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pyroptosis‑related model
Jun Hu1, Caijuan Tian2, Yanpeng Zhao3, Yixian Guo3 and Shuo Chen4* 

Abstract 

Pyroptosis and related gasdermin family proteins play an important role in the tumorigenesis of colorectal cancer 
(CRC). However, the prognostic roles of pyroptosis-related genes (PRGs) and their relation to infiltrates of immune 
cells in the pathogenesis of CRC remain unclear. Using this study, we set up a prognostic gene pattern on the basis 
of 13 PRGs (AIM2, CASP1, CASP5, CASP6, CASP8, CASP9, ELANE, GPX4, GSDMD, NLRP7, NOD2, PJVK, and PRKACA) for 
CRC patients. A comprehensive bioinformatics analysis based on these genes was then performed. With the good 
AUC prediction value of the ROC curves, the group with high hazard first had a poorer survival prognosis than the 
group with low hazard. Second, we found that PRGs were significantly related to inflammation-associated genes 
and immune-associated genes in CRC. Then, we identified a correlation of PRGs with immune infiltrations in CRC. 
For instance, the abundances of resting NK cells resting and neutrophils were higher in the low hazard group than 
in the high hazard group. Overall, this work indicated that PRGs contributed to generate heterogeneity of the tumor 
microenvironment (TME) in CRC. This prognostic PRG model may provide a starting point for the early diagnosis and 
medication use of CRC.
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Introduction
Colorectal cancer (CRC) is one of the regular causes of 
death worldwide. According to the appraisals of all tumor 
types, CRC incidence is positioned as the third cancer, 
and its mortality rate is positioned as the second tumor 
[1]. Early diagnosis and therapy of CRC can decrease 
CRC mortality. Mutated genes, such as PTEN, KRAS, 
and BRAF, are utilized as prospective biomarkers for pre-
mature diagnosis [2]. Therefore, findings of early disease 
biomarkers, determinations of molecular subtypes, and 

clarification of related genetic mechanisms may contrib-
ute to the early diagnosis and therapy of CRC, thereby 
improving disease prognosis.

Pyroptosis, defined as inflammatory programmed 
cell death, plays a significant role in the tumorigenesis 
of CRC [3]. Pyroptosis is a cell lytic process induced by 
gasdermin (GSDM). Gasdermin family proteins, which 
are downstream molecules of the inflammasome that are 
chiefly recognized for their function in pyroptosis, are 
also important in tumorigenesis of CRC [4]. Pyroptosis 
triggered by LPS can activate GSDMD to prevent pro-
gression of CRC [5]. Cell proliferation is inhibited in CRC 
after gasdermin C (GSDMC) downregulation, whereas 
cell proliferation is induced if GSDMC is upregulated. 
This indicates that GSDMC should be an important 
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biomarker in the treatment of CRC [6]. Yu et  al. [7] 
showed that gasdermin E (GSDME) interfered with the 
activation of caspase-3/-9 and the ROS/JNK/Bax-mito-
chondrial apoptosis pathway located at the downstream 
of lobaplatin-triggered pyroptosis.

Relations of pyroptosis to the tumor microenviron-
ment (TME) have been established in many studies [8]. 
The TME is important in CRC progression. The compli-
cated interactions between normal cells and tumor cells 
generate the TME. The TME can promote CRC angio-
genesis and progression [9]. Immune cells infiltrating 
the TME can predict the prognosis of CRC [10]. A cross 
talk between pyroptosis and TME-related immune cells 
is characterized by interactions between a series of genes 
and cells in a synergistic manner. However, currently, 
many studies only focus on 1 or 2 pyroptosis-related mol-
ecules and few cell types. Therefore, a comprehensive 
analysis that should examine the infiltration of immune 
cells and several pyroptosis-related genes (PRGs) 
together can supply a deeper understanding of the poten-
tial mechanisms of CRC tumorigenesis.

Our work comprehensively assessed the relationship 
between PRG expression and the infiltration of TME-
related immune cells by using 2 methods: ESTIMATE 
and CIBERSORT. First, 590 CRC patients were divided 
into 2 risk subgroups based on PRG expression profiles. 
Second, differentially expressed genes (DEGs) were iden-
tified between these hazard subgroups. Furthermore, we 
compared and analyzed mutation status, enriched gene 
sets, infiltrating immune cells and responses to platinum 
chemotherapy within these risk subgroups.

Materials and methods
Datasets
We used the TCGAbiolinks R package (version 2.20) to 
download transcriptome data of colon tumors (TCGA_
COAD) and rectal tumors (TCGA_READ), in FPKM for-
mat (fragments per kilobase of exon model per million 
mapped fragments). Then, we transformed the FPKM 
type to the transcripts per million (TPM) type. Sanger-
box was used to download the clinical data of colorectal 
cancer from TCGA, and 590 patients with colorectal can-
cer (CRC) containing clinical information and transcrip-
tome data were retained.

We also downloaded somatic mutation data of colorec-
tal cancer from the central webpage of TCGA (https://​
portal.​gdc.​cancer.​gov/). Based on merged information 
of the transcriptome dataset, clinical dataset, and muta-
tion dataset, the data of 526 colorectal cancer patients 
including clinical data, transcriptome data, and muta-
tion data were retained. Data including 590 cases were 
used only for establishing the prognostic risk model, and 

data including 526 cases were used in other subsequent 
analyses.

Establishment of a prognostic risk model for CRC​
The transcriptome data were classified by chance into 
a modeling group and a test group based on the ratio 
of 7:3. In the modeling group, Cox modeling was con-
structed by pyroptosis-related genes (PRGs) of CRC, and 
stepwise regression was used to screen variables. Accord-
ing to the calculations of the Cox modeling as well as the 
mean risk score, patients were classified into two groups: 
the high hazard score group and the low hazard score 
group. The survival R package (version 3.2–3) and sur-
vminer R package (version 0.4.8) were used for Cox uni-
variate and multivariate analyses of the modeling group 
and test group, and survival curves were drawn. The 
ROC curves of the modeling group and test group data 
were produced by using the PROC R package (version 
no. 1.17.0.1) in R software (Windows version 3.6.3). The 
area below the ROC curve evaluates the authenticity and 
reliability of Cox modeling. The larger the area under the 
curve is, the higher the resolution.

Mutation data analysis
Mutation data were shown by using the “Maftools” R 
package, and then related oncoplots were produced. 
Based on expression data and mutation data of PRGs 
of CRC, the relationship between mutation of PRGs 
and PRG expression was tested. The relationship with p 
less than 0.05 was selected to draw a statistical boxplot. 
According to the prognosis risk model for CRC, oncop-
lots of mutation data were split into a high hazard score 
group and a low hazard score group.

Gene set enrichment analysis (GSEA)
GSEA was applied to CRC data to determine biological 
pathways that were considerably modified between the 
high hazard score group and the low hazard score group. 
GSEA with Java format (version 4.0.3) was used, and sets 
of genes “h.all.v7.2.symbol.gmt” and “c5.all.v7.2.symbol.
gmt” were selected as the reference. The following thresh-
old (NOM p-value < 0.05, |NES| > 1, FDR q-value < 0.25) 
was adopted to statistically enrich biological pathways.

Differentially expressed genes (DEGs)
The R package “Limma” was applied to conduct differen-
tial expression analysis between groups with 2 levels of 
hazard score. DEGs were identified based on the cutoff 
threshold adj. p-value < 0.05 as well as (|logFC| > 1). GO 
enrichment analysis was followed to be performed.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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Association analysis between the PRGs 
and inflammation‑related genes in CRC​
Gene set variation analysis (GSVA) was first applied 
to analyze Spearman correlation between 100 inflam-
mation-related genes and 35 PRGs. Then, the gene 
expression profile was used to analyze the Spearman 
correlation between 100 inflammation-related genes 
and 35 PRGs, and a heatmap was drawn. To further 
characterize interaction relationships, highly corre-
lated pairs (correlation coefficients were more than 
0.65) were selected to set up protein-protein interac-
tion (PPI) networks by applying the STRING database 
(https://​string-​db.​org/).

Immune feature analyses of the PRGs signature in CRC​
CIBERSORT analysis was performed based on gene 
expression data, file “LM22.txt” (downloaded from 
“Supplementary Table  1” of CIBERSORT paper: 
https://​www.​nature.​com/​artic​les/​nmeth.​3337#​MOESM​
207), and R code of Cibersort (https://​rdrr.​io/​github/​
singh​a53/​amritr/​src/R/​suppo​rtFunc_​ciber​sort.R). Box-
plots were generated to describe different components 
of immune cells between groups with 2 levels of hazard 
score. On the basis of the estimate R package (1.0.13), 
estimate analysis was performed. According to gene 
sets of immune cells, GSVA followed by drawing box-
plots was performed. Finally, a heatmap describing the 
Spearman correlation between 100 immune-related 
genes and 35 PRGs was drawn.

Pyroptosis risk score analysis in the responses to platinum 
chemotherapy in CRC​
TCGA clinical data were screened to identify patients 
with/without platinum-based chemotherapy. Kaplan-
Meier survival curves were drawn to analyze sur-
vival rates between groups with 2 hazard scores in the 
patients with/without platinum-based chemotherapy.

Statistical analysis of statistics
We adopted R software version 4.1.0 to conduct statis-
tical analysis. Normally, distributed data were analyzed 
by applying an unpaired t-test. Nonnormally, distrib-
uted data were analyzed by applying the Wilcoxon 
rank-sum test. The analysis of counting data was con-
ducted by applying the chi-square test or Fisher’s exact 
probability method.

Result
Establishment of Cox regression model for colorectal 
cancer (CRC)
Using the Cox regression model, we predicted the risk 
of colorectal cancer (CRC) including colon tumors 

(TCGA_COAD) and rectal tumors (TCGA_READ). 
Transcriptome data from COAD and READ datasets 
were randomly classified into a training group (70% 
samples, total 413 cases) and a test group (30% samples, 
total 177 cases). By using multivariate linear regression 
analyses and stepwise regression analysis, 13 pyrop-
tosis-related genes (PRGs) were selected, and harzard 
modeling was generated on the basis of these genes. 
The formula of the modeling for colon and rectal cancer 
is risk_score = 0.116011 + 0.004995 × AIM2-0.000642 
× CASP1 + 0.002337 × CASP5 + 0.000557 × CASP6-
0.005383 × CASP8-0.007034 × CASP9-0.040302 × 
ELANE + 0.000154 × GPX4-0.000887 × GSDMD-
0.116512 × NLRP7-0.004866 × NOD2 + 0.050655 × 
PJVK + 0.002196 × PRKACA. We obtained 2 groups 
(high-hazard group and low-hazard group) by using 
the median hazard score. In the training and test sets, 
the group with a high hazard score had a poorer sur-
vival prognosis than the group with a low hazard score 
(Fig. 1A and B). The AUC prediction values of the ROC 
curves at 1 year, 2 years, and 3 years in the training set 
were 0.758, 0.791, and 0.802, respectively, whereas the 
AUC prediction values of the ROC curves at 1 year, 2 
years, and 3 years in the test set were 0.630, 0.755, and 
0.755, respectively. All the above data demonstrated 
that this harzard model based on pyroptosis-related 
genes has great predictive capacity for the prognosis of 
CRC patients.

Mutant profiles of PRGs in CRC​
We overviewed the whole picture of somatic mutants 
as well as copy number mutants of 35 PRGs in CRC. As 
demonstrated in Fig. 2A, 147 of 526 (27.95%) CRC sam-
ples showed genetic mutations. Missense mutation was 
the most frequent mutant category (Fig. 2A). The results 
showed that NLRP7 had the highest mutation frequency, 
followed by NLRP3 and SCAF11, among the 35 PRGs 
(Fig. 2A). Furthermore, the Wilcoxon rank-sum test was 
employed to evaluate the effects of genetic mutations of 
PRGs on the expression profile of PRGs in CRC. When 
compared to mutant samples, we found that the expres-
sion levels in 3 of 35 PRGs of unmutated samples were 
significantly differentially regulated (Fig.  2B, CASP3, 
NLRC4, PLCG1). Finally, we compared genetic muta-
tions of 35 PRGs between groups with 2 levels of hazard 
score. There was a difference between these 2 groups in 
the mutant category for 35 PRGs (Fig. 2C).

Pathways involved in the Cox regression model for CRC​
GSEA was employed to explore the pathways 
involved in Cox regression modeling of CRC. In 
Fig.  3A–I, low-risk scores were significantly related to 

https://string-db.org/
https://www.nature.com/articles/nmeth.3337#MOESM207
https://www.nature.com/articles/nmeth.3337#MOESM207
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“IL6_JAK_STAT3_SIGNALING,” “INFLAMMATORY_
RESPONSE,” “ALLOGRAFT_REJECTION,” “TNFA_
SIGNALING_VIA_NFKB,” “IL2_STAT5_SIGNALING,” 
“INTERFERON_GAMMA_RESPONSE,” “HEDGE-
HOG_SIGNALING,” “APICAL_JUNCTION,” and 
“COMPLEMENT.”

Determination of differentially expressed genes (DEGs) 
within pyroptosis subgroups
To clarify the gene expression pattern of pyroptosis 
subgroups, we used the R package “Limma” to conduct 
analysis of differential expression between groups with 
2 levels of hazard score. Based on the cutoff threshold 
(adj. p-value < 0.05 as well as |logFC| > 1), we identified 

Fig. 1  Establishment of a Cox regression model for CRC. A and B Overall survival plots for CRC patients in the high-/low-hazard group. C and D ROC 
curve for determining the forecast value. PRG, pyroptosis-related gene; CRC, colorectal cancer
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the complete all 133 DEGs, including 2 upregulated and 
131 downregulated DEGs (Fig.  4A). The differentially 
expressed DEGs were mostly significantly associated 

with “antigen binding,” “complement activation, classical 
pathway,” and “complement activation” among the GO 
and pathway terms (Fig. 4B).

Fig. 2  Landscape of mutation information of PRG in CRC. A The mutation frequency and categorization of 35 PRGs in CRC. B Boxplot of PRG 
expression versus PRG mutation status. C The mutation frequency and categorization of 35 PRGs in the high-/low-risk group
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Association between pyroptosis‑associated genes 
and inflammation‑associated genes in CRC​
We then evaluated whether pyroptosis-associated 
genes are correlated with inflammation-associated 
genes in CRC. We selected gene set variation analysis 
(GSVA) to caculate the Spearman correlation between 

100 inflammation-related genes and 35 pyroptosis-
related genes. To our surprise, no relevance was found 
between these 2 gene sets. However, when we used 
the gene expression profile to analyze the Spearman 
correlation between 100 inflammation-related genes 
and 35 pyroptosis-related genes, we found certain 

Fig. 3  GSEA explores pathways involved in the Cox regression model for CRC. A–I Low risk scores were significantly related to “IL6_JAK_STAT3_
SIGNALING,” “INFLAMMATORY_RESPONSE,” “ALLOGRAFT_REJECTION,” “TNFA_SIGNALING_VIA_NFKB,” “IL2_STAT5_SIGNALING,” “INTERFERON_GAMMA_
RESPONSE,” “HEDGEHOG_SIGNALING,” “APICAL_JUNCTION,” and “COMPLEMENT”



Page 7 of 13Hu et al. World Journal of Surgical Oncology          (2022) 20:234 	

relationships existed. For instance, PRGs (GSDME, 
NLRC4, NLRP1, etc.) were shown to be significantly 
associated with several inflammation-related genes in 
the heatmap (Fig. 5A). To further characterize interac-
tion relationships, we selected highly correlated pairs 

(correlation coefficients were more than 0.65) to set up 
protein-protein interaction (PPI) networks by apply-
ing the STRING database (https://​string-​db.​org/). Both 
positive activation interactions and negative inhibi-
tion interactions revealed relationships between these 

Fig. 4  Differentially expressed genes (DEGs) in the high-/low-hazard group. Volcano plot (A) showing differentially expressed genes (DEGs) 
between groups with 2 hazard scores. Red symbols denote upregulated DEGs, blue symbols denote downregulated DEGs, and black symbols 
denote nondifferentially expressed genes. B Gene functional enrichment of dysregulated expressed genes

https://string-db.org/
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Fig. 5  Association between the PRGs and inflammation-related genes in CRC. A Spearman correlation analysis between 100 inflammation-related 
genes and 35 PRGs. B Protein-protein interaction (PPI) network of inflammation-related genes and associated PRGs
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inflammation-related genes and pyroptosis-related 
genes (Fig. 5B).

Immune feature evaluations of the signature 
of pyroptosis‑related genes in CRC​
Then, we assessed the infiltrate status of immune cells 
and found that plasma cells, regulatory T cells, resting 
NK cells, and neutrophils were present in the low-hazard 
group, whereas the high-hazard group was enriched with 
resting dendritic cells (Fig. 6A). In the current results, the 
ESTIMATE score also showed that the immune score of 
the high-hazard group was lower than that of the low-
hazard group (Fig.  6B). In addition, stromal score and 
ESTIMATE score were considerably lower in the high-
hazard group than in the low-hazard group, while the 
tumor purity was conversely higher (Fig.  6C, D, E). We 
next used the ssGSEA algorithm to detect infiltrating 
modes of immune cells within two divergent sections. 
Except for type-2 T-helper cells, effector memory CD4 T 
cells, CD56 toxin natural killer cells, and memory B cells, 
we found that the patients in the low-hazard group had 
considerably higher levels of immune cell infiltration by 
the other 24 kinds of immune cells than the patients in 
the high-hazard group (Fig. 6F). Finally, we used the gene 
expression profile to analyze the Spearman correlation 
between 100 immune-related genes and 35 pyroptosis-
related genes. We found certain relationships, in which 
we labeled highly correlated pairs (correlation coeffi-
cients were more than 0.6) with stars. For instance, PRGs 
(GSDME, NLRC4, GZMA, etc.) were shown to be signifi-
cantly associated with several immune-related genes in 
the heatmap (Fig. 6G). Our study showed that pyroptosis 
risk scores were associated with immune features, and 
that increased immune reaction in the low-hazard group 
may be involved in the antitumor immunity of CRC.

Pyroptosis risk score in the function of platinum 
chemotherapy in CRC​
Platinum-based chemotherapy plays an important role 
in CRC therapy. We asked whether pyroptosis factors are 
involved in the response of CRC patients to chemother-
apy with platinum agents. We screened TCGA clinical 
data to identify sick persons with/without platinum-con-
taining chemotherapy. Among these patients, we calcu-
lated the pyroptosis risk score. First, in the 129 patients 
with platinum-based chemotherapy, sick persons with 
a low pyroptosis points showed a trend of a higher sur-
vival rate than sick persons with a high pyroptosis points, 
all of whom were subjected to chemotherapy (p = 0.38; 
Fig.  7A). Second, in the 312 sick persons without plati-
num-based chemotherapy, sick persons with high pyrop-
tosis points showed a significantly lower survival rate 
than did patients with low pyroptosis points, all of whom 

were not subjected to chemotherapy (p < 0.0001; Fig. 7B). 
The global survival rate of sick persons with platinum-
containing chemotherapy was higher than that of those 
without platinum-based chemotherapy. This result sug-
gested that pyroptosis risk score was not related to the 
response to platinum chemotherapy in CRC.

Discussion
Pyroptosis is another type of lytic cell death that utilizes 
the gasdermin family (GSDMs), such as GSDMA-E, to 
form pores and generate bubble-like cell morphology. 
Pyroptosis plays a double part in the initiation and pro-
gression of tumors. Pyroptosis can stimulate bother nor-
mal cells to acquire malignant transformation mediated 
by inflammatory factors [11]. Pyroptosis, from which cer-
tain possible prognostic biomarker for tumors is derived, 
can also inhibit growth of tumor cells [12]. In CRC, sev-
eral PRG-based models have been constructed to pre-
dict prognosis [13–16]. However, a new model as well as 
a comprehensive study are still been required, and our 
investigation was carried out to attain this purpose.

Multivariate linear regression analyses and stepwise 
regression analysis were utilized to establish a prognos-
tic gene model according to 13 PRGs (AIM2, CASP1, 
CASP5, CASP6, CASP8, CASP9, ELANE, GPX4, 
GSDMD, NLRP7, NOD2, PJVK, and PRKACA), which 
might predict the overall survival of CRC patients. In a 
former study by Wei Song et  al. [13], a PRG_score for 
forecasting recurrence-free survival (RFS) was estab-
lished. Different prognostic PRG models were also devel-
oped by Jiawei Rao et  al. [14], Zhicheng Zhuang et  al. 
[15], and Chen Zheng et al. [16]. However, in our study, 
we first set up a new pyroptosis-associated prognos-
tic gene model for CRC, which gives more selection for 
prognostic predictive in CRC.

In our research, NLRP7, which is involved in our prog-
nostic gene model, had the highest mutation frequen-
cies. In a previous investigation, increased protein levels 
of NLRP7 contributed to CRC progression and triggered 
polarization of M2-like macrophages [17]. This finding 
was consistent with our discoveries regarding NLRP7. 
NLRP7 is involved in inflammasome activation [18]. 
However, few studies have investigated the function of 
NLRP7 in pyroptosis. NLRP7 is overexpressed in gesta-
tional choriocarcinoma (CC) trophoblast cells and may 
function in an inflammasome-dependent or independent 
pathways [19]. In our observation, we found that NLRP7 
was one of the pyroptosis-associated prognostic bio-
markers in CRC. Further in  vivo and in  vitro investiga-
tions should be performed to clarify whether NLRP7 is 
implicated in pyroptosis in CRC.

An additional critical conclusion that was drawn in 
our study is that prognostic PRGs were remarkably 
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Fig. 6  Association between the PRGs and immune features in CRC. A Relationships between the high-/low-hazard scores and infiltration 
abundances of 22 types of immune cells. Relationships between the high-/low-hazard scores and immune score (B), stromal score (C), ESTIMATE 
score (D), and tumor purity (E). F The ssGSEA of infiltrating modes of immune cells in the high- and low-hazard score groups. G Spearman 
correlation analysis between 100 immune-related genes and 35 PRGs
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correlated with the status of immune infiltration and 
inflammation in CRC. First, we found that the TME fea-
tures and the relative fraction of immune cell infiltra-
tion differed remarkably between groups with 2 hazard 
scores. This result indicates an important function of 
PRGs in CRC tumorigenesis. A high fraction of infiltrat-
ing of B cells and plasma cells has a positive prognostic 
influence on CRC [20]. The low-hazard group with a 

better prognosis showed a higher fraction of plasma cell 
infiltrations, thereby suggesting a positive function of 
plasma cells in CRC development. It is true that antitu-
mor responses can be created and managed in tertiary 
lymphoid structures (TLS) where B cells can be devel-
oped into plasma cells [21]. The infiltration of natu-
ral killer cells (NK cells) can inhibit CRC progression 
[22]. Moreover, infiltration of neutrophils is a beneficial 

Fig. 7  Pyroptosis risk score in response to platinum chemotherapy in CRC. A Overall survival plots for CRC patients with platinum-based 
chemotherapy in groups with 2 levels of hazard score. B Overall survival plots for CRC patients without platinum-based chemotherapy in groups 
with 2 levels of hazard score
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prognostic factor in the early phases of CRC [23]. In 
our study, we discovered that the abundances of resting 
NK cells and neutrophils were higher in the low-hazard 
group than in the high-hazard group. This finding indi-
cates that PRGs may modulate the infiltration of both 
cell types to affect CRC prognosis. Second, ESTIMATE 
scores included the immune score and stromal score. 
All supported the notion that immune infiltration was 
enriched in the low-hazard group. The immune infiltra-
tion status detected by using the ssGSEA algorithm also 
supported this concept. This result was consisted with 
reports from Song [13]. Third, PRGs (GSDME, NLRC4, 
etc.) were significantly associated with genes of immune 
infiltration. Other studies showed evidences. High lev-
els of mononuclear cell infiltration and inflammation 
were found in a CRC mouse model, which shows nor-
mal GSDME expression when compared to the GSDME 
knockout CRC mouse model [24]. The obesity-triggered 
NLRC4 inflammasome was found to be activated in 
tumor-infiltrating myeloid cells [25]. On the other hand, 
PRGs (NLRP1, NLRC4, etc.) were significantly associ-
ated with inflammation genes, such as IL1R1. IL-1R1 
is the receptor of interleukin-1β (IL-1β). IL-1R1(−/−) 
mice showed reduced NLRC4 inflammasome-dependent 
inflammation and IL-1β production in the lungs postin-
fection [26]. In addition, the expression of NLRC3, a 
checkpoint of inflammation, and the inflammasome 
components NLRP1, NLRP3, NLRC4, and AIM2 were 
decreased in CRC [27]. In summary, PRGs interfere with 
the process of immune infiltration and inflammation, 
thereby affecting the progression of CRC.

Our investigation has certain pitfalls. All results 
were produced by using the TCGA CRC cohort, and it 
should be nice to confirm all results by using the GEO 
datasets. In addition, in vitro and in vivo experimental 
data would be better for verifying the results.

In conclusion, we established a prognostic gene model 
based on 13 PRGs for CRC patients, and a comprehensive 
bioinformatics analysis was performed. We also found 
that our PRGs were significantly related to the status of 
immune infiltration and inflammation in CRC. Our next 
step would be an experimental validation investigation.
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