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H19 may regulate the immune cell 
infiltration in carcinogenesis of gastric cancer 
through miR‑378a‑5p/SERPINH1 signaling
Jianxin Li†, Ting Han†, Xin Wang, Yinchun Wang, Xuan Chen, Wangsheng Chen and Qingqiang Yang* 

Abstract 

Background:  Increasing studies have indicated that noncoding RNA (ncRNA)-mediated competing endogenous 
RNA (ceRNA) network serves as a significant role in cancer progression, but the underlying regulatory mechanisms of 
which in gastric cancer (GC) remain largely unclear.

Methods:  Based on Gene Expression Omnibus and The Cancer Genome Atlas datasets, potential biomarkers for GC 
were screened and validated by machine learning. Then, upstream regulatory ncRNA of potential biomarkers was 
identified to construct a novel ceRNA network in GC through means of stepwise reverse prediction and validation. 
Ultimately, tumor immune cell infiltration analysis was performed based on the EPIC algorithm.

Results:  A total of 188 differentially expressed genes (DEGs) were screened, and three candidate diagnostic bio-
markers (FAP, PSAPL1, and SERPINH1) for GC were identified and validated. Subsequently, H19 and miR-378a-5p were 
identified as upstream regulatory ncRNAs that could potentially bind SERPINH1 in GC. Moreover, Immune infiltration 
analysis revealed that each component in the ceRNA network (H19/miR-378a-5p/SERPINH1) was significantly cor-
related with the infiltration abundances of diverse tumor-infiltrating immune cells.

Conclusions:  H19 may regulate the immune cell infiltration in carcinogenesis of GC through miR-378a-5p/SERPINH1 
signaling.
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Introduction
Gastric cancer (GC) is one of the most commonly diag-
nosed malignant tumors in the digestive system, which 
accounts for the third leading cause of cancer-related 
deaths despite its worldwide decline in incidence and 
mortality over the past five decades [1, 2]. Although 
numerous efforts have been afforded to determine the 
pathogenesis of GC and substantial improvement in 

diagnosis and therapy has been achieved, the progno-
sis of GC patients is still comparatively poor [3]. The 
majority of GC patients are diagnosed in the middle to 
late stage and therefore lose the opportunity to be cured 
[4]. Therefore, it is imperative to explore the regula-
tory mechanisms of GC, which not only contributes to 
improving the understanding of the pathogenesis of GC 
but also provides novel biomarkers for the diagnosis and 
therapy of GC.

It is widely accepted that noncoding RNA (ncRNA) 
could regulate the progression of multiple diseases 
through modulating gene expression at the transcrip-
tional and posttranscriptional levels [5]. In 2011, Sal-
mena et  al. proposed the competing endogenous RNA 
(ceRNA) hypothesis that long noncoding RNA (lncRNA) 
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can suppress mRNA degradation or silence mRNA trans-
lation by sponging microRNA (miRNA), thereby affect-
ing protein coding and modulating the disease process 
[6]. Recently, increasing studies have demonstrated that 
the ceRNA network might play critical roles in initiation 
and progression of multiple diseases, including cancer. 
For example, Xu et  al. reported that lncRNA SNHG1 
exerted as a sponge for miR-154-5p, thereby facilitat-
ing colorectal cancer cell growth through activating the 
downstream target of miR-154-5p, CCND2 [7]. Xin et al. 
demonstrated that lncRNA LINC01133 accelerates pro-
liferation and aggressive of liver cancer cells by sponging 
miR-199a-5p to activate the ANXA2/STAT3 signaling 
pathway [8]. Zhao et al. indicated that lncRNA HOTAIR 
promotes cell growth, metastasis, and apoptosis of breast 
cancer through the miR-20a-5p/HMGA2 signaling [9]. 
Moreover, several studies have also reported that ceRNA 
network could play a vital role in the carcinogenesis of 
GC [10]. Nevertheless, pivotal lncRNA-miRNA-mRNA 
ceRNA networks involved in the progression of GC still 
need to be clarified.

In the present study, we first identified a list of diagnos-
tic biomarkers closely related to GC from Gene Expres-
sion Omnibus dataset by machine learning and validated 
them in The Cancer Genome Atlas dataset. Then, by 
using multiple bioinformatic methods, the upstream 
regulatory miRNA and lncRNA were reversely predicted 
and validated from the perspectives of expression pattern 
and prognostic value. Ultimately, a novel ceRNA regula-
tory network was successfully developed, and each com-
ponent in the network utterly conformed with ceRNA 
theory and meanwhile associated with the prognosis of 
GC patients.

Materials and methods
Data collection and processing
Gene expression microarray data sets GSE13911, 
GSE19826, and GSE79973 were downloaded from the 
Gene Expression Omnibus (GEO, http://​www.​ncbi.​nlm.​
nih.​gov/​geo/). Among them are as follows:

•	 GSE13911 including 31 normal samples and 38 GC 
samples [11]

•	 GSE19826 including 15 normal samples and 12 GC 
samples [12]

•	 GSE79973 including 10 normal samples and 10 GC 
samples [13]

All of these three datasets were based on GPL570 plat-
form [HG-U133_Plus_2] Affymetrix Human Genome 
U133 Plus 2.0 Array. Then, these three datasets were 
merged into a combined dataset and used as the train-
ing cohort, and the surrogate variable analysis (SVA) 

algorithm was applied to eliminate the batch effect 
between any two datasets [14]. Besides, the RNA-
sequencing data of GC was downloaded from The Can-
cer Genome Atlas (TCGA, https://​cance​rgeno​me.​nih.​
gov/) and used as the testing cohort.

Differentially expressed gene screening
Differentially expressed genes (DEGs) between normal 
samples and GC samples were analyzed by using the 
“limma” package in R in the training cohort [15]. The 
cutoff criteria for identifying DEGs was as follows: | log2-
fold change (FC) | ≥ 2 and adjusted P < 0.05.

Biological function enrichment analysis
Gene ontology (GO) analysis is commonly used to anno-
tate the biological functions or localization of genes from 
the perspective of biological processes (BP), cellular com-
ponents (CC), and molecular functions (MF) [16]. Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analysis database is a knowledge resource for 
systematic analysis of gene functions, linking genomic 
information with signaling pathways [17]. Disease ontol-
ogy (DO) analysis is usually applied to assess how par-
ticular genes may be involved in or influenced by specific 
disease states [18]. In the present study, we performed 
GO, KEGG, and DO analyses by using the “clusterPro-
filer” R package to analyze the DEGs at the functional 
level [19]. Only the enriched terms with P < 0.05 were 
considered statistically significant.

Diagnostic gene identification and verification
The least absolute shrinkage and selection opera-
tor (LASSO) is a regression-based algorithm that has 
the unique feature of penalizing the absolute value of a 
regression coefficient, thus automatically avoiding the 
overfitting and removing uninfluential variates [20]. In 
the present study, we created LASSO logistic regression 
model using the “glmnet” package to screen the potential 
diagnostic biomarkers from DEGs for GC in the training 
cohort. In addition, support vector machine recursive 
feature elimination (SVM-RFE), an algorithm widely used 
for cancer classification, biomarker discovery, and cancer 
driver gene discovery, was performed to further identify 
these biomarkers with diagnostic value in GC through 
the “e1071” package [21]. Area under receiver operating 
characteristic curve (AUC) was calculated to assess the 
predictive accuracy of the candidate diagnostic biomark-
ers. Furthermore, we also evaluated the diagnostic and 
prognostic values of the candidate diagnostic biomarkers 
in TCGA cohort.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
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Identification of upstream miRNA
The upstream miRNAs that interacted with candi-
date diagnostic genes were screened by using miRTar-
Base (http://​mirta​rbase.​mbc.​nctu.​edu.​tw/​index.​html), 
an online platform whose miRNA-target interactions 
have been validated using distinct types of experiments, 
including reporter assay, Western blot, microarray, and 
next-generation sequencing technologies [22]. Then, we 
performed correlation analysis, differential analysis, and 
survival analysis on these upstream miRNAs to filter out 
candidate miRNAs that could potentially bind to candi-
date diagnostic genes based on TCGA project. The cri-
teria for candidate miRNAs were defined as follows: (1) 
negatively correlated with its targeted mRNA, (2) differ-
entially expressed between GC and normal samples, and 
(3) correlated with the prognosis of patients with GC. A 
P-value < 0.05 was considered statistically significant.

Identification of upstream lncRNA
The upstream lncRNAs that sponged with candidate 
miRNA were identified by exploring LncBase v2 (www.​
micro​rna.​gr/​LncBa​se), a reference repository that con-
tains an extensive collection of miRNA-lncRNA inter-
actions which has been experimentally validated [23]. 
Similarly, we also performed correlation analysis, differ-
ential analysis, and survival analysis to screen out candi-
date lncRNAs based on TCGA project. The criteria were 
defined as follows: (1) negatively correlated with its inter-
acted miRNA and meanwhile positively correlated with 
downstream mRNA, (2) differentially expressed between 
GC and normal samples, and (3) correlated with the 
prognosis of patients with GC. P-value < 0.05 was con-
sidered statistically significant.

Profile of immune cell infiltration
To determine the correlation between the proportion and 
composition of tumor-infiltrating immune cells (TIICs) 
and the expression of candidate diagnostic genes, we 
applied the EPIC (http://​epic.​gfell​erlab.​org) algorithm to 
assess the abundances of TIICs among the GC samples 
from the TCGA project [24]. Then, GC samples were 
divided into low- and high-expression groups according 
to the median expression level of mRNA, miRNA, and 
lncRNA, and the differences in TIIC content between the 
low- and high-expression groups were analyzed. In addi-
tion, we further investigated the prognostic value of dis-
tinct TIICs in GC patients.

Statistical analysis
All statistical analysis was performed using the R software 
(v4.1.1 https://​www.r-​proje​ct.​org/). Differential expres-
sion analysis was assessed by Wilcoxon signed-rank test. 

Fisher’s test was applied to screen the significant GO, 
KEGG, and DO enrichment terms. Correlation analy-
sis was estimated by Spearman correlation coefficients. 
The log-rank test was used in the Kaplan-Meier survival 
curve analysis. A P-value < 0.05 was considered statisti-
cally significant.

Results
Identification of differentially expressed genes
First, a combined dataset including 56 normal samples 
and 60 GC samples was generated, and its gene expres-
sion matrix was normalized, and the batch effects were 
removed. Subsequently, a total of 188 DEGs between 
normal samples and GC samples were identified, includ-
ing 48 upregulated DEGs and 140 downregulated DEGs 
(Supplementary Table 1). The volcano plot of these DEGs 
was displayed in Fig.  1A, and the expression heat map 
was presented in Fig. 1B.

Function enrichment analysis
The GO annotation analysis found that these DEGs par-
ticipated in biological process of digestion, tissue homeo-
stasis, and maintenance of gastrointestinal epithelium. 
Cellular component enriched these DEGs mainly in 
basolateral plasma membrane, apical part of cell, and col-
lagen-containing extracellular matrix. Besides, molecular 
function suggested enrichment mainly at extracellular 
matrix structural constituent, oxidoreductase activity, 
and glycosaminoglycan binding (Fig. 2A). KEGG enrich-
ment analysis revealed that these DEGs mainly enriched 
in gastric acid secretion, metabolism of xenobiotics by 
cytochrome P450, drug metabolism-cytochrome P450, 
and protein digestion and absorption (Fig. 2B). Moreover, 
DO enrichment found that these DEGs mainly involved 
in adenoma, cell type benign neoplasm, and stomach 
cancer (Fig. 2C).

Identification of candidate biomarkers in GC
We applied LASSO and SVM-RFE algorithms to identify 
candidate biomarkers among these DEGs. As a result, 
13 DEGs were identified as potential biomarkers of GC 
according to the LASSO algorithm, while 40 DEGs were 
potential biomarkers of GC based on the SVM-RFE 
method (Fig. 3 A & B). Finally, six overlapped candidate 
biomarkers were identified by using the Venn diagram, 
including ADH7, CDH3, FAP, MT1M, PSAPL1, and 
SERPINH1 (Fig.  3C). The expression pattern of these 
potential biomarkers for GC in the training cohort was 
presented in Fig.  3D. In addition, we further examined 
the diagnostic efficiency of these potential biomarkers 
through ROC curves in the training cohort. As shown 
in Fig.  3E, the results found that the AUC of all these 

http://mirtarbase.mbc.nctu.edu.tw/index.html
http://www.microrna.gr/LncBase
http://www.microrna.gr/LncBase
http://epic.gfellerlab.org
https://www.r-project.org/
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potential biomarkers was higher than 0.9, suggesting that 
ADH7, CDH3, FAP, MT1M, PSAPL1, and SERPINH1 are 
effective indicators of GC.

Validation of candidate biomarkers in GC based on TCGA​
To enhance the reliability of our findings, the diagnostic 
efficiency of these potential biomarkers was further vali-
dated in the testing cohort based on TCGA project. First, 
RNA-sequencing data of 32 normal samples and 375 GC 
samples, and corresponding clinical information, were 
obtained from TCGA. Then, differential analysis revealed 
that the expression pattern of these five potential bio-
markers was coincident with the results in the training 
cohort (Fig.  4A). ROC curves showed that the AUC of 
ADH7, CDH3, FAP, MT1M, PSAPL1, and SERPINH1 
were 0.872, 0.829, 0.887, 0.914, 0.731, and 0.923, respec-
tively (Fig.  4B). Finally, we further performed survival 

analysis to evaluate the prognostic value of these poten-
tial biomarkers and found that dysregulation of FAP, 
PSAPL1, and SERPINH1 was significantly correlated 
with the prognosis of GC patients (Fig.  4C). Thus, FAP, 
PSAPL1, and SERPINH1 were identified as candidate 
biomarkers in GC and selected for subsequent study.

Identification of candidate upstream miRNA
We conducted miRTarBase database to predict the 
upstream miRNA of candidate biomarkers and found 
that 94 miRNAs interacted with PSAPL1 and SER-
PINH1, while FAP was not observed to interact with 
any miRNA in this database. Then, a miRNA-mRNA 
network comprised of 97 miRNA-mRNA relationship 
pairs was constructed using Cytoscape (http://​cytos​cape.​
org/) (Fig. 5A) [25]. According to the inverse regulatory 
relationship between mRNA and miRNA, we further 

Fig. 1  Differential expression analysis. A Volcano plot between GC and control groups. B Heat map of DEGs between GC and controls

Fig. 2  Enrichment analysis. A GO analysis of DEGs. B KEGG pathways enrichment analysis of DEGs. C DO enrichment analysis of DEGs

http://cytoscape.org/
http://cytoscape.org/
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Fig. 3  Key genes were identified by LASSO and SVM-RFE. A Key genes identified by LASSO algorithm. B Key genes identified by SVM-RFE algorithm. 
C Venn diagram showing the intersection of candidate biomarkers between LASSO and the SVM algorithm. D Box plots of candidate biomarkers 
(ADH7, CDH3, FAP, MT1M, PSAPL1, and SERPINH1) expression between GC samples and normal samples. E ROC analysis of ADH7, CDH3, FAP, MT1M, 
PSAPL1, and SERPINH1 was performed on the training cohort

Fig. 4  Validation of key genes in TCGA project. A Box plots of candidate biomarkers (ADH7, CDH3, FAP, MT1M, PSAPL1, and SERPINH1) expression 
between GC samples and normal samples based on TCGA cohort. B ROC analysis of ADH7, CDH3, FAP, MT1M, PSAPL1, and SERPINH1 was 
performed on the TCGA cohort. C Kaplan-Meier survival curves of candidate biomarkers (ADH7, CDH3, FAP, MT1M, PSAPL1, and SERPINH1) in GC 
patients based on TCGA cohort
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performed correlation analysis and differential analysis 
on these upstream miRNAs. As shown in Fig. 5B, seven 
upstream miRNAs showed a negative correlation with 
SERPINH1, and only two of which (hsa-miR-29c-3p and 
hsa-miR-378a-5p) were downregulated in GC. As for 
PSAPL1, there was no upstream miRNA that showed a 
negative correlation with it. Subsequent survival analy-
sis revealed that only hsa-miR-378a-5p was significantly 
associated with a favorable prognosis in GC patients 
(Fig. 5C). Thus, hsa-miR-378a-5p was identified as a can-
didate miRNA that could be the most potential regula-
tory miRNA of SERPINH1 in GC and chosen for further 
analysis. The expression boxplot of hsa-miR-378a-5p 
in GC was presented in Fig.  5D, and the correlation 
between hsa-miR-378a-5p and SERPINH1 was presented 
in Fig. 5E.

Identification of candidate upstream lncRNA
Previous study has indicated that lncRNA can function 
as sponge to competitively bind to miRNA [26]. Thus, 
we used the LncBase v2 database to screen candidate 
upstream lncRNA that could potentially bind to hsa-miR-
378a-5p. As shown in Fig. 6A, a total of 129 possible lncR-
NAs were identified. According to the ceRNA theory, the 

upstream lncRNA should be negatively associated with 
miRNA and meanwhile positively associated with mRNA. 
Therefore, we validate the expression pattern of those pre-
dicted lncRNAs based on TCGA project. Among all the 
129 lncRNAs, seven lncRNAs were negatively associated 
with hsa-miR-378a-5p expression in GC, and only three of 
which (H19, PCOLCE-AS1, and INHBA-AS1) were posi-
tively associated with SERPINH1 and meanwhile overex-
pressed in GC (Fig.  6B). Then, survival analysis of these 
three lncRNAs showed that only H19 was significantly 
correlated with poor prognosis in GC patients (Fig.  6C). 
The expression boxplot of H19 in GC was presented in 
Fig.  6D, and its correlation with hsa-miR-378a-5p and 
SERPINH1 was presented in Fig.  6 E and F, respectively. 
Taken all these results into consideration, H19 serves as a 
candidate upstream lncRNA that could regulate hsa-miR-
378a-5p, and H19/miR-378a-5p/SERPINH1 axis might be 
a potential regulatory pathway in GC.

Profile of immune infiltration in GC
We further evaluated the correlation of candidate bio-
markers’ expression with immune cell infiltration level 
through the EPIC algorithm. As shown in Fig. 7A, infil-
trating levels of cancer-associated fibroblasts (CAF) 

Fig. 5  Identification of miR-378a-5p as a potential upstream miRNA of SERPINH1 in GC. A The miRNA-SERPINH1/PSAPL1 regulatory network 
constructed by Cytoscape software. B The expression correlation between predicted miRNAs and SERPINH1 in GC. C The prognostic value of 
miR-378a-5p in GC assessed by Kaplan-Meier plotter. D The expression boxplot of miR-378a-5p in GC and normal samples determined by TCGA 
database. E The expression pattern between miR-378a-5p and SERPINH1 assessed by Spearman correlation
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and macrophages were elevated in high SERPINH1 
expression samples, whereas infiltrating levels of B cells, 
CD4+ T cells, and CD8+ T cells were downregulated 
in high SERPINH1 expression samples compared to 
low SERPINH1 expression samples. The infiltrating lev-
els of CAFs, CD8+ T cells, and endothelial cells were 
decreased in high hsa-miR-378a-5p expression samples 
compared to low hsa-miR-378a-5p expression samples 
(Fig. 7B). In addition, GC patients with high H19 expres-
sion infiltrated with higher CAFs and endothelial cells 
and lower B cells and CD4+ T cells compared to those 
with low H19 expression (Fig.  7C). Survival analysis 
revealed that infiltrating levels of CD8+ T cells, CAFs, 
endothelial cells, and macrophages were significantly 
correlated with the prognosis of GC patients (Fig.  7D). 
All these findings suggested that H19 might regulate the 
immune cell infiltration in carcinogenesis of GC through 
miR-378a-5p/SERPINH1 signaling.

Discussion
To date, the rapidly developed high-throughput sequenc-
ing technology and bioinformatics provide us with a 
more convenient platform to explore the pathogenesis 

of tumors at the gene level. In the present study, we suc-
cessfully constructed a ceRNA network comprised of 
lncRNA (H19), miRNA (hsa-miR-378a-5p), and mRNA 
(SERPINH1) to provide a more comprehensive view of 
the RNA regulatory mechanism during GC carcinogen-
esis by combining multiple bioinformatic platforms.

We first identified three diagnostic biomarkers (FAP, 
PSAPL1, and SERPINH1) in GC by applying machine 
learning based on GEO and TCGA projects. Among 
them, FAP is a type 2 membrane-bound glycoprotein, 
which belongs to the serine protease family and has 
been identified as a marker of reactive tumor stro-
mal fibroblasts [27]. FAP was reported to be highly 
expressed in GC tissues compared to normal controls, 
and patients in advanced pathological stage showed 
higher FAP expression levels than those in early patho-
logical stage [28]. In addition, studies also found that 
FAP was overexpressed in GC cells, and FAP knock-
ing down significantly restrained invasion and migra-
tion of GC cells by suppressing the activity of CAF 
[29]. SERPINH1, also known as HSP47, is an impor-
tant collagen-specific molecule which is essential for 
the correct folding and secretion of distinct collagen 

Fig. 6  Identification of H19 as a potential upstream lncRNA of miR-378a-5p and SERPINH1 in GC. A The lncRNA-miR-378a-5p regulatory network 
constructed by Cytoscape software. B The expression association of predicted lncRNAs with miR-378a-5p and SERPINH1 in GC. C The prognostic 
value of H19 in GC assessed by Kaplan-Meier plotter. D The expression boxplot of H19 in GC and normal samples determined by TCGA database. E 
The expression pattern between H19 and miR-378a-5p assessed by Spearman correlation. F The expression pattern between H19 and SERPINH1 
assessed by Spearman correlation
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types [30]. The mRNA and protein expression levels 
of SERPINH1 have been reported to be significantly 
upregulated in GC tissues compared with normal tis-
sues, and inhibition of SERPINH1 significantly sup-
pressed cancer cell migration and invasive abilities [31, 
32]. Besides, upregulated SERPINH1 levels have been 

reported to be associated with poor prognosis in GC 
patients [32]. Studies focused on the oncogenic role of 
PSAPL1 in GC are limited to date, so they are worthy 
of future research.

MiRNAs are single-stranded noncoding RNAs that 
regulate gene expression through transcript degradation 

Fig. 7  Immune cell infiltration analysis. A Boxplot for the different proportions of infiltrated immune cells between low- and high-SERPINH1 
groups. B Boxplot for the different proportions of infiltrated immune cells between low- and high-miR-378a-5p groups. C Boxplot for the different 
proportions of infiltrated immune cells between low- and high-H19 groups. D The prognostic values of distinct immune cells in GC assessed by 
Kaplan-Meier plotter



Page 9 of 11Li et al. World Journal of Surgical Oncology          (2022) 20:295 	

or inhibition of protein translation at posttranscrip-
tional level [33]. Accumulating studies have indicated 
that miRNAs play vital roles in diverse biological pro-
cesses of multiple diseases, including tumors [34, 35]. In 
the present study, the upstream miRNAs were predicted 
and validated based on bioinformatic database for the 
purpose of exploring candidate ceRNA regulating the 
diagnostic biomarkers mentioned above. As a result, hsa-
miR-378a-5p was identified as a regulatory miRNA that 
could bind to SERPINH1 in GC. Studies have reported 
that the expression level of hsa-miR-378a-5p was down-
regulated in colorectal cancer (CRC) tissues compared to 
normal controls, and decreased hsa-miR-378a-5p level 
was significantly associated with advanced histological 
grade and worse prognosis in CRC patients [36]. Li et al. 
also indicated that hsa-miR-378a-5p serves as a tumor 
suppressive role in CRC, and overexpression of hsa-
miR-378a-5p inhibited CRC cell proliferation by target-
ing CDK1. In addition, hsa-miR-378a-5p was reported to 
promote apoptosis of triple-negative breast cancer cells 
by targeting SUFU [37]. These results partially enhance 
the credibility of our finding that hsa-miR-378a-5p 
serves as a tumor suppressor in GC through targeting 
SERPINH1.

LncRNAs are a series of transcripts with length greater 
than 200 nucleotides and no protein-coding ability [38]. 
Similarly, the aberrant expression of lncRNA has been 
widely reported to participate in carcinogenesis and 
progression of diverse tumors [39, 40]. LncRNA H19 is 
a maternally expressed gene located at human chromo-
somal 11p15.5, which plays an important role in distinct 
pathologic processes [41, 42]. Accumulating studies 
showed that H19 serves as an oncogenic role and was 
upregulated in many malignancies, including breast can-
cer [42], ovarian cancer [43], lung cancer [44], and pan-
creatic cancer [45]. Moreover, existing evidences also 
demonstrated that H19 participates in GC progression 
through diverse pathways. For example, the expression 
level of H19 was found to be significantly upregulated 
in GC tissues and cell lines compared to that in the nor-
mal controls, and elevated H19 expression was remark-
ably related to advanced pathological stage in GC [46]. 
Besides, H19 serves as a prognostic biomarker in GC, 
and patients with high H19 expression showed a worse 
prognosis than those with low H19 expression [47]. H19 
was also found to promote the epithelial-mesenchymal 
transition (EMT) and metastasis in GC by activating Wnt 
signaling [48]. Gan et al. indicated that H19 overexpres-
sion significantly enhanced, whereas H19 silencing sup-
pressed the proliferation, migration, and invasion of GC 
cells through regulating miR-22-3p/Snail1 axis in  vitro 
and in vivo [49]. In the present study, we found that H19 

was overexpressed in GC and significantly associated 
with patients’ prognosis. Importantly, the expression pat-
tern of H19 was negatively correlated with miR-378a-5p 
and meanwhile positively correlated with SERPINH1 in 
GC. Based on the ceRNA hypothesis, H19 was identified 
as the upstream regulatory lncRNA that could regulate 
the miR-378a-5p/SERPINH1 axis in GC.

In recent years, anticancer immunotherapy based on 
the reactivation of the host immunoreaction has revo-
lutionized the treatment of patients with cancer and 
gained unprecedented progress [50]. However, the clini-
cal use of immunotherapeutic agents is very limited due 
to the mechanisms of immune dysfunction in GC remain 
largely unclear. Emerging evidences have demonstrated 
that the interreaction between cancer cells and immune 
components in the tumor microenvironment (TME) is 
the determinant for tumor progression/regression. Thus, 
we further explored the correlation between the H19/
miR-378a-5p/SERPINH1 axis and diverse TIICs in GC. 
In consequence, dysregulation of H19/miR-378a-5p/
SERPINH1 axis was significantly correlated with altered 
infiltration abundances of CAFs, macrophages, B cells, 
CD4+ T cells, and CD8+ T cells in GC. CAFs are the 
prominent component of the tumor stroma, which sup-
ports the tumor cells by modifying the TME, boosting 
angiogenesis, and maintaining inflammatory status [51]. 
High infiltration of CAFs in TME could promote the 
malignant progression of GC [52]. Macrophages are the 
largest fraction of TIICs in the TME and can be divided 
into two major distinct subtypes according to their phe-
notype and function [53]. M1 macrophages are involved 
in the control of tumor growth by secreting pro-inflam-
matory cytokines, whereas M2 macrophages contribute 
to tumor progression by the production of immunosup-
pressive factors and chemokines [54]. B cells are pluri-
potent lineages which serve as antibody secreting cells 
but also serve as antigen-presenting cells (APCs) and 
immunoregulatory cells [55]. Studies have indicated that 
B-cell infiltration is associated with controlling tumor 
development in GC [56]. T cells exhibit important anti-
tumor activities, and numerous studies showed that high 
proportions of infiltrating CD4+ and CD8+ T cells cor-
related with better prognosis in GC patients [57]. Inter-
estingly, we found that CAFs were highly infiltrated in 
high H19 and high SERPINH1 groups, whereas its infil-
tration level in high miR-378a-5p was significantly down-
regulated. These findings imply that H19 might regulate 
the infiltration of CAFs to facilitate the carcinogenesis 
and progression of GC through miR-378a-5p/SERPINH1 
pathway.

The present study inevitably exists a limitation that 
all results and conclusions were achieved based on 
online public databases; further experimental studies 
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should be performed to validate our findings. Never-
theless, previous studies focused on constructing sur-
vival-related ceRNA network in GC are rare, and the 
present study successfully constructed a novel ceRNA 
regulatory network significantly associated with the 
prognosis of GC patients. Importantly, we proposed a 
novel hypothesis that H19 regulates the infiltration of 
CAFs to facilitate the carcinogenesis and progression of 
GC through miR-378a-5p/SERPINH1 signaling, which 
provides a promising clue for future research.

Conclusion
In summary, based on machine learning and bioinfor-
matics, the present study identified an immune-related 
prognostic ceRNA regulatory pathway that H19 might 
regulate the immune cell infiltration in carcinogenesis 
of GC through miR-378a-5p/SERPINH1 signaling.
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