
Dong et al. 
World Journal of Surgical Oncology          (2022) 20:303  
https://doi.org/10.1186/s12957-022-02767-z

RESEARCH

The expression pattern of immune‑related 
genes and characterization of tumor immune 
microenvironment: predicting prognosis 
and immunotherapeutic effects in cutaneous 
melanoma
Dong Dong†, Wei Wang†, Heng Wang†, Liang Chen and Tianyi Liu* 

Abstract 

Background:  Increasing evidences have revealed the tumor immune microenvironment not only has vital impacts 
on the origin, progression, and metastasis of tumors significantly but also influences the response to immunotherapy. 
Nonetheless, to date, the well-rounded expression pattern of immune-related genes in cutaneous melanoma and the 
comprehensive characterization of tumor immune microenvironment remain not clearly elucidated.

Method:  We comprehensively evaluated the well-rounded expression pattern of immune-related genes of 686 
patients with cutaneous melanoma based on immune-related genes with prognostic value and systematically cor-
related the expression pattern of these genes with the comprehensive characterization of tumor immune microenvi-
ronment. The IRGscore was constructed to quantify immunological function of individual using principal component 
analysis algorithms.

Result:  Three distinct immune subtypes were determined with obvious survival differences. Melanoma patients with 
high IRGscore was characterized by comprehensive suppression of immune function, showing much poorer prog-
nosis and efficacy for immunotherapy, while the low IRGscore means the robust activation of immune function and 
the better effect of immunotherapy, which may be responsible for a better prognosis. Besides, the prognostic ability 
of IRGscore was further validated by the independent dataset of stomach cancers. Furthermore, the predictive effect 
of immunotherapeutic benefits of IRGscore was demonstrated by the independent dataset of melanoma patients 
accepting immunotherapy and another predictive model for immunotherapy.

Conclusion:  IRGscore could serve as an independent immunotherapeutic and prognostic predictor, thereby facilitat-
ing the identification of appropriate candidates with cutaneous melanoma for immunotherapy and the formulation 
of individualized therapeutic approaches.
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Introduction
Cutaneous melanoma (CM) is one of the most aggres-
sive malignant skin tumors characterized by metastasis 
at an early stage and poor prognosis [1]. Epidemiologi-
cal evidences indicate the incidence of CM has increased 
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drastically worldwide in the past few years, contribut-
ing to 80% of deaths from dermatologic cancers [2, 3]. 
It causes approximately 55,500 deaths annually, and less 
than 20% of individuals with advanced CM could survive 
5 years [4].

Over the past 10 years, the therapeutic strategies for 
advanced CM have progressed dramatically with the 
development of immunotherapy represented by immu-
nological checkpoint blockade (ICB), which could effec-
tively promote the activation of the immune system and 
improve anti-tumor immune response [5]. Nevertheless, 
an apparent restriction of ICB, as observed, is merely a 
tiny percentage of CM patients with durable responses 
could benefit from it, whereas there is no objective 
response for 60–70% of CM patients to immunotherapy, 
and 20–30% of these patients without objective response 
end up with tumor recurrence and progression [5–7]. 
Therefore, reliable indicators or predictors are extremely 
in demand to help identify the appropriate CM individu-
als for immunotherapy.

Increasing evidences have revealed the strong cor-
relation between the response of patients to immu-
notherapy and the immune composition of tumor 
microenvironment (TME) [8]. The TME comprises a 
variety of immune cells together with endothelial cells, 
fibroblasts, and extracellular components, which not 
only has vital impacts on the origin, progression, and 
metastasis of tumors significantly but also influences 
the response to immunotherapy [9]. According to previ-
ous researches, the high level of tumor-infiltrating lym-
phocytes (TIL), such as NK cells, CD8+ T cells, CD4+ 
T cells, and activated B cells, was generally relevant to 
durable response to immunotherapy and better progno-
sis [10, 11]. Activated CD8+ T cells could directly rec-
ognize and kill malignant tumor cells. And CD4+ T cells 
have been demonstrated to improve the effectiveness of 
CD8+ T response and secrete various cytokines to pro-
mote immune response. Furthermore, CD4+ T cells, 
via cytolytic mechanisms, are also capable of destroying 
tumor cells directly [12]. However, simply evaluating TIL 
cannot absolutely predict the response to immunother-
apy, and some individuals with high levels of TIL were 
also observed the resistance to immunotherapy [13, 14]. 
This could be explained by the fact that the response to 
immunotherapy is also impacted by various cytokines, 
chemokines, and other components of tumor immune 
microenvironment (TIM) [15].

More specifically, infiltrating immune cells of tumor are 
heterogeneous in both function and phenotype and make 
up an interactive network with other immune cells and 
components of TIM, thereby constituting an extremely 
complex integration [16, 17]. For example, CD4 + 
FOXP3 + regulatory T cells (Treg) have crucial effects 

on the establishment and preservation of self-tolerance 
[18]. Nevertheless, as suppressors of immune responses, 
the infiltrating level of Treg in tumors is generally asso-
ciated with a poor prognosis [19]. Through humoral and 
cell-cell contact mechanisms, Tregs could suppress not 
only T cells but also NK cells, macrophages, dendritic 
cells, and B cells [20]. Besides, it has been well demon-
strated tumor-associated macrophages (TAMs) are also 
the key regulators of immune response, which are capa-
ble of excreting many suppressive cytokines including 
IL-1β, TGFβ, IL-10, and IL-6, thereby leading to the sup-
pression of T cell in the TIM [21, 22]. Therefore, more 
attention should be paid to the interaction among vari-
ous components of TIM, rather than a single-cell clus-
ter. The comprehensive characterization of the TIM and 
the expression pattern of immune-related gene might be 
a valuable reference in formulating individualized treat-
ment strategies.

The present work depicted the comprehensive land-
scape of TIM in CM, revealing that characterization of 
TIM and the immune-related gene expression pattern 
of individuals were closely correlated to tumor heteroge-
neity and treatment complexity. Furthermore, a reliable 
scoring system has been established in this study, serv-
ing as an independent immunotherapeutic and prog-
nostic indicator, to quantify immune status of individual 
tumors and comprehensively evaluate the response of 
CM patients to immunotherapy, thereby assisting the for-
mulation of individualized therapeutic strategies.

Material and methods
CM dataset acquisition and preprocessing
The detailed workflow of this research was depicted in 
Supplementary Fig. 1. Firstly, we searched and downloaded 
the public gene-expression data as well as complete clinical 
annotation from The Cancer Genome Atlas (TCGA) and 
Gene Expression Omnibus (GEO) database. Those individ-
uals with full survival information were screened for sub-
sequent analysis. In this study, 685 CM samples datasets 
(TCGA-SKCM and GSE65904) were identified altogether 
for further evaluation. As to datasets in TCGA, RNA-
sequencing data of gene expression (FPKM values) were 
obtained from the University of California Santa Cruz 
(UCSC) Xena Browser (Genomic Data Commons [GDC] 
hub: https://​xenab​rowser.​net/​datap​ages/?​hub=​https://​gdc.​
xenah​ubs  Accessed September 15, 2021). For datasets in 
GEO, we directly obtained the matrix files after normali-
zation. More specifically, we converted the FPKM values 
into transcripts per kilobase million (TPM) values. Using 
the “ComBat” algorithm of sva package, we corrected the 
batch effects from non-biological technical biases were 
corrected. Besides, we downloaded the somatic mutation 
data from TCGA database. R Bioconductor and R (version 
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4.1.1) packages were employed for performing data analy-
sis. In addition, the independent CM datasets (GSE19234) 
were analyzed to validate the predictive ability of IRG-
score to prognosis. Besides, the independent CM datasets 
(GSE91061), including 49 CM individuals receiving immu-
notherapy, were analyzed to explore the predictive ability 
of IRGscore to immunotherapy.

Unsupervised clustering for immune‑related genes 
with a prognostic ability
We identified a gene set including 6196 genes related to 
immune function through the Immunology Database 
and Analysis Portal database [23]. The prognostic val-
ues of these immune-related genes in CM patients were 
revealed by the univariate Cox regression model. Then, 
742 genes related to immune function with prognos-
tic value (P < 0.05) were screened from the results file 
for subsequent analysis. Based on the expression of 742 
genes related to immune function with prognostic value, 
we utilized unsupervised clustering analysis to determine 
different immune subtypes and divide CM individuals for 
subsequent analysis. The consensus clustering algorithm 
determined the quantity and stability of clusters. The 
ConsensuClusterPlus package [24] was used to carry out 
the previous processes, and 1000 times repetitions were 
performed to guarantee the stability of categorization.

Identification of differentially expressed genes (DEGs) 
among distinct immune subtypes
Based on selected genes related to immune function with 
prognostic value, individuals with CM were divided into 
three distinct immune clusters. The empirical Bayesian 
approach of limma R package was utilized to identify 
DEGs among distinct immune clusters. In addition, the 
significance filtering criteria of identifying DEGs were set 
as an adjusted p-value < 0.001.

Estimation of immune cell infiltration of TME 
by single‑sample gene set enrichment analysis (ssGSEA) 
and CIBERSORT deconvolution algorithm
We used the R package “CIBERSORT” to quantify the infil-
trating level of various immune cells in melanoma for 1000 
permutations. Besides, the stromal/immune cells (stromal/
IRGscores) were assessed by ESTIMATE algorithm [25]. 
Then, the standard scores were calculated, and the calcula-
tion formula of standard score is “Z = (X–X _bar)/S.” X is 
the original score, X_bar is the mean of the original score, 
and S is the standard deviation of the original score. Addi-
tionally, the relative abundances of immune cells within 
TME were quantified by ssGSEA algorithm. And the gene 
panels used to mark diverse immune cell types of TIM were 
acquired from an article of Charoentong [26]. The relative 

abundance of each immune cell type in TIM was denoted 
by an enrichment score determined by ssGSEA analysis.

Gene set variation analysis (GSVA) and functional 
annotation
Based on the R package “GSVA” function, the distinctions 
in biological processes among three immune clusters were 
further evaluated by GSVA enrichment analysis, which was 
an unsupervised and nonparametric approach for assessing 
the variations in signaling pathways and the activity of bio-
logical process in the samples [27]. The adjusted P < 0.05 
was considered statistically significant. Using the cluster-
Profiler R package, the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) and gene ontology (GO) functional 
annotation for DEGs were carried out, with a cutoff value 
of false discovery rate (FDR) < 0.05.

Generation of IRGscore
The DEGs determined from distinct immune clusters 
were firstly normalized among all samples, and the over-
lapping DEGs were selected. Using unsupervised cluster-
ing method, individuals were categorized into different 
subtypes for sequent analysis based on the overlapping 
DEGs. Then, we utilized the consensus clustering algo-
rithm to identify the quantity and stability of three gene 
clusters. Furthermore, via univariate Cox regression model, 
the prognostic analysis for each gene in the signature was 
carried out, and we extracted those genes with the promi-
nent prognostic value for further analysis. Then, principal 
component analysis (PCA) was performed to establish the 
gene signatures related to immune, with principal compo-
nents 1 and 2 being the signature scores. The advantage 
of this approach is to focus the score on the set contain-
ing significantly well-correlated or anti-correlated genes 
whereas down-weighing the contribution from genes that 
do not track with other members of the set. The approach 
of defining the IRGscore in our study is similar to GGI [28]:

where i represented the expression of immune-related 
genes.

Quantify the immune response predictor: 
immunophenoscore (IPS)
IPS is the most favored factor, developed by Charoen-
tong P. et al., to predict the anti-PD-1 and anti-CTLA-4 
responses, quantifying immunogenicity determinants 
of tumors, and characterizes immune landscapes within 
the tumor as well as cancer anti-genome [29]. The ESTI-
MATE algorithm, using the distinct transcriptional pat-
terns for inferring tumor purity and cellularity, was 

IRGscore = (PC1i + PC2i)
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utilized to determine stromal/immune scores for predict-
ing stromal/immune cell infiltrating degrees [30]. Tumor 
tissues which had plentiful immune cell infiltration 
meant lower tumor purity and a higher IPS.

Statistical analysis
All statistical analyses in this study were finished in R 
4.1.1 software. Correlation coefficients between two vari-
ables were calculated by Spearman’s and distance correla-
tion analyses. Kruskal-Wallis tests and one-way ANOVA 
were utilized to contrast differences across three sub-
groups [31]. The optimal cutoff point of each group, 
using the survminer R package, was identified based on 
the correlation between IRGscore and patients’ survival. 
Besides, we utilized the surv-cutpoint function of the 
“survival” package to tautologically examined all possi-
ble cut points for identifying the maximum rank statistic, 
used to dichotomize IRGscore, and divided individu-
als with CM into low and high IRGscore groups. By the 
Kaplan-Meier method, we depicted the survival curves 
for prognostic analysis, and the significance of varia-
tions was examined by log-rank tests. Furthermore, we 
used the multivariable Cox regression model to ascer-
tain independent prognostic factors. Patients who had 
full clinical information were selected to perform further 
multivariate prognostic analysis. In addition, we utilized 
the forestplot R package for visualizing the data of mul-
tivariate prognostic analysis for IRGscore in CM cohort. 
All statistical P-values were bilateral, and P less than 0.05 
was deemed as statistically significance.

Results
Identification of immune subtypes
We identified a gene set including 6196 genes related to 
immune function through the Immunology Database 
and Analysis Portal database [23]. Based on 686 tumor 
samples with available clinical information and OS data 
profiles from the meta-cohort (GSE65904; The Cancer 
Genome Atlas [TCGA]-SKCM), a univariate Cox regres-
sion model revealed the prognostic values of the above 
immune-related genes in patients with CM. Then, 742 
genes related to immune function with prognostic value 

(P < 0.05) were screened from the results file for subse-
quent analysis.

Using the ConsesusClusterPlus package of R software, 
the unsupervised clustering was carried out to divide 
patients with CM into separated subtypes based on the 
expression level of these 742 genes related to immune. 
Three independent immune subtypes were identified 
with significant survival differences. Immune cluster 
A showed a particularly noticeable survival advantage 
among three distinct immune clusters, according to prog-
nostic analysis, while the immune cluster C had a worst 
prognosis (Fig. 1a). Additionally, PCA has demonstrated 
the obvious differences among three different immune 
clusters about the transcriptional profile of these 742 
genes related to immune (Fig. 1b). According to heat map 
analysis, the expression levels of these genes in immune 
cluster A patients were significantly higher than those in 
immune cluster B and cluster C patients (Fig. 1c).

Immune landscape and functional annotation of different 
immune subtypes
To probe into the biological characteristics among three 
different immune clusters, we performed the GSVA 
enrichment analysis. Immune cluster A presented 
remarkable enrichment of signaling pathways related 
to activation of immune, including toll-like receptor 
signaling pathways, T-cell receptor signaling pathway, 
B-cell receptor signaling pathway, chemokine signaling 
pathway, and the cytokine-cytokine receptor interac-
tion signaling pathway, while the immune cluster C was 
significantly associated with the biological process of 
immune suppression. And the level of immune activation 
of immune cluster B lied between immune cluster A and 
immune cluster C, all of which were consistent with the 
results of prognostic analysis (Fig. 1 d and e). To further 
clarify the differences in immune function among dis-
tinct immune subtypes, the components of immune cells 
in the immune microenvironment were analyzed. The 
ssGSEA results, as expected, revealed various infiltrating 
immune cells were observed to be prominently enriched 
in immune cluster A, including CD4+ T cells, gamma-
delta T cells, macrophages, activated B cells, mast cell, 

Fig. 1  Immune landscape and functional annotation of different immune subtypes. a Survival analysis of three immune clusters in the combined 
CM cohort. K-M curves with P < 0.001 suggested that the difference in survival was significant across the three clusters. Immune cluster A displayed 
superior survival compared with the other clusters. b PCA for the transcriptome profiles of the three immune clusters, suggesting an obvious 
distinction in the transcriptome of among different subtypes. c Unsupervised clustering of the genes related to immune in the combined CM 
cohort. Immune cluster, survival status, and age served as patients’ annotations. Red means high expression levels, and blue represents low 
expression levels of these genes. d and e GSVA enrichment analysis of the activated signaling pathways in three different immune clusters. Red 
color means the activation of signaling pathways, and blue represents the inhibition of signaling pathways. f Variations in the abundance of 
infiltrating immune cells among immune clusters A, B, and C using “ssGSEA” analysis. “*” represents the statistical P-value (*P < 0.05; **P < 0.01; ***P < 
0.001). g Difference in the abundance of infiltrating immune cells among immune clusters A, B, and C using “CIBERSORT” analysis. The value of Y-axis 
is standard score. “*” represents the statistical P-value (*P < 0.05; **P < 0.01; ***P < 0.001). h The expression of immune-checkpoint-relevant genes 
expressed in three immune clusters (*P < 0.05; **P < 0.01; ***P < 0.001)

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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MDSC, natural killer cell, CD8+ T cells, and eosinophils 
(Fig. 1f ). While the immunecluster-C was characterized 
by the comprehensive immune suppression. We further 
assessed the proportion of different subtypes of infiltrat-
ing immune cells of tumors based on the “CIBERSORT” 
method (Fig.  1g). Results also indicated higher levels of 
immune effector cells in immune cluster A, such as acti-
vated CD4+/CD8+ T cells and memory CD4+/CD8+ 
T cells, which was consistent with the above results of 
ssGSEA. Besides, the expression levels of several vital 
immune checkpoint genes were also analyzed, includ-
ing CTLA4, PD-L1, LAG3, PAF1, PD1, CD80, CD86, 
and TNFRSF9 in each immune clusters. It has been 
demonstrated that the above expressions of immune 
checkpoints except PAF1 in immune cluster A were sig-
nificantly higher than that in immune cluster B, and the 
cluster C was still characterized by the lowest expression 
level of these immune checkpoints among immune sub-
types (Fig. 1h).

Construction of immune‑related gene signatures 
and identification of immune gene subtypes
To further unravel the potential biological characteris-
tics of each immune subtypes, using the limma pack-
ages of R software, the differential analyses of gene 
expression among three immune clusters were per-
formed to identify the transcriptome distinctions, 
finally determining 1428 immune subtype-related 
overlapping differentially expressed genes (DEGs) 
(Fig.  2a). Then, we utilized the clusterProfiler pack-
age to carried out GO and KEGG enrichment analy-
sis for these DEGs (Fig.  2 b and c). And as expected, 
these genes were prominently enriched in biological 
processes associated with immune function, involving 
T-cell activation, leukocyte proliferation, lymphocyte 
differentiation, and mononuclear cell differentiation, 
which confirmed again that the expression pattern of 
immune-related gene played a vital role in the survival 
differences among three immune clusters. Next, the 
above overlapping DEGs were utilized for performing 
survival analysis for each gene by the univariate Cox 
regression model, and final 1161 most prognostic DEGs 

were identified, together constituting the immune-
related gene signatures. And the heat map delineated 
the transcriptomic profile of these prognostic DEGs 
with identified across the immune clusters (Fig.  2d). 
For better validating the above regulatory mechanism, 
we performed the unsupervised clustering of these 
immune signature genes detected in three immune 
clusters, which classified the GSE65904 and TCGA-
SKCM cohort into distinct gene subtypes. Consistent 
with the immune subtypes, three distinct genomic phe-
notypes were recognized via an unsupervised cluster-
ing algorithm, termed as gene cluster A, gene cluster B, 
and gene cluster C, respectively.

The prognostic characteristics of three gene clusters 
were investigated by integrating them with survival infor-
mation. One-hundred twenty-six of 300 patients with 
CM were aggregated in gene cluster A, suggesting a bet-
ter survival, while patients in gene cluster C (308 patients) 
were observed to be strongly associated with poorer out-
comes. Besides, 234 patients with CM belongs to gene 
cluster B with an intermediate prognosis (Fig.  2e). Fur-
thermore, it has been investigated that the landscape of 
immune cell infiltration in the TIM in three gene clusters 
based on “CIBERSORT” and “ssGSEA” methods (Fig.  2 
f and g). We found the gene cluster A had dramatically 
higher IRGscores compared with other gene clusters, and 
it exhibited the highest activated CD8+ T cell and CD4+ 
memory T-cell infiltration. As depicted in Fig.  2f, gene 
cluster C, with much lower IRGscores, was character-
ized as the remarkable immunosuppression-related M2 
macrophages infiltration. Additionally, to further explore 
the biological behaviors among three gene clusters, we 
also explored the expression levels of some vital immune 
checkpoint genes in three gene clusters, indicating signif-
icant differences. The gene cluster A was related to much 
higher expression levels of immune checkpoints, whereas 
the lowest gene expression level was observed in gene 
cluster C (Fig. 2g). In brief, the coherence between prog-
nostic profile and immune profile among distinct gene 
clusters has indicated the sorting scheme is reasonable 
and scientific.

(See figure on next page.)
Fig. 2  Construction of immune-related gene signatures and identification of immune gene subtypes. a Venn diagram presented 1428 overlapping 
DEGs among three immune clusters was identified. b Functional annotations of DEGs based on GO analysis and the circle size mean the number 
of genes enriched. c Functional annotations of DEGs based on KEGG pathway analysis and the circle size represent the enriched gene number. 
d Unsupervised clustering of the immune-related gene signatures in the combined CM cohort. The immune cluster, gene cluster, survival status, 
and ages served as patient annotations. Red means high expression levels, and blue represents low expression levels of these genes. e Survival 
analysis of distinct gene clusters in the combined CM cohort. K-M curves with P < 0.001 suggested that the difference in survival was significant 
across the three clusters. f Variations in the abundance of infiltrating immune cells across gene clusters A, B, and C using “CIBERSORT” analysis. The 
value of Y-axis is standard score. “*” represents the statistical P-value (*P < 0.05; **P < 0.01; ***P < 0.001). g Differences in the abundance of infiltrating 
immune cells among gene clusters A, B, and C using “ssGSEA” analysis. “*” represents the statistical P-value (*P < 0.05; **P < 0.01; ***P < 0.001). h The 
expression of genes related to immune checkpoints in three gene clusters
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Fig. 2  (See legend on previous page.)
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Establishment of the immune‑related gene score 
(IRGscore)
To acquire quantitative predictors of immune function 
in CM individual patients, based on the above immune-
related gene signatures, we constructed a set of scoring 
system to quantify immune-related gene expression pat-
tern of individual patients with CM, termed as IRGscore. 
Detailed constructive processes of IRGscore are provided 
in the chapter of methods. Additionally, the Kruskal-Wal-
lis test further revealed remarkable differences in IRG-
score among distinct gene clusters and immune clusters 
(Fig.  3 a and b). The lowest average score was attached 
to gene cluster A, whereas the gene cluster C was along 
with the highest average score among three clusters, 
suggesting that IRGscore was negatively correlated with 
immune function, and high score meant immune sup-
pression, while a low score might be related to immune 
activation. Additionally, further analysis also indicated 
the IRGscore was significantly negatively associated with 
the level of infiltration of various immune cells including 
activated B cells, CD8 T cells, and CD4 T cells (Fig. 3c). 
To further verify this characteristic, we classified individ-
uals with CM into low or high IRGscore group with the 
optimum cutoff value determined by survminer package; 
the tolerance condition and immune activity were further 
analyzed in low/high IRGscore groups. Firstly, we ana-
lyzed the expression level of several vital immune check-
point genes, such as CTLA4, PAF1, CD80, PD-L1, LAG3, 
CD86, PD1, and TNFRSF9, as well as the expression level 
of signatures related to immune activity, such as PRF1, 
TNF, CXCL9, GZMB, GZMA, IFNG, CXCL10, TBX2, 
and CD8A. The Wilcoxon test has indicated that most 
of key genes related to immune activity and immune 
checkpoints were substantially upregulated in low score 
group, except PD2 and TBX2. (Fig. 3 d and e). Addition-
ally, the gene set enrichment analysis (GSEA) also dem-
onstrated that immune-related pathways were evidently 
elevated in low IRGscore group, such as toll-like receptor 
and T-cell receptor signaling pathways, B-cell receptor 
signaling pathways, and NK cell-mediated cytotoxicity 
pathways (Fig.  3f ). The alluvial diagram indicated the 
attribute alterations in different patterns. As depicted, 
almost all individuals belonged to immune cluster C were 
also corresponding to gene cluster C, all of which had 
higher IRGscores and worse survivals. In contrast, most 
of patients, belonged to immune cluster A, were also cor-
responded to gene cluster A, meaning lower IRGscores 
and better outcomes (Fig. 3g).

The prognostic ability of IRGscore
The subsequent analysis further evaluated the value 
of IRGscore in predicting patients’ outcome. Patients 
with low IRGscore had a significant survival advantage, 

compared with the high IRGscore group (P < 0.001) 
(Fig.  4a). Besides, the prognostic value of IRGscore was 
further validated based on an independent dataset of 
CM patients (GSE19234). As expected, the survival of 
patients belonging to low score group was also promi-
nent better than high score group (P < 0.05) (Fig.  4b). 
Additionally, our present work also explored whether 
IRGscore was an independent predictor to evaluate the 
prognosis of patients with CM. Based on multivariate 
Cox regression model analysis, the predictive ability of 
IRGscore has been demonstrated to be independent of 
patients’ gender (P < 0.001), age (P < 0.001), and ACJJ T 
stage (P < 0.01), indicating this score system could exert 
its predictive effect as an independent, reliable, and effec-
tive biomarker (Fig. 4 c–h).

Numerous researches have demonstrated tumor bur-
den mutation (TMB) might influence outcomes of 
the CM patients and the response to ICB [7, 32]. An 
increased TMB are always associated with a better 
immune-therapeutic effect and prolonged progressive-
free survival [33]. Considering the prominent clini-
cal implications of TMB, the functional relationships 
between the IRGscores and TMB were investigated to 
decipher the genetic signatures of distinct immune clus-
ters. Firstly, based on the set point of TMB, patients with 
CM were divided into separate subtypes, we observed 
patients belonging to high TMB group indicated better 
survival than the individuals with the low TMB, as shown 
in Supplementary Fig. 2, which was consistent with pre-
vious researches [34]. Next, we compared the TMB of 
patients with low IRGscore and high IRGscore groups. 
Nevertheless, there was no any statistic differences of 
TMB between the low and high score group (Supple-
mentary Fig. 2). Via stratified survival analysis, our pre-
sent work further revealed that the predictions based on 
IRGscore were not disturbed by TMB status. Both in low 
and high TMB subgroups, the remarkable prognosis vari-
ations were observed between low/high IRGscore group 
(Fig. 4i). To sum up, these results further demonstrated 
the IRGscore was an independent predictor which could 
effectively evaluate the outcomes of patient with CM.

The effects of IRGscore in assessing immunotherapeutic 
benefits
ICB has brought revolutionary advances in the fields 
of cancer therapies, demonstrating an unprecedented 
increase of patient’s survival. Unfortunately, an obvious 
restriction of ICB is merely a minor percentage of CM 
patients with durable responses could benefit from it, 
whereas the majority experienced little clinical benefit. 
The effects of the IRGscore in evaluating the response 
to ICB were validated in the subsequent analysis. Based 
on an immunophenoscore developed by Charoentong 
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Fig. 3  Construction of the IRGscore. a IRGscore differences among three immune clusters (P < 0.001, Student’s t-test). b Differences in IRGscore 
across three gene clusters (P < 0.001, Student’s t-test). c Correlations between IRGscore and immune infiltrating cells of TME analyzed by Spearman’s 
analysis. Red and blue colors represent positive and negative correlations, respectively. d The expression of genes related to immune checkpoints in 
low and high IRGscore groups. e The expression of immune activation-related genes in high and low IRGscore groups. f GSVA analysis (c2.cp.kegg.
v7.4.symbols.gmt) revealed that the signaling pathways related to immune activation were remarkably enriched in low IRGscore samples. g The 
alluvial diagram indicated the attribute alterations in different patterns
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Fig. 4  The prognostic ability of IRGscore. a Survival analysis of melanoma patients with low and high IRGscore based on K-M curves (P < 0.0001, 
log-rank test). b Survival analysis of independent dataset of cutaneous melanoma patients with low and high IRGscore based on K-M curves (P 
< 0.05, log-rank test). c Age < = 65 (P = 0.022, log-rank test). d Age > 65 (P = 0.037, log-rank test). e Female (P = 0.012, log-rank test). f Male (P = 
0.014, log-rank test). g Patients with stage T1-2 (P = 0.081, log-rank test). h Patients with stage T3-4 (P = 0.045, log-rank test). i Stratified survival 
analysis of patients derived from TCGA-SKCM cohort divided according to both IRGscores and TMB (P < 0.001, log-rank test)
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P. et  al. to predicting the response to immunotherapy 
[29], we found either anti-PD1 immunotherapy alone or 
anti-CTLA4 immunotherapy or the combination of anti-
PD1 and anti-CTLA4 immunotherapy; the immunophe-
noscore was always higher in the low IRGscore group 
than in the high IRGscore group in the TCGA-SKCM 
cohort, which indicates that patients belonging to this 
group may benefit from these two types of immunother-
apies (Fig.  5 a–c). In addition, after the analysis of data 
from the independent cohort consisting of CM patients 
receiving immunotherapy (GSE91061), it has been 
revealed that individuals with low IRGscores exhibited 
a prolonged survival than high score patients (Fig.  5d). 
Surprisingly, the further analysis indicated that in this 
cohort, all patients with clinical response, including par-
tial response (PR)/complete response (CR), belonged 
to the low IRGscore group, suggesting IRGscores were 
extremely sensitive in predicting immunotherapeutic 
benefits (Fig.  5e). Collectively, these findings concluded 

that IRGscore was capable of serving as a therapeutic and 
prognostic biomarker, thereby assessing the immuno-
therapy response.

Discussion
Immune checkpoint inhibitors targeting three distinct 
molecules (CTLA-4, PD-1 as well as its ligand PD-L1) 
have been approved by the US Food and Drug Admin-
istration for use in humans, improving the prognosis of 
patients with CM [5, 35]. Nevertheless, an obvious limi-
tation restriction of ICB is merely a minor percentage of 
CM patients with durable responses could benefit from 
it, whereas the majority experienced little clinical benefit, 
far from meeting clinical needs [13]. Consequently, it is 
extremely necessary to determine appropriate individuals 
with CM for immunotherapy. And in our present work, 
we have constructed an effective approach, IRGscore, to 
quantify immune-related gene expression pattern and 
the comprehensive state of TIM in CM. In addition, this 

Fig. 5  The role of IRGscores in the prediction of immunotherapeutic benefits. a The immunophenoscore of anti-CTLA-4 immune checkpoint 
therapy in melanoma patients with the low and high IRGscore. b The immunophenoscore of anti-PD-1 immune checkpoint therapy in melanoma 
patients with the low and high IRGscore. c The immunophenoscore of anti-PD-1 and CTLA-4 immune checkpoint therapy in melanoma patients 
with the low and high IRGscore. d Survival analysis of patients with low and high IRGscore from the cohort consisting of CM patients receiving 
immunotherapy (GSE91061) based on K-M curves (P < 0.0001, log-rank test). e Proportions of PD-1 blockade immunotherapy-responsive patients in 
high and low IRGscore groups. CR, PR, and PD stand for complete response, partial response, and progressive disease
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study further indicated that the IRGscore is a dependable 
predictor in evaluating the response to immunotherapy 
and an effective prognostic marker.

The TME comprises a variety of immune cells together 
with endothelial cells, fibroblasts, and extracellular com-
ponents, having a profound impact on the tumor initia-
tion, progression, and metastasis as well as the response 
to ICB [9]. The objective response to immune checkpoint 
blockade (ICB) therapy, aimed to promote efficacious 
anti-tumor immune responses, is based on the immune-
related compositions of TME [36]. TILs, as predictors of 
response to ICB and regulator of tumor progression, have 
been widely applied to identify appropriate patients for 
immunotherapy [12, 37]. However, mounting evidence 
[13, 14] indicated that simply evaluating TIL cannot 
absolutely predict the response to immunotherapy, which 
was also impacted by various chemokines, cytokines, and 
other immune components of TME.

We believed the expression pattern of immune-related 
genes and the comprehensive characterization of the 
TIM could be the potential methodologies to predict the 
response of CM patients to immunotherapy and develop 
personalized treatment strategies. We identified a gene 
set related to immune via literature and survival analysis 
based on a cohort of CM samples was performed for each 
gene, obtaining 742 genes with prognostic value. Then, 
the CM patients, based on these genes, were classified 
into three distinct immune subtypes, showing signifi-
cant differences in survival. Further analysis revealed the 
landscape of infiltrating immune cell of TIM. In immune 
cluster A with distinct survival advantage, immune-
related signaling pathways were obviously activated, and 
the infiltrating levels of various immune cells, including 
activated B cell, CD8 T cell, NK cell, CD4 T cell, as well 
as activated DC cell, were dramatically higher than the 
others, suggesting the IRGscore and the level of infiltrat-
ing immune cells were significantly positively correlated 
to the individual’s survival. This finding was consistent 
with previous researches [12, 38].

Further analysis indicated that the differences in mRNA 
transcriptome among three subtypes were closely related 
to the immune-related biological pathways. Firstly, the 
DEGs were fetched among the three immune clusters, 
and next KEGG and GO enrichment analysis indicated 
that these DEGs were chiefly reinforced on biological pro-
cedures remarkably related to immune function, involving 
T-cell activation, leukocyte proliferation, lymphocyte dif-
ferentiation, and mononuclear cell differentiation. These 
DEGs with prognosis value were deemed as immune sig-
nature genes. Consistent with the immune-related gene-
based clustering analysis (immune clusters A, B, C), we 
discovered three genomic subtypes (gene lusters A, B, C) 
based on the selected immune signature genes. Further 

analysis demonstrated that gene cluster C had the low-
est stromal score and immune score, as well as other cells 
related to immune response, suggesting an immunosup-
pressive phenotype. Interestingly, the infiltrating degrees 
of M2 macrophages have been observed in cluster C 
and were significantly higher compare to other subtypes, 
whereas the infiltrating degrees of M1 macrophages 
were the lowest. Previous studies [39, 40] indicated M2 
macrophages could secrete  many immunosuppressive 
cytokines, facilitating the progression and metastasis 
of tumors, which was  associated with poor prognosis of 
tumors. M1 macrophages are generally considered to be 
tumor-killing macrophages, which mainly exert the anti-
tumor effects. Conversely, we found the gene cluster A 
had prominently higher immune scores than other gene 
clusters, and it exhibited the highest activated CD8+ 
T cell and CD4+ T-cell infiltration, which played a cen-
tral role in mediating responses to immunotherapy and 
controlling tumor growth. Additionally, as the targets 
for immunotherapy, the expression levels of several vital 
immune checkpoints were also investigated in three gene 
clusters. The gene cluster A was related to much higher 
expression levels of immune checkpoints, whereas gene 
cluster C revealed the lowest expression level. Numerous 
studies demonstrated that TIM had a crucial impact on 
the patient’s survival. Consistent with these studies, our 
results revealed that the immunosuppressive phenotype 
of gene cluster C was closely related to a poor progno-
sis which might contribute to immune evasion of tumor 
cells and produce resistance to immunotherapy, while the 
gene cluster A with strong immune response has a favora-
ble prognosis. This further indicated the importance of 
comprehensively evaluating the patient’s immune status, 
which might help estimate the response to immunother-
apy and prognosis.

Considering the individual heterogeneity of TIM, it 
was highly necessary to establish a scoring system to 
quantify immune status of individual tumors, assisting 
the formulation of individualized therapeutic strate-
gies. Based on the above immune signature genes, our 
present work constructed a scoring pattern to quantify 
the immune function of individuals with CM, termed as 
IRGscore. Through GSEA, we found signaling pathways 
related to immune activation, such as NK cell-mediated 
cytotoxicity, B-cell receptor, T-cell receptor, and toll-like 
receptor signaling pathways, were significantly enriched 
in the low IRGscore group. The expression levels of 
immune checkpoint were also considered to influence 
an individual’s response to cancer immunotherapy. As 
expected, the expression levels of genes related to vari-
ous immune checkpoint, including PD-1, PD-L1, and 
CTLA-4, exhibited dramatically higher in low score 
group, compared to the high score group, which further 
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indicated the profound effect of IRGscore on evaluating 
the response to immunotherapy. Additionally, increas-
ing researches [32, 41, 42] demonstrated tumor burden 
mutation (TMB) could be one of the key factors that 
determine a patient’s response to ICB; therefore, we fur-
ther explore the correlation between the IRGscore and 
TMB. Nevertheless, the results revealed TMB had no 
prominent variations between the low and high IRG-
scores, and the prognostic values of immune score were 
independent of TMB in CM, suggesting this score sys-
tem was an independent survival predictor.

The predictive value of IRGscore was further assessed 
based on the cohort (GSE91061) consisting of CM 
patients receiving immunotherapy, and the results indi-
cated patients with low IRGscores exhibited a pro-
longed survival than high score patients. Furthermore, 
all patients with clinical response, including complete 
response (CR)/partial response (PR), belonged to the low 
IRGscore group, suggesting IRGscore was an extremely 
sensitive predictor of immunotherapeutic benefits. Addi-
tionally, based on an immunophenoscore to predict 
response to immunotherapy developed by Charoentong 
P. et al., we further demonstrated that CM patients with 
low IRGscore might benefit from anti-PD1 immunother-
apy or anti-CTLA4 immunotherapy or the combination 
of anti-CTLA4 and anti-PD1 immunotherapy. Further-
more, the IRGscore and immune-related gene expression 
pattern were established through the use of retrospective 
datasets in this study. Thus, more prospective studies, 
including CM patients with immunotherapy, are required 
to examine our results. In addition, some patients with 
low IRGscore do not benefit obviously from immuno-
therapy, and other clinical or pathological characteris-
tics are supposed to be incorporated into the predictive 
model to enhance the accuracy.

Conclusion
To summarize, our present work revealed that charac-
terization of TIM and the immune status of individu-
als were closely correlated to tumor heterogeneity and 
treatment complexity. A scoring system, IRGscore, was 
established to comprehensively evaluate immune-related 
gene expression pattern and the characterization of TIM 
of individuals with CM, providing a basis for determina-
tion of tumor immunophenotype and effective clinical 
practice. Furthermore, it has been demonstrated that this 
IRGscore system could serve as an independent prognos-
tic and immunotherapeutic predictor, thereby facilitating 
evaluation of immunotherapy response in patients with 
CM and the identification of appropriate candidates for 
immunotherapy as well as the formulation of individual-
ized therapeutic strategies.
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