 
Gao Z, Wang Q, Wang L. CBX2 regulates proliferation and apoptosis 
via the phosphorylation of YAP in hepatocellular carcinoma. J Cancer. 
2019;10:2706–19.

	33.	 Liao W, Liu W, Yuan Q, Liu X, Ou Y, He S, Yuan S, Qin L, Chen Q, Nong K, 
Mei M, Huang J. Silencing of DLGAP5 by siRNA significantly inhibits the 
proliferation and invasion of hepatocellular carcinoma cells. PLoS One. 
2013;8:e80789.

	34.	 Yamagishi R, Kamachi F, Nakamura M, Yamazaki S, Kamiya T, Takasugi M, 
Cheng Y, Nonaka Y, Yukawa-Muto Y, Thuy LTT, Harada Y, Arai T, Loo TM, 
Yoshimoto S, Ando T, Nakajima M, Taguchi H, Ishikawa T, Akiba H, Miyake 
S, Kubo M, Iwakura Y, Fukuda S, Chen WY, Kawada N, Rudensky A, Nakae S, 
Hara E, Ohtani N. Gasdermin D-mediated release of IL-33 from senescent 
hepatic stellate cells promotes obesity-associated hepatocellular carci-
noma. Sci Immunol. 2022;7:eabl7209.



Page 17 of 17Li et al. World Journal of Surgical Oncology          (2023) 21:216 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	35.	 Long J, Chen P, Lin J, Bai Y, Yang X, Bian J, Lin Y, Wang D, Yang X, Zheng Y, 
Sang X, Zhao H. DNA methylation-driven genes for constructing diag-
nostic, prognostic, and recurrence models for hepatocellular carcinoma. 
Theranostics. 2019;9:7251–67.

	36.	 Morita Y, Sakaguchi T, Ikegami K, Goto-Inoue N, Hayasaka T, Hang VT, 
Tanaka H, Harada T, Shibasaki Y, Suzuki A, Fukumoto K, Inaba K, Murakami 
M, Setou M, Konno H. Lysophosphatidylcholine acyltransferase 1 altered 
phospholipid composition and regulated hepatoma progression. J Hepa-
tol. 2013;59:292–9.

	37.	 Beaufrère A, Caruso S, Calderaro J, Poté N, Bijot JC, Couchy G, Cauchy 
F, Vilgrain V, Zucman-Rossi J, Paradis V. Gene expression signature as a 
surrogate marker of microvascular invasion on routine hepatocellular 
carcinoma biopsies. J Hepatol. 2022;76:343–52.

	38.	 Wang T, Dai L, Shen S, Yang Y, Yang M, Yang X, Qiu Y, Wang W. Compre-
hensive molecular analyses of a macrophage-related gene signature with 
regard to prognosis, immune features, and biomarkers for immuno-
therapy in hepatocellular carcinoma based on WGCNA and the LASSO 
algorithm. Front Immunol. 2022;13: 843408.

	39.	 Lim SY, Yuzhalin AE, Gordon-Weeks AN, Muschel RJ. Tumor-infiltrating 
monocytes/macrophages promote tumor invasion and migration by 
upregulating S100A8 and S100A9 expression in cancer cells. Oncogene. 
2016;35:5735–45.

	40.	 Dakua SP. Use of chaos concept in medical image segmentation. Comp 
Methods Biomech Biomed Eng Imaging Vis. 2013;1:28–36.

	41.	 Sahambi JS, Dakua SP. LV contour extraction from cardiac MR images 
using random walk approach, Proc. of IEEE International Advance Com-
puting Conference, Patiala. 2009. p. 228–33.

	42.	 Zhai X, Eslami M, Hussein ES, Filali MS, Shalaby ST, Amira A, Bensaali 
F, Dakua S, Abinahed J, Al-Ansari A, Ahmed AZ. Real-time automated 
image segmentation technique for cerebral aneurysm on reconfigurable 
system-on-chip. J Comput Sci. 2018;27:35–45.

	43.	 Dakua SP, Abi-Nahed J. Patient oriented graph-based image segmenta-
tion. Biomed Signal Process Control. 2013;8:325–32.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Hypoxia-based classification and prognostic signature for clinical management of hepatocellular carcinoma
	Abstract 
	Objective 
	Methods 
	Results 
	Conclusion 

	Introduction
	Materials and methods
	Acquisition of human HCC cohorts
	Consensus clustering analysis
	Gene set enrichment analysis (GSEA)
	Immune infiltration analysis
	Genetic mutation analysis
	Differential expression analysis
	Prognostic signature establishment
	Drug sensitivity estimation
	Immunotherapeutic response predictors
	Cell culture and treatment
	qRT-PCR
	Western blot
	Transfection
	CCK-8
	TUNEL staining
	Scratch assay
	Statistical analysis

	Results
	Establishment of two hypoxia subtypes with diverse clinicopathologic features and prognosis in HCC
	Hypoxia subtypes with distinct signaling pathways, immune cell infiltration, PD-L1 expression, genetic mutations
	Identification of hypoxia-relevant genes
	Definition of a hypoxia-relevant prognostic signature
	Hypoxia-relevant risk score correlates to clinicopathologic features of HCC
	Hypoxia-relevant risk score independently and reliably predicts HCC prognosis
	Molecular mechanisms underlying hypoxia-relevant risk score
	Prediction of possible small molecular agents based upon hypoxia-relevant risk score
	Hypoxia-relevant risk score predicts the response to immunotherapy
	Heterogeneity in genetic mutation between low- and high-risk HCC patients
	RNF145 is up-regulated in hypoxic HCC cells
	RNF145 inhibition attenuates proliferation of HCC cells
	RNF145 suppression enhances apoptosis of HCC cells
	RNF145 knockdown mitigates migration of HCC cells

	Discussion
	Conclusion
	Anchor 43
	References


