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Abstract 

Background  Triple-negative breast cancer (TNBC) is the most heterogenous and aggressive subtype of breast 
cancer. Chemotherapy remains the standard treatment option for patients with TNBC owing to the unavailability of 
acceptable targets and biomarkers in clinical practice. Novel biomarkers and targets for patient stratification and treat-
ment of TNBC are urgently needed. It has been reported that the overexpression of DNA damage-inducible transcript 
4 gene (DDIT4) is associated with resistance to neoadjuvant chemotherapy and poor prognosis in patients with TNBC. 
In this study, we aimed to identify novel biomarkers and therapeutic targets using RNA sequencing (RNA-seq) and 
data mining using data from public databases.

Methods  RNA sequencing (RNA-Seq) was performed to detect the different gene expression patterns in the human 
TNBC cell line HS578T treated with docetaxel or doxorubicin. Sequencing data were further analyzed by the R pack-
age “edgeR” and “clusterProfiler” to identify the profile of differentially expressed genes (DEGs) and annotate gene 
functions. The prognostic and predictive value of DDIT4 expression in patients with TNBC was further validated by 
published online data resources, including TIMER, UALCAN, Kaplan–Meier plotter, and LinkedOmics, and GeneMANIA 
and GSCALite were used to investigate the functional networks and hub genes related to DDIT4, respectively.

Results  Through the integrative analyses of RNA-Seq data and public datasets, we observed the overexpression of DDIT4 
in TNBC tissues and found that patients with DDIT4 overexpression showed poor survival outcomes. Notably, immune 
infiltration analysis showed that the levels of DDIT4 expression correlated negatively with the abundance of tumor-infil-
trating immune cells and immune biomarker expression, but correlated positively with immune checkpoint molecules. 
Furthermore, DDIT4 and its hub genes (ADM, ENO1, PLOD1, and CEBPB) involved in the activation of apoptosis, cell cycle, 
and EMT pathways. Eventually, we found ADM, ENO1, PLOD1, and CEBPB showed poor overall survival in BC patients.

Conclusion  In this study, we found that DDIT4 expression is associated with the progression, therapeutic efficacy, and 
immune microenvironment of patients with TNBC, and DDIT4 would be as a potential prognostic biomarker and therapeu-
tic target. These findings will help to identify potential molecular targets and improve therapeutic strategies against TNBC.
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Introduction
Triple-negative breast cancer (TNBC) is the most aggres-
sive subtype of breast cancer. It is characterized by the 
absence of estrogen receptor (ER), progesterone recep-
tor (PR), and human epidermal growth factor receptor 
2 (HER-2 receptor 2, HER-2) expression and accounts 
for 10–20% of all breast cancers [1]. Because established 
therapeutic targets for TNBC remain unidentified, non-
specific and toxic chemotherapy is the only standard 
treatment option for patients with TNBC [2, 3].

In the past decade, Lehmann et  al. identified six 
molecular subtypes of TNBC (TNBC type-6) based on 
the mRNA expression profiles [4], namely the basal-
like 1/2 (BL1 and BL2), immunomodulatory (IM), 
mesenchymal (M), mesenchymal stem-like (MSL), and 
luminal androgen receptor (LAR) types, and different 
TNBC types were found to demonstrate differential 
sensitivity to standard-of-care neoadjuvant or adju-
vant chemotherapy with anthracycline and cyclophos-
phamide followed by taxane (ACT) [5]. More recently, 
evidence from a comprehensive analysis combining the 
genomic and transcriptomic landscape of TNBC also 
indicated that TNBCs may classified into four tran-
scriptome-based subtypes, namely luminal androgen 
receptor (LAR), immunomodulatory (IM), basal-like 
immune-suppressed (BLIS), and mesenchymal-like 
(ML) [6, 7]. This TNBC type may be feasibly classi-
fied using immunohistochemical surrogate biomarkers 
with AR, CD8, FOXC1, and DCLK1 [8]. Accordingly, 
an umbrella clinical trial was conducted for patients 
with refractory TNBC who received standard chemo-
therapy, including anthracyclines, taxanes, platinum, 
vinorelbine, capecitabine, and gemcitabine. The pre-
liminary results of this study showed that the high-
est objective response rate (ORR) was achieved in 
intention-to-treat (ITT) TNBC patients treated with 
anti PD-1 and nab-paclitaxel or anti-VEGFR [9]. The 
results from the KEYNOT-355 clinical trial demon-
strated that patients with advanced TNBC, with the 
tumor expression of PD-L1 and a combined positive 
score (CPS) of 10 or more significantly benefited from 
the chemotherapy plus pembrolizumab with longer 
overall survival (OS) than that achieved with chemo-
therapy alone [10]. Moreover, a complete pathologi-
cal response was significantly higher among patients 
with early TNBC treated with pembrolizumab plus 
neoadjuvant chemotherapy than among patients who 
underwent neoadjuvant chemotherapy with a pla-
cebo (KEYNOTE-522, NCT03036488) [11]. These 
data shed promising light on the clinical management 
of TNBC. However, primary results from the IMpas-
sion131 (NCT03125902) clinical trial indicated that 

the combination of atezolizumab, an anti-PD-L1 anti-
body, with paclitaxel did not improve the PFS or OS vs. 
paclitaxel alone among patients with TNBC, despite no 
concern of safety and tolerability with longer follow-up 
[12]. The paradoxical results from clinical trials reveal 
the limitations of the current system of transcriptome-
based classification based on pool-tissue mRNA pro-
filing to guide TNBC treatment.

Indeed, driver alterations have been recognized to 
be more streamlined and heterogenous, and over 80 to 
90% of TP53 pathogenic mutations were detected in pri-
mary and metastatic TNBC, respectively. Remarkably, 
the amplification of MYC, PIK3CA, KRAS, BRAF, EGFR, 
CCNE1, and MDM2 and mutations of CDKN2A/B and 
PTEN are frequently detected in TNBC, which indicates 
that the co-activation of intrinsically oncogenic signal-
ing networks predominantly drives the evolution of this 
disease [7, 13]. In addition, chemotherapy and/or radio-
therapy may change the functions of tumor and stromal 
cells, such as by promoting PD-L1 expression, which 
results in immune evasion and resistance to anti-PD-1 
immunotherapy [14, 15]. In accordance with this finding, 
several recent studies also sought to classify TNBC based 
on immunogenomic profiling and/or metabolic-pathway 
subtyping and attempt to provide identifiable biomarkers 
for guiding treatment [16, 17].

However, the usage of the current classification sys-
tem for TNBC is less useful in routine clinical practice 
owing to the complex technology requirements of the 
platform and low affordability. Therefore, novel bio-
markers need to be identified to stratify patients with 
TNBC for targeting therapy, immunotherapy, or com-
bined chemotherapy. Reportedly, the abrogation of 
metabolic activity triggered by the aberrant activation 
of the PI3K/AKT/mTOR pathway in cancer cells may 
result in the deregulation of genes involved in DNA 
damage and immune response, including DNA dam-
age inducible transcript 4 (DDIT4). The DDIT4 gene 
located in chromosome 10 (10q22.1) is 2.1 kb in length, 
containing three exons and two introns [18]. DDIT4 
protein localized mainly in the cytoplasm regulates the 
mTOR activity by tuberous sclerosis complex (TSC1/
TSC2 complex) [19, 20]. Confocal microscopy confirms 
that DDIT4 and mitochondria had obvious co-localiza-
tion, and DDIT4 is ubiquitously expressed at very low 
levels under normal physiological conditions [18, 21]. 
Mechanistically, the expression of DDIT4 is induced by 
the activation of multiple cellular stress pathways, such 
as hypoxia, energy depletion, endoplasmic reticulum 
stress response, and DNA damage by etoposide and 
arsenite [22]. A correlation between DDIT4 expression 
and poor survival was found in specific tumor types 
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including ovarian cancer [23], breast cancer [24], lung 
cancer [25], and bladder urothelial carcinoma [26], 
which suggests that DDIT4 may be a cancer related 
protein and potential biomarker. Interestingly, the 
upregulation of DDIT4 in TNBC is associated with 
resistance to neoadjuvant chemotherapy and poor 
prognosis [27]. In this study, we perform RNA-seq of 
TNBC cells treated with docetaxel and doxorubicin 
and conduct a comprehensive analysis of RNA-seq 
data using bioinformatics tools. We demonstrated that 
DDIT4 may serve as a potential biomarker and thera-
peutic targets for TNBC.

Materials and methods
Establishment of docetaxel‑ and doxorubicin‑treated cells
Docetaxel and doxorubicin were purchased from Sigma 
(Selleck, Shanghai, China). Human TNBC HS578T cells 
were purchased from the American Type Culture Col-
lection (ATCC, Shanghai, China). Cells were cultured in 
RPMI-DMEM (Gibco, USA) with 10% fetal bovine serum 
(FBS), 1% penicillin, and 1% streptomycin at 37  °C with 
5% CO2. The HS578T cells were seeded in 6-well culture 
plates at 2.5 × 105 cells/well and were treated with 2 μM 
docetaxel or doxorubicin for 24 h.

RNA‑Seq
RNA was isolated and purified using TRIzol (Life, 
cat.265709, CA, USA) in accordance with the manufac-
turer’s protocol. RNA purity was assessed using the Nan-
oPhotometer® spectrophotometer (IMPLEN, CA, USA). 
One microgram of RNA per sample was used as the 
input for RNA sample preparation. Sequencing librar-
ies were generated using the NEBNext® UltraTM RNA 
Library Prep Kit for Illumina® (NEB, USA) in accord-
ance with the manufacturer’s instructions, and index 
codes were added to attribute sequences to each sample. 
Briefly, mRNA was purified from total RNA using poly-T 
oligo-attached magnetic beads. Fragmentation was con-
ducted using divalent cations at an elevated temperature 
in NEBNext first-strand synthesis reaction buffer (5X). 
The first-strand cDNA was synthesized using a random 
hexamer primer and M-MuLV reverse transcriptase 
(RNase H-). The second-strand cDNA synthesis was 
subsequently performed using DNA polymerase I and 
RNase H. The remaining overhangs were converted into 
blunt ends using exonuclease/polymerase. After the 
adenylation of the 3′ ends of DNA fragments, NEBNext 
Adaptor with a hairpin loop structure was ligated to 
prepare the samples for hybridization. To select cDNA 
fragments, preferentially spanning 250 ~ 300  bp, the 
library fragments were purified using the AMPure XP 
system (Beckman Coulter, Beverly, MA, USA). Follow-
ing this, 3 µL of USER Enzyme (NEB, USA) was added 

with size-selected, adaptor-ligated cDNA at 37  °C for 
15 min, followed by treatment for 5 min at 95 °C before 
PCR. PCR was performed using Phusion high-fidelity 
DNA polymerase, universal PCR primers, and Index (X) 
primer. The PCR products were purified (AMPure XP 
system), and the library quality was assessed on the Agi-
lent Bioanalyzer 2100 system.

Finally, the clustering of the index-coded samples was 
performed on a cBot Cluster Generation System using 
TruSeq PE Cluster Kit v3-cBot-HS (Illumina) accord-
ing to the manufacturer’s instructions. Following this, 
the library preparations were sequenced on an Illumina 
NovaSeq platform by Shanghai Genechem Co., Ltd. 
(Shanghai, China).

Data quality control
Raw data (raw reads) in the fastq format were first pro-
cessed using in-house perl scripts. In this step, clean data 
(clean reads) were obtained by removing reads contain-
ing adapter or ploy-N. Concurrently, the Q20, Q30, and 
GC contents were calculated from the clean data. The 
downstream analyses were based on clean data with high 
quality.

GEO database
The GEO database is a high-throughput microarray 
and sequence functional genomic database (https://​
www.​ncbi.​nlm.​nih). In this study, the GSE62931 dataset 
included data from 53 TNBC and 53 non-TNBC (ER + /
PR +) samples.

Differential gene expression analysis
Prior to the differential gene expression analysis, for each 
sequenced library, the read counts were adjusted using 
the edgeR program package through one scaling normal-
ized factor. Differential expression analysis in two condi-
tions was performed using the edgeR R package (3.18.1). 
The P values were adjusted using the Benjamini–Hoch-
berg method. A corrected P value of 0.05 and absolute 
foldchange of 2 were set as the threshold for significantly 
differential expression.

Functional annotation and pathway enrichment analysis
Gene Ontology (GO) enrichment analysis of differen-
tially expressed genes was implemented using the clus-
terProfiler R package [28], in which the gene length 
bias was corrected. GO terms with a corrected P value 
less than 0.05 were considered significantly enriched by 
the differentially expressed genes. KEGG is a database 
resource for understanding the high-level functions 
and utilities of the biological system, such as the cell, 

https://www.ncbi.nlm.nih
https://www.ncbi.nlm.nih
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organism, and ecosystem, from molecule-level infor-
mation, especially large-scale molecular datasets gen-
erated via genome sequencing and other high-through 
put experimental technologies (http://​www.​genome.​jp/​
kegg/). We used the clusterProfiler R package to test the 
statistical enrichment of differentially expressed genes in 
KEGG pathways.

UALCAN
The UALCAN platform is an online portal based on The 
Cancer Genome Atlas (TCGA) that allows users to con-
duct comprehensive analysis of gene expression [29]. We 
determined the expression level of DDIT4 in breast can-
cer based on different clinicopathological characteristics 
using UALCAN data. P < 0.05 was regarded as an indica-
tor of statistically significant results.

Kaplan–Meier plotter
The Kaplan–Meier plotter (https://​www.​kmplot.​com) is a 
database that can be used to investigate the associations 
between key genes and prognosis for breast cancer, ovar-
ian cancer, lung cancer, and gastric cancer [30]. Accord-
ing to the media of DDIT4 expression, patients with 
breast cancer were divided into a low-expression group 
and a high-expression group, and the overall survival 
(OS), post-progression survival (PPS), distant metastasis-
free survival (DMFS), and recurrence-free survival (RFS) 
rates were further analyzed.

TIMER analysis
The TIMER database was used to estimate the number 
of tumor-infiltrating immune cells (TIICs) in different 
cancer types using samples from the TCGA (https://​cistr​
ome.​shiny​apps.​io/​timer/) database [31]. We used this 
database to assess expression levels of DDIT4 in different 
tumor types and explored the relationship between the 
expression of DDIT4 and the abundance of immune infil-
trates in TNBC and breast cancer considering p < 0.05 as 
the cutoff for statistical significance.

Relationship between the expression of immune 
checkpoint‑related genes and that of DDIT4
Breast cancer RNA-seq-based gene expression data 
(“Level_3_HTSeq-FPKM _normalized”) were obtained 
from TCGA (https://​portal.​gdc.​cancer.​gov/). FPKM 
data were further converted into TPM data for corre-
lation analysis between the expression of DDIT4 and 
immune checkpoint-related genes of interest. Analyses 
were conducted using R v3.6.3 and the software pack-
ages ggplot2 and heatmap. In all, the expression patterns 
of ten immune checkpoint-related genes were evaluated 
using Spearman correlation, and p < 0.05 was considered 
significant.

LinkedOmics
LinkedOmics (http://​www.​linke​domics.​org) hosts multi-
omics data and clinical data from 32 different cancer 
types and 11,158 individuals obtained from the TCGA 
project [32]. We identified the genes whose expression 
was significantly correlated with DDIT4 expression in 
the LinkedOmics dataset and constructed a heatmap of 
the top 50 correlated genes. Pearson’s correlation test was 
used for statistical analysis, and P < 0.05 was considered 
statistically significant.

GeneMANIA
GeneMANIA (https://​www.​genem​ania.​org) was used to 
predict protein–protein interaction (PPI) networks and 
the potential function of DDIT4 [33]. After the hub genes 
were identified using LinkedOmics, we determined their 
potential functions using GeneMANIA. We also used 
GeneMANIA to determine the association between the 
expression of DDIT4 and hub genes.

GSCALite
GSCALite is a bioinformatics platform for gene set 
cancer analysis, offering various types of analyses, 
including methylation, cancer-related pathway, and 
miRNA network analyses [34]. GSCALite was used for 
pathway activity analysis in this study using the TCGA 
sample.

Statistical analysis
The gene expression level thresholds of |log2 fold 
change|> 1.0 and false discovery rate (FDR < 0.05) were 
used. p value < 0.05 was considered to indicate significant 
difference, and a survival analysis p value < 0.05 was con-
sidered to indicate significant influence prognosis.

Results
Identification and functional characterization 
of upregulated DEGs in docetaxel‑ and doxorubicin‑treated 
TNBC cells
To identify the potential genes related to sensitivity to 
docetaxel and doxorubicin in TNBC, we first performed 
differential expression analysis using the RNA-seq data of 
HS578T cells treated with docetaxel or doxorubicin. The 
results showed the presence of 3902 DEGs in docetaxel-
treated HS578T cells (Fig. 1A), of which 2280 DEGs were 
found to be significantly upregulated and 1622 DEGs 
were downregulated (Fig. 1B).

To explore the underlying biological function and sign-
aling pathways, functional enrichment analysis for these 
DEGs was performed as previously described. Specifi-
cally, the BP group genes were enriched in anatomical 
structure development, movement of cell or subcellu-
lar component, cell motility, and localization of cell. In 

http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
https://www.kmplot.com
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
https://portal.gdc.cancer.gov/
http://www.linkedomics.org
https://www.genemania.org
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addition, the CC group genes were primarily related 
to extracellular region, plasma membrane, membrane, 
and cell periphery. The MF group genes were primarily 
enriched in ion binding, nucleic acid binding transcrip-
tion factor activity, translation factor activity, RNA bind-
ing, and protein transporter activity (Fig. 1C). The KEGG 
pathway analysis of the DEGs showed that the mTOR 
signaling pathway, microRNAs in cancer, and PI3K/
AKT signaling pathway were most significantly enriched 
(Fig. 1D).

Concurrently, 8727 DEGs were identified in dox-
orubicin-treated HS578T cells (Fig.  2A), of which 
5136 DEGs were found to be significantly upregu-
lated and 3591 DEGs were downregulated (Fig.  2B). 

The findings indicated that the expression of these 
DEGs was strongly associated with cellular metabolic 
process, protein binding, DNA binding, and mem-
brane − bounded organelle (Fig.  2C). As shown in 
Fig.  2D, the DEGs were enriched in oxidative phos-
phorylation, p53 signaling pathway, and Wnt signaling 
pathway.

Validation of DDIT4 expression correlates 
with chemotherapy in TNBC
To investigate more sensitive targets and verify the 
reliability of the results, we retrieved the GSE62931 
datasets, which included TNBC and ER + /PR + sam-
ples. As shown in Fig.  3A, 2944 DEGs were identified, 

Fig. 1  Identification and characterization of DEGs from the HS578T_Doce vs HS578T data. A Volcano plot of DEGs between docetaxel-treated cells 
and parental cells. The red dots represent significantly upregulated DEGs; the blue dots represent DEGs that were downregulated; the black dots 
indicate no significant difference (P < 0.05 and |log2FC|> 1.0 as the threshold). B Distribution of DEGs of significance in docetaxel-treated cells. The 
top five GO terms (C) and KEGG enriched pathways (D) of significantly DEGs are indicated. BP, biological process; CC, cell component; MF, molecular 
function
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among which 1501 DEGs were upregulated and 1443 
DEGs were significantly downregulated in TNBC cells 
(Fig.  3B). The GO terms showed that the DEGs were 
primarily related to collagen-containing extracellular 
matrix (Fig.  3C) and were enriched in cell cycle path-
way, EMC-receptor interaction, and P53 and PI3K/AKT 
signaling pathway (Fig. 3D). Upon comparing the DEGs 
significantly upregulated in the three abovementioned 
gene sets (Fig.  4), five genes were identified, namely 
DDIT4, S100P [35], TTYH1 [36], NANOS1 [37], and 
SLC7A5 [38]. The expression of these genes was previ-
ously reported to be associated with the development 
of breast cancer. Limited data are available on DDIT4 
expression in the context of chemotherapy and immu-
notherapy resistance in TNBC. Therefore, we further 
chose DDIT4 as the potential target gene of interest in 
this study.

DDIT4 as a key indicator of the chemotherapeutic response 
in TNBC
To determine the role of DDIT4 in TNBC, we first eval-
uated its expression levels and diagnostic and prognos-
tic value in patients with TNBC. TIMER data revealed 
that the mRNA expression of DDIT4 was significantly 
higher in breast cancer tissues than in normal tissues 
(Fig.  5). Following this, we analyzed the transcription 
levels of DDIT4 based on the stages of breast cancer, 
patient gender, age, primary subtypes, major subclasses 
with TNBC, menopausal status, nodal metastasis sta-
tus, and TP53 mutation status. The DDIT4 transcrip-
tion levels in breast cancer samples were significantly 
higher than those in normal samples. In particular, 
TCGA data indicated a higher expression of DDIT4 in 
TNBC than in other subtypes of breast cancer (Fig. 6). 
Furthermore, we investigated the correlation between 

Fig. 2  Identification and characterization of DEGs from the HS578T_Doxo vs HS578T data. A Volcano plot of DEGs between doxorubicin-treated 
cells and parental cells. The red dots represent significantly upregulated DEGs; the blue dots represent DEGs that were downregulated; the black 
dots indicate no significant difference (P < 0.05 and |log2FC|> 1.0 as the threshold). B Distribution of DEGs of significance in doxorubicin-treated 
cells. The top five GO terms (C) and KEGG enriched pathways (D) of significantly DEGs are indicated. BP, biological process; CC, cell component; MF, 
molecular function
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DDIT4 overexpression at the mRNA level and patient 
prognosis by plotting and comparing the OS, PPS, 
DMFS, and RFS of patients with BC and TNBC using 
the Kaplan–Meier plotter (Fig. 7). TNBC patients with 
high levels of DDIT4 expression had a shorter RFS 
(HR = 1.65 (1.32–2.07), p < 0.001). Further, DDIT4 over-
expression was associated with worse OS (HR = 1.34 
(1.11–1.62), p < 0.01), PPS (HR = 1.43 (1.13–1.8), 
p < 0.01), DMFS (HR = 1.3 (1.12–1.52), p < 0.001), and 
RFS (HR = 1.5 (1.35–1.66), p < 0.001) in breast cancer. 
Overall, the findings imply that the mRNA expression 
of DDIT4 was significantly correlated with the poor 
prognosis of patients with breast cancer and TNBC.

Relationship between the transcriptional level of DDIT4 
and immune cell infiltration in TNBC
Immunotherapy has evolved into one of the most 
promising therapeutic regimens for TNBC [39]. 

However, the role of DDIT4 in immune infiltration 
in TNBC is unknown. Using the TIMER database, we 
further investigated the relationship between the tran-
scriptional level of DDIT4 and immune infiltration. 
It was found that DDIT4 expression correlated nega-
tively with the infiltration of B cells (Cor =  − 0.198, 
p < 0.05), CD8+ T cells (Cor =  − 0.194, p < 0.05), and 
CD4+ T cells (Cor =  − 0.187, p < 0.05). No significant 
association was observed between tumor purity and 
the infiltration of macrophages, neutrophils, and den-
dritic cells. We also analyzed the correlation between 
the DDIT4 transcription level and immune cell infil-
tration in breast cancer. The level of DDIT4 expression 
correlated positively with the infiltration of CD4+ T 
cells (Cor = 0.081, p < 0.05), neutrophils (Cor = 0.097, 
p < 0.01), and dendritic cells (Cor = 0.102, p < 0.01) and 
negatively with tumor purity (Cor =  − 0.179, p < 0.001) 
(Fig. 8).

Fig. 3  Identification and characterization of DEGs from the GSE62931 dataset. A Volcano plot of DEGs between TNBC samples and non-TNBC 
(ER + /PR +) samples. The red dots represent significantly upregulated DEGs; the blue dots represent DEGs that were downregulated; the black dots 
indicate no significant difference (P < 0.05 and |log2FC|> 1.0 as the threshold). B Distribution of DEGs of significance in TNBC tissues. The top five GO 
terms (C) and KEGG enriched pathways (D) of significantly DEGs are indicated. BP, biological process; CC, cell component; MF, molecular function
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The relationship between DDIT4 expression and immune 
marker expression was also analyzed. As shown in Table 1, 
the expression of DDIT4 correlated significantly with the 
expression of different genes with respect to the different 
immune subset cells in TNBC. The immune biomarkers 
identified were as follows: T cell markers, CD8A; B cells 
markers, CD19 and CD79A; neutrophil marker, CCR7; 
dendritic cell markers, HLA-DPB1, HLA-DPA1, and 

BDCA-1 (CD1C); Th1 markers, TNF-a (TNF); Treg mark-
ers, FOXP3 and CCR8. DDIT4 expression was negatively 
correlated with various immune cells. Further analysis of 
the relationship between the expression of ten immune 
checkpoint-related genes and DDIT4 showed that DDIT4 
expression was positively correlated with BTLA, CD274, 
CTLA4, HAVCR2, ICOS, LAG3, PDCD1, PDCD1LG2, 
TIGIT, and VSIR expression in breast cancer (Fig. 9).

Fig. 4  Venn diagram of DEGs from theHS578T_Doce vs HS578T, HS578T_Doxo vs HS578T, and GSE62931 datasets

Fig. 5  The expression level of DDIT4 in different cancers compared with that in normal tissues in the TIMER database
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Analysis of genes exhibiting co‑expression with DDIT4 
in breast cancer
To gain additional insights into the biological significance 
of DDIT4, we investigated the potential role of DDIT4 in 
breast cancer by analyzing the mRNA sequencing data of 
1093 patients with breast cancer, obtained from the TCGA 
database, using the LinkFinder module in LinkedOmics. 
As shown in Fig. 10, 7047 genes (red dots) showed positive 
correlation with DDIT4, whereas 5472 genes (green dots) 
showed negative correlation (Fig. 10A). In addition, the heat-
maps showed the top 50 important genes exhibiting posi-
tive and negative co-expression with DDIT4 in breast cancer 
(Fig. 10B, C). Moreover, the top four significant genes, namely 
ADM (Cor = 0.276, p = 1.242e − 78), ENO1 (Cor = 0.229, 
p = 1.149e − 63), PLOD1 (Cor = 0.210, p = 6.321e − 58), and 
CEBPB (Cor = 0.210, p = 9.956e − 58) were considered as hub 
genes; the expression of these genes was strongly associated 
with DDIT4 expression in breast cancer.

Analysis of the hub genes of DDIT4 in breast cancer
To further explore the function of DDIT4 and its hub 
genes in greater detail, we constructed PPI networks using 
the GeneMANIA tools. DDIT4 and its hub genes showed 
interactions with 20 genes (Fig. 11A). GO analysis revealed 
that the genes associated with DDIT4 are primarily related 
to chemokine activity, tubulin binding, and histone kinase 
activity and involved in physiological processes such as 
condensed chromosome, centromeric region, and spindle 
microtubule. Their molecular functions include mitotic 
sister chromatid segregation, organelle fission, and nuclear 
division (Fig.  11B). KEGG analysis showed that DDIT4 
may play a crucial role in the development and progression 
of BC by participating in cellular senescence, oocyte meio-
sis, cell cycle, and PPAR signaling pathways (Fig. 11C).

Furthermore, we demonstrated that DDIT4 and its 
hub genes participate in the activation of the apopto-
sis, cell cycle, and EMT pathways (Fig. 12). Finally, KM 

Fig. 6  The expression levels of DDIT4 in breast cancer based on different clinical characteristics. *p < 0.05, **p < 0.01, ***p < 0.001
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Plotter analysis of the hub genes showed that the high 
expression of ADM, ENO1, PLOD1, and CEBPB was 
significantly correlated with a shorter OS and poor 
prognosis in patients with breast cancer (Fig. 13).

Discussion
Chemotherapy remains the standard treatment for 
TNBC. However, in recent years, immune checkpoint 
inhibitors (ICIs) have exhibited a sustained clinical 

response in various tumor types, including breast can-
cer [39]. Although TNBC, a highly heterogeneous and 
clinically aggressive form of tumor, has been shown to 
respond to ICIs, its clinical response rate is far from sat-
isfactory [40]. Therefore, the combination of ICIs with 
other types of therapeutic regimens, including chemo-
therapy, is a significant concern in the management of 
TNBC. Recently, the Keynote 522 (NCT03036488) trial 
reported that the combination of pembrolizumab with 

Fig. 7  Survival analysis, indicated by the OS, PPS, DMFS, and RFS, based on DDIT4 expression in patients with TNBC and BC obtained from KM 
plotter

Fig. 8  Relationship between the transcription DDIT4 and immune infiltrates in TNBC and BC
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Table 1  Correlation analysis between DDIT4 and gene biomarkers of immune cells in TNBC (TIMER)

Immune cell Biomarker None Purity
Cor P value Cor P value

CD8 + T cells CD8A  − 0.179 3.40e − 02  − 0.177 4.53e − 02

CD8B  − 0.158 6.25e − 02  − 0.155 7.99e − 02

T cells (general) CD3D  − 0.151 7.58e − 02  − 0.145 1.02e − 01

CD3E  − 0.16 5.91e − 02  − 0.156 7.80e − 02

B cells CD2  − 0.167 4.81e − 02  − 0.172 5.25e − 02

CD19  − 0.241 4.10e − 03  − 0.256 3.60e − 03

CD79A  − 0.227 6.98e − 03  − 0.239 6.67e − 03

Monocytes CD86  − 0.139 1.02e − 01  − 0.12 1.78e − 01

CD115 (CSF1R)  − 0.125 1.43e − 01  − 0.094 2.91e − 01

TAMs CCL2  − 0.046 5.87e − 01  − 0.026 7.72e − 01

CD68  − 0.094 2.70e − 01  − 0.046 6.05e − 01

IL10  − 0.114 1.80e − 01  − 0.078 3.80e − 01

M1 macrophages INOS (NOS2)  − 0.037 6.64e − 01  − 0.079 3.72e − 01

IRF5  − 0.082 3.34e − 01  − 0.075 4.00e − 01

COX2 (PTGS2) 0.058 4.95e − 01 0.089 3.16e − 01

M2 macrophages CD163  − 0.049 5.61e − 01 0.002 9.82e − 01

VSIG4  − 0.03 7.23e − 01 0.024 7.91e − 01

MS4A4A  − 0.142 9.41e − 02  − 0.11 2.18e − 01

Neutrophils CD66b (CEACAM8)  − 0.048 5.74e − 01  − 0.095 2.88e − 01

CD11b (ITGAM)  − 0.058 4.93e − 01  − 0.023 7.95e − 01

CCR7  − 0.215 1.09e − 02  − 0.236 7.43e − 03

Natural killer cells KIR2DL1  − 0.052 5.45e − 01  − 0.017 8.48e − 01

KIR2DL3 0.027 7.51e − 01 0.095 2.87e − 01

KIR2DL4 0.063 4.60e − 01 0.127 1.53e − 01

KIR3DL1  − 0.076 3.72e − 01  − 0.055 5.34e − 01

KIR3DL2  − 0.087 3.06e − 01  − 0.021 8.13e − 01

KIR3DL3  − 0.072 4.01e − 01  − 0.055 5.37e − 01

KIR2DS4  − 0.126 1.38e − 01  − 0.096 2.81e − 01

Dendritic cells HLA-DPB1  − 0.211 1.26e − 02  − 0.206 1.94e − 02

HLA-DQB1  − 0.16 5.84e − 02  − 0.144 1.04e − 01

HLA-DRA  − 0.174 3.95e − 02  − 0.152 8.66e − 02

HLA-DPA1  − 0.207 1.43e − 02  − 0.191 3.10e − 02

BDCA-1 (CD1C)  − 0.233 5.52e − 03  − 0.216 1.42e − 02

BDCA-4 (NPR1)  − 0.08 3.49e − 01  − 0.071 4.24e − 01

CD11C (ITGAX)  − 0.162 5.55e − 02  − 0.151 8.92e − 02

Th1 T-bet (TBX21)  − 0.147 8.23e − 02  − 0.135 1.29e − 01

STAT4  − 0.15 7.61e − 02  − 0.139 1.18e − 01

STAT1  − 0.063 4.61e − 01  − 0.058 5.13e − 01

IFN-g (IFNG)  − 0.094 2.70e − 01  − 0.07 4.30e − 01

TNF-a (TNF) 0.168 4.75e − 02 0.2 2.39e − 02

Th2 GATA3 0.109 2.00e − 01 0.123 1.65e − 01

STAT6  − 0.149 7.93e − 02  − 0.168 5.86e − 02

STAT5A 0.024 7.81e − 01 0.035 6.93e − 01

IL13 0 9.99e − 01 0.043 6.33e − 01

Tfh BCL6  − 0.077 3.64e − 01  − 0.041 6.49e − 01

Th17 STAT3 0.135 1.11e − 01 0.154 8.26e − 02

IL17A 0.012 8.91e − 01 0.029 7.45e − 01
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neo-adjuvant chemotherapy improves the pathological 
complete response (pCR) rate in patients with TNBC 
[11]. Similarly, a phase III IMpassion130 clinical trial also 

showed that nab-paclitaxel plus atezolizumab increased 
the progression-free survival (PFS) and overall survival 
(OS) of patients with metastatic TNBC [41]. However, 

Table 1  (continued)

Immune cell Biomarker None Purity
Cor P value Cor P value

Tregs FOXP3  − 0.224 7.91e − 03  − 0.245 5.28e − 03

CCR8  − 0.197 1.99e − 02  − 0.207 1.89e − 02

STAT5B  − 0.08 3.48e − 01  − 0.084 3.48e − 01

TGFb (TGFB1)  − 0.174 3.95e − 02  − 0.173 5.08e − 02

T cell exhaustion PD-1 (PDCD1)  − 0.032 7.07e − 01 0.014 8.78e − 01

CTLA4  − 0.118 1.64e − 01  − 0.092 3.01e − 01

LAG3  − 0.031 7.13e − 01  − 0.004 9.68e − 01

TIM-3(HAVCR2)  − 0.141 9.65e − 02  − 0.119 1.83e − 01

GZMB 0.03 7.24e − 01 0.083 3.53e − 01

Fig. 9  Relationship between the expression of ten immune checkpoint-related genes and DDIT4. Heatmap (A) and scatter plots (B) showing the 
relationship between the expression of DDIT4 and BTLA, CD274, CTLA4, HAVCR2, ICOS, LAG3, PDCD1, PDCD1LG2, TIGIT, and VSIR
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the phase III IMpassion131 clinical trial yielded conflict-
ing results, showing that atezolizumab and paclitaxel 
could not be used successfully to achieve the primary 
end point [12]. On the contrary, the findings of the lat-
est Keynote 355 (NCT02819518) trial showed that the 
combination of pembrolizumab with chemotherapy led 
to a significantly longer survival in patients with PD-
L1-positive TNBC [10]. These seemingly contradictory 
results indicate that cancer cells may evolve rapidly under 
the selection of chemotherapy and ICIs. However, the 
underlying mechanism remains unknown, and the identi-
fication of novel biomarkers for patient stratification and 
prognosis is an urgent need.

In this study, we performed the RNA-seq of doc-
etaxel- and doxorubicin-treated TNBC cells and sought 
to explore new genes that potentially contribute to the 
regulation of chemoresistance and immune response in 
TNBC. Based on the comparison of data from GO and 
KEGG analyses and DEG enrichment between the drug-
treated and control TNBC cell groups, we found that 
several cellular process and networks were enriched 
in the docetaxel- and doxorubicin-treated TNBC cells, 
including cell motility, cellular metabolic process, col-
lagen-containing extracellular matrix, mTOR signaling 
pathway, p53 signaling pathway, oxidative phosphoryla-
tion, and PI3K − Akt signaling pathway (Figs.  1, 2, 3, 
and 4). Notably, the enrichment of DDIT4 expression in 
TNBC cells treated with docetaxel and doxorubicin was 
an interesting finding for further investigation because 
the gene plays a key role in cancer initiation and pro-
gression as well as in stress responses, such as those to 
DNA damage, hypoxia, and chemotherapy [42]. Evi-
dence from several recent studies has indicated that 
the overexpression of DDIT4 is also an adverse factor 
in ovarian carcinoma [23], gastric cancer [43], and lung 
adenocarcinoma [44].

In the present study, the overexpression of DDIT4 was 
detected in approximately half of the pan-cancer data-
sets in the TIMER database (Fig. 5), and the expression of 
this gene showed the greatest difference between normal 
breast and tumor tissues. We also found that the overex-
pression of DDIT4 was significantly correlated with dif-
ferent tumor stages, patient age, primary subtypes, major 
subclasses with TNBC, nodal metastasis status, and TP53 
mutation status (Fig.  6), indicating a strong correlation 
between DDIT4 overexpression and breast cancer pro-
gression. Further analysis revealed that DDIT4 expres-
sion data from the TCGA effectively predicted the RFS of 
patients with TNBC (Fig. 7). Similarly, DDIT4 expression 
is associated with progression and poor survival in breast 
cancer, which is consistent with findings from a previous 
report by Pinto et al. [24]. In summary, DDIT4 may rep-
resent a promising biomarker for survival prediction in 
patients with TNBC.

To obtain further insights into the impact of DDIT4 
overexpression on the immune microenvironment, we 
further analyzed the correlation of DDIT4 expression 
with the infiltration of immune cells in TNBC from the 
data published in the TIMER database. According to the 
analysis of data from TIMER, the abnormal expression 
of DDIT4 may alter the tumor microenvironment and 
immune response, which can significantly affect clini-
cal outcomes. We confirmed that the overexpression of 
DDIT4 was associated with decreased immune cell infil-
tration in TNBC (Fig. 8). Although the clinical success of 
immune checkpoint inhibitors targeting CTLA4, PD-1, 
and PD- L1 has revolutionized traditional cancer treat-
ment, response rates have remained limited, indicating 
that the complexity of co-evolution between cancer cells 
and the microenvironment may impact the response to 
immunotherapy. Therefore, discovery of novel biomark-
ers for patient stratification and application of additional 

Fig. 10  Results of the co-expression analysis of DDIT4. A The genes exhibiting positive and negative expression correlation with DDIT4 in breast 
cancer. Heatmaps showing the top 50 genes exhibiting positive (B) and negative (C) expression correlation with DDIT4 in breast cancer. Red 
indicates the positively correlated genes and blue indicates the negatively correlated genes
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immune checkpoint-related genes such as ICOS [45], 
LAG3 [46], TIGIT [47], BTLA [48] that control T cell 
function is critical for improvement of TNBC treatment. 
Remarkably, our findings indicated that the overexpres-
sion of DDIT4 was positively correlated with the expres-
sion of ten immune checkpoint-related genes (Fig.  9) 
which mainly contribute to the negative regulation of T 
cell activation, implying the initiation of immune evasion 

in tumors in response to the upregulation of DDIT4. Col-
lectively, these results suggest that the abnormal expres-
sion of DDIT4 may contribute to the poor response to 
immunotherapy with ICIs, which could further induce 
immunotherapy resistance in TNBC.

We also identified several genes showing significant 
expression correlation with DDIT4, including ADM, 
ENO1, PLOD1, and CEBPB. The PPI network of these 

Fig. 11  A PPI network of DDIT4 and hub genes produced using GeneMANIA. B The GO items for the genes with expression associated with DDIT4 
expression. C The KEGG items for the genes with expression associated with DDIT4 expression
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genes are enriched in processes and pathways related to 
chemokine activity, cell cycle regulation, and PPAR sign-
aling (Fig.  11). Similarly, ENO1 can reportedly promote 
lung cancer metastasis via the HGFR and WNT signaling 
pathways [49]. PLOD1 has been shown to promote cell 
growth and aerobic glycolysis by regulating the SOX9/
PI3K/Akt/mTOR signaling pathway in gastric cancer 
[50]. Through coexistence analysis, we found that DDIT4 
and its hub genes are involved in the apoptosis, cell cycle, 
and EMT pathways.

Autophagy is an important survival mechanism that 
allows cells to adapt their demands to poor growth 
environments and maintain cellular homeostasis [51]. 
Evidence from numerous studies has indicated a close 
relationship between autophagy and anti-cancer drug 
resistance in breast cancer. Recently, it was reported 
that the inhibition of DDIT4 expression sensitizes blad-
der urothelial carcinoma to paclitaxel by inhibiting the 
DDIT4-EEF2K-autophagy axis [26]. Similarly, DDIT4 
expression promoted the survival of glioblastoma cells 
by inhibiting mTORC1, which is a major mechanism 
contributing to anti-tumor therapy resistance [52]. 
Notably, DDIT4L, which is the paralog of DDIT4, is a 
p53-dependent regulator of stem cell suppression and 

participates in tumor migration and metastasis [53]. 
In addition, autophagy also facilitates tumor cell eva-
sion from immune surveillance, leading to intrinsic 
resistance to antitumor immunotherapy [54]. Li et  al. 
revealed that the high glycolytic rate in TNBC cells sup-
ports tumor-derived myeloid-derived suppressor cells 
(MDSCs) through the autophagy pathway [55]. Besides, 
major histocompatibility complex class I (MHC-I) is 
degraded in pancreatic cancer cells via autophagy, which 
promotes immune evasion [56]. Overall, the abovemen-
tioned data demonstrate that DDIT4 participates in vari-
ous signaling pathways that support cancer cell survival, 
proliferation, immune evasion, drug resistance, and 
metastasis. Lastly, we found that the high expression of 
ADM, ENO1, PLOD1, and CEBPB is significantly cor-
related with the shorter overall survival of patients with 
BC. However, functional studied are needed to further 
investigate the precise mechanisms by which the prod-
ucts encoded by DDIT4 hub genes mediate resistance to 
chemotherapy and immunotherapy and to further con-
firm whether these hub genes are the potential indicators 
of worse prognosis in breast cancer.

This study had several limitations. First, the research 
was based solely on transcriptomic and bioinformatic 

Fig. 12  The role of DDIT4 and hub genes in the cancer-related pathways (GSCALite)
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analysis, and the potential biological mechanism needs 
further investigation and application to other types of 
cancers. Second, we intend to further investigate the pro-
tein expression level of DDIT4 and its role in the patho-
genesis and progression of TNBC.

To summarize, we demonstrated a potential associa-
tion between DDIT4 gene expression and the immuno-
suppressive microenvironment in TNBC. Results from 
this study can help identify potential biomarkers and tar-
gets for overcoming drug resistance and facilitating the 
clinical management of TNBC.
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