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Abstract 

Background:  Rapid advances in transcriptomic profiles have resulted in recognizing IRLs (immune-related long 
noncoding RNAs), as modulators of the expression of genes related to immune cells that mediate immune inhibi-
tion as well as immune stimulatory, indicating LncRNAs play fundamental roles in immune modulation. Hence, we 
establish an IRL classifier to precisely predict prognosis and immunotherapeutic efficiency in laryngeal squamous cell 
carcinoma (LSCC).

Methods:  LSCC RNA-seq (RNA sequencing) datasets, somatic mutation data, and corresponding clinicopathologic 
information were acquired from TCGA (the Cancer Genome Atlas) and Gene Expression Omnibus (GEO) databases. 
Spearman correlation analysis identified LncRNAs associated with immune-related genes (IRG). Based on Lasso penal-
ized regression and random forest (RF), we constructed an IRL classifier associated with prognosis. GEO database was 
utilized to validate the IRL classifier. The predictive precision and clinical application of the IRL classifier were assessed 
and compared to clinicopathologic features. The immune cell infiltration of LSCC was calculated via CIBERSORTx tools 
and ssGSEA (single-sample gene set enrichment analysis). Then, we systematically correlated the IRL classifier with 
immunological characteristics from multiple perspectives, such as immune-related cells infiltrating, tumor microen-
vironment (TME) scoring, microsatellite instability (MSI), tumor mutation burden (TMB), and chemokines. Finally, the 
TIDE (tumor immune dysfunction and exclusion) algorithm was used to predict response to immunotherapy.

Results:  Based on machine learning approach, three prognosis-related IRLs (BARX1-DT, KLHL7-DT, and LINC02154) 
were selected to build an IRL classifier. The IRL classifier could availably classify patients into the low-risk and high-risk 
groups based on the different endpoints, including recurrence-free survival (RFS) and overall survival (OS). In terms 
of predictive ability and clinical utility, the IRL classifier was superior to other clinical characteristics. Encouragingly, 
similar results were observed in the GEO databases. Immune infiltration analysis displayed immune cells that are 
significantly richer in low-risk group, CD8 T cells and activated NK cells via CIBERSORTx algorithm as well as activated 
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Introduction
Laryngeal squamous cell carcinoma (LSCC), as an aggres-
sively malignant neoplasm, is by far one of most cancers 
in respiratory tract as well as head and neck region and 
accounts for 80–95% of laryngeal cancer [1]. According 
to the American Cancer Society, about 13,150 cases were 
diagnosed, with over 3700 deaths annually, and estimated 
incidence rates were 4.0 per 100,000, with around mor-
tality rates of 1.1 per 100,000 annually [2]. Most patients 
(~60%) present with advanced-stage disease at diagnosis 
on account of the lack of obvious symptoms in early stage 
and apt to lymph node metastasis, which influences the 
prognosis of patients [3]. Though multidisciplinary and 
comprehensive therapeutic approaches have been devel-
oped, the long-term survival outcome of patients with 
LSCC is still dismal [4]. Thus, identifying reliable bio-
markers and establishing accurate predictive models are 
urgently necessary to optimize treatment regimens and 
exploit novel molecular therapies for LSCC patients.

In recent years, immunotherapy, especially the applica-
tion of ICIs (immune checkpoint inhibitors), has made 
remarkable progress in antitumor practice and gradu-
ally becomes a promising first-line choice in the field of 
oncology therapy, including LSCC [5]. However, as a het-
erogeneous disease, LSCC presents conflicting results, 
with most patients not responding to these inhibitors 
due to primary or acquired resistance [6, 7]. Unlike 
conventional therapy, the clinical benefits of immuno-
therapy to patients are achieved by stimulating the sus-
tained antitumor immune reaction [8], which relies 
on immunoregulation between cancer cells and TME 
(tumor microenvironment). Therefore, there is always a 
need to identify more specific biomarkers, better predic-
tive tools, and screen out which subset of patients with 
LSCC will respond to these immunotherapies, which 
may help guide the selection and improvement of effec-
tive immunotherapies.

LncRNA, which is ubiquitous in the genome, is a type 
of noncoding RNA with 200 nucleotides long which can-
not encode proteins [9]. Biochemically, LncRNAs exert 
their function by RNA-protein interactions, RNA-DNA, 
or RNA-RNA to regulate 70% of human gene expression, 

which exhibit either enhancement or inhibition [10]. 
Additionally, it even may account for delivering thera-
peutic options or prognostic value for neoplasm patients 
[11]. Recently, increasing evidence has revealed that 
lncRNAs can regulate the immune response by control-
ling the homeostasis, TME, anti-inflammatory factors, 
and functions of immune cells [12, 13]. For example, 
LncRNA is involved in directing immune cell-specific 
gene expression, whereby resulting in the alterations of 
cancer’s immune cell infiltrating. Hence, we ardently 
anticipate the discovery of several new prognostic IRL 
(immune-related lncRNA) markers and then build an IRL 
classifier to precisely predict prognosis and immunother-
apeutic efficiency in LSCC.

In the present study, based on machine learning 
approach, we screen prognosis-related IRLs and then 
develop an IRL classifier. Subsequently, we estimated 
the predictive capacity and clinical usefulness of the IRL 
classifier and compared it against clinicopathologic char-
acteristics. Then, we systematically correlated the IRL 
classifier with immunological characteristics from mul-
tiple perspectives, such as immune-related cells infiltrat-
ing, TME scoring, microsatellite instability (MSI), tumor 
mutation burden (TMB), and chemokines. Finally, TIDE 
(tumor immune dysfunction and exclusion) algorithm 
was used to predict response to immunotherapy.

Materials and methods
Extraction of public data and data processing
We downloaded RNA-seq data (FPKM value) (111 LSCC 
tissues and 12 adjacent tissues), somatic mutation data, 
and corresponding clinicopathologic characteristics of 
LSCC patients from a public TCGA database (https://​
gdc.​cancer.​gov/), which was recorded before Decem-
ber 10, 2021. A total of LC 109 patients were collected 
with complete follow-up data; the clinical endpoint was 
recurrence-free survival (RFS) and overall survival (OS). 
Additionally, three LSCC GEO datasets and matched 
clinicopathologic information were downloaded, namely 
GSE65858 (48 LSCC samples), GSE25727 (56 LSCC sam-
ples), and GSE27020 (109 LSCC samples) datasets which 
were used as validation cohorts. The gene expression 

CD8 T cell via ssGSEA. Additionally, compared with the high-risk group, immune score, CD8 T effector was higher in 
the low-risk group, yet stromal score, score of p53 signaling pathway and TGFher in the Tx algorithm, was lower in the 
low-risk group. Corresponding results were confirmed in GEO dataset. Finally, TIDE analysis uncovered that the IRL 
classifier may be effectually predict the clinical response of immunotherapy in LSCC.

Conclusion:  Based on BARX1-DT, KLHL7-DT, and LINC02154, the IRL classifier was established, which can be used to 
predict the prognosis, immune infiltration status, and immunotherapy response in LSCC patients and might facilitate 
personalized counseling for immunotherapy.
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data were normalized via the Limma package or edgeR 
package in the R computing environment, which will be 
further analyzed. Datasets were used according to TCGA 
and GEO data access strategies. All analyses were carried 
out in conformity to relevant guidelines and regulations. 
The IRGs were acquired from gene set M19817 (immune 
response) and M13664 (immune system process) in 
MSigDB of Broad Institute (http://​www.​gsea-​msigdb.​org/​
gsea/​index.​jsp) [14].

Identification of IRLs and variance analysis
Mining and extraction methods of IRLs were described 
in previous studies [15]. Based on the expression levels 
of immune genes and lncRNAs in each specimen, Pear-
son correlation analysis was conducted using the cor.
test function of R (p-value < 0.05, correlation coefficient 
|Cor| > 0.4), and then the cohort of IRLs was identified. 
To identify the differential expression IRLs (DEIRLs), dif-
ferential expression analysis was performed in the IRLs 
cohort via R package Limma. The thresholds were set as 
FDR (false discovery rate) < 0.05 along with log FC (fold 
change) > 1.

Construction and verification of an IRL classifier
First, univariable Cox regression analysis is used to screen 
prognosis-related IRLs (p < 0.05). To select out convinc-
ing hub genes, machine learning approach, including 
modified Lasso penalized regression and RF (random for-
est), was adopted. A Lasso regression is performed with 
tenfold cross-validation to identify candidate IRLs and 
was run for 1000 cycles to select feature variables based 
on minimum criteria or 1-se criteria. RF (random for-
est), a tree-based ensemble comprised of tree-structured 
classifiers, was established to select feature variables via 
package “randomForest” with minimum error regression 
trees. The importance of variables was ranked using Inc-
NodePurity. The real hub genes were obtained from the 
intersection of the result of Lasso and RF, which was used 
to develop a prediction model, namely IRL classifier.

The IRL score was generated through a linear combi-
nation of coefficients from Cox regression and the rela-
tive expression of each IRLs. According to this formula, 
each patient’s IRL score was calculated, and patients 
were classified into low-risk or high-risk groups on the 
basis of the median IRL score. Survival differences (log-
rank test) were compared by Kaplan-Meier survival 
analysis between low-risk and high-risk groups based 
on the different endpoints, including RFS and OS. Time-
dependent ROC curves with R package time ROC were 
adopted to assess predictive performance. Importantly, 
the GSE65858, GSE27020, and GSE25727 from the GEO 
database were applied to validate the predictive value of 
the IRL classifier.

Additionally, according to the expression of individual 
IRL (BARX1-DT, KLHL7-DT, and LINC02154), patients 
were classified into low expression or high expression 
on the basis of the median expression level. Survival 
differences (log-rank test) were compared by Kaplan-
Meier survival analysis between low expression and 
high expression groups for BARX1-DT, KLHL7-DT, and 
LINC02154.

Prognostic significance and clinical application of IRL 
classifier
Univariate and multivariate Cox regression analyses were 
applied to investigate whether the predictive capacity of 
the IRL classifier remains is independent of other clin-
icopathological features of LSCC patients in TCGA and 
GEO database. Additionally, ROC analysis using the R 
package survival ROC was employed to compare the dis-
crimination ability of the IRL classifier against clinico-
pathological information in TCGA and GEO database. 
Finally, DCA (decision curve analysis) with the stdca.R 
package was carried out to estimate the net benefit and 
clinical usefulness of the IRL classifier and compared to 
clinicopathological features in TCGA and GEO database 
[16].

Evaluation of immune infiltration
ESTIMATE algorithm is a tool to predict the presence 
of infiltration immune/stromal cells in tumor tissues 
and tumor purity using gene expression data, which 
according to single-sample gene set enrichment analysis 
(ssGSEA) generates ESTIMATE score, immune score, 
and stromal score.

To evaluate the relative abundance of immune infil-
trates, CIBERSORTx (https://​ciber​sort.​stanf​ord.​edu/) 
[17], which transformed the normalized gene expres-
sion matrix into the composition of infiltrating immune 
cells, is a kind of deconvolution algorithm with a 1000 
permutation count. We filtered out samples with CIB-
ERSORTx output of p-value > 0.05 for the accurate fore-
cast of immune cell composition. Then, variance analysis 
of immune cells between high-risk and low-risk groups 
was visualized by drawing violin diagrams. In addi-
tion, on the basis of the expression of metagenes that 
are behalf of specific immune cells, the ssGSEA, using R 
package “GSVA,” was introduced to quantify the relative 
infiltrating of immune cell subtypes. We focused on the 
metagene set of 28 immune cell types, which were widely 
researched and accepted [18].

To determine differential immune cell subtypes 
between the two groups (p-value < 0.05), the Wilcoxon 
two-tailed test was utilized to analyze the immunoscores. 
And we adopt vioplotR package to visualize the result. 
Additionally, we explored the correlation between IRL 
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classifier and critical immune cells by Spearman correla-
tion analyses. A p < 0.05 would be considered statistically 
significant.

Correlation of IRL classifier with immunological 
characteristics of the TME
According to the definition of TMB, which is computed 
using the total covered bases/total number of somatic 
mutations. Additionally, MSI score was collected from 
published studies [18]. Correlation analysis was con-
ducted between the IRL classifier and TMB and MSI.

We also investigate the correlation between the IRL 
classifier and the expression of critical chemokines 
(CXCL9, CXCL10, and CCR3).

Cell and cell culture
Human laryngeal carcinoma cells Hep-2 were obtained 
from BIOBAIYE (Shanghai China). Hep-2 cells were 
routinely cultured in DMEM (Gibco), which consisted 
of 10% fetal bovine serum (FBS, Gibco) and 1% penicil-
lin/streptomycin (Solarbio) at 37 °C. Placed within an 
incubator of 5% CO2, the cells were digested with 0.25% 
membrane protease (Sigma) every 2–3 days.

Enzyme‑linked immunosorbent assay (ELISA)
To detect the secretion of CXCL9 and CXCL10 in Hep-2 
cells, a density of 2 × 105/mL cells was plated. IFN-
gamma (PeproTechAsia) was used to stimulate secretion 
of CXCL9 and CXCL10 in Hep-2 cells. The supernatant 
was collected after 48 h for analysis using ELISA Kits 
according to the instructions of the manufacturer (Neo-
Bioscience, China).

In vitro migration assay
CD8+ T cells were purchased from ATCC. The migra-
tion of CD8+ T cells was assessed using 5 μm pore size 
transwell inserts (Corning Costar). CD8+ T cells were 
added to the top chamber and culture supernatant from 
Hep-2 cells after IFN-gamma treatment was added to 
the bottom chamber. To further confirm the infiltration 
of CD8+ T cells was influenced by CXCL9 and CXCL10 
produced by Hep-2 cells, the culture supernatant from 
Hep-2 cells was treated with CXCL9 and CXCL10 neu-
tralizing. Then the transwells were incubated at 37 °C, 5% 
CO2 for 4 h, and cells migrating to the bottom chamber 
were collected and then counted by a hemocytometer.

ssGSEA
ssGSEA, generate an enrichment score to signify the 
levels of absolute enrichment of a metagene set within 
a given dataset in each sample, was applied to evaluate 
the enrichment degree of biological processes, includ-
ing (CD8 T-effector signature, epithelial-mesenchymal 

transition (EMT) markers including EMT1, EMT2, and 
EMT3, WNT targets, p53 signaling pathway TGF signal-
ing pathway (EM, and soon [18]) in current immunology 
research and to compare the differences in enrichment 
level between high-risk and low-risk subgroups. Addi-
tionally, we explored the correlation between IRL clas-
sifier and pivotal molecular pathways by Spearman 
correlation analyses. A p < 0.05 would be considered sta-
tistically significant.

TIDE
The TIDE method (http://​tide.​dfci.​harva​rd.​edu), which 
was considered a reliable algorithm to predict the immu-
notherapeutic response of patients (CTLA-4 and PD 
inhibitor) in recent research [19], was used to evalu-
ate the predictive efficiency of IRL classifier for the ICIs 
response in LSCC. On the basis of the TIDE value, a 
TIDE score less than 0 was recognized as positive sen-
sitivity to immunotherapy (a patient as a responder), 
while a TIDE score more than 0 was considered as nega-
tive sensitivity to immunotherapy (a patient as a non-
responder). We compare the rate of response between 
high-risk and low-risk groups.

Statistical analysis
SPSS statistics 22.0 and R software (R version 3.6.1) 
were used to perform the statistical analysis. A p < 0.05 
(two-sided) was considered statistically significant unless 
otherwise agreed. Entire R codes were provided in Sup-
plementary material 1.

Results
Identification of IRLs and variance analysis
Altogether, 331 immune-related genes were acquired in 
MSigDB of Broad Institute, and 12830 lncRNAs were 
obtained from LSCC cohort. Immune-related gene and 
the lncRNA coexpression network were assembled to vis-
ualize these IRLs. Ultimately, 5192 IRLs were identified 
in our research with p-value < 0.05 and correlation coef-
ficient |Cor| > 0.4 (Supplementary material 2). The differ-
ence analysis screened 486 DEIRLs between normal and 
tumor samples, which was subjected to univariable Cox 
regression analysis.

Construction and verification of an IRL classifier
By univariable Cox regression analysis, we appraised 
101 prognostic-related IRLs (Supplementary material 3). 
Modified Lasso penalized regression was established to 
shrink and select out hub IRLs, as shown in Fig. 1A and B. 
Likewise, RF was also built with minimum error regres-
sion trees for hub IRLs (Fig. 1C and D). According to the 
result of Lasso, RF, and top 25 prognostic-related IRLs, 
we take the intersection of three results to acquire 3 hub 

http://tide.dfci.harvard.edu/
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genes (BARX1-DT, KLHL7-DT, and LINC02154) (Fig. 1E). 
Subsequently, the 3 hub genes were used to develop a pre-
diction model, namely IRL classifier. The IRL classifier 
risk score was calculated as follows: IRL score = (0.1882 
expression level of BARX1-DT) + (0.3130 expression level 
of KLHL7-DT) + (0.2296 expression level of LINC02154). 
We computed each sample risk score and divided patients 
with LSCC into a high-risk cohort and a low-risk cohort in 
TCGA and GEO datasets.

According to the median value of the IRL score (Fig. 2A), 
intuitively, there is a higher death rate in high-risk cohorts 
than in low-risk cohorts (Fig.  2B). The Kaplan-Meier 
curves displayed that the OS (p-value < 0.001) of the low-
risk groups was significantly higher than that of the high-
risk groups, demonstrating the effectiveness of the IRL 
classifier (Fig. 2C). Time-dependent ROC curves displayed 
that IRL classifier had a superior prediction ability, with an 
AUC of 0.831 (5 years) and AUC of 0.804 (3 years) for OS 
(Fig.  2D). Additionally, external GEO cohorts (GSE65858 
database) were utilized to verify the predictive perfor-
mance of the IRL classifier. As was displayed in Fig. 2E–H, 
patients with low-risk score were more prone to survival 
and had higher OS time than patients with high-risk score, 
which is consistent with the results of the TCGA dataset. 
Furthermore, the AUC of IRL classifier (AUC of 5-year OS: 
0.753 and AUC 3-year OS: 0.796 in GSE65858 database) 
confirmed that the predictive accuracy of the prognostic 
model was satisfactory.

We also assessed the ability of IRL classifier to predict 
the relapse/progression in patients with LSCC. In the 
TCGA cohort, the Kaplan-Meier survival curves indi-
cated that high-risk cohorts had significantly worse RFS 
compared with patients with high-risk cohorts (Fig.  3A). 
Time-dependent ROC curves displayed that IRL classifier 
had an excellent prediction ability, with an AUC of 0.782 (5 
years) and AUC of 0.718 (3-year) for RFS (Fig.  3B). Con-
sistent results were observed in GEO cohorts (GSE65858, 
GSE27020, and GSE25727 databases). As was shown in 
Fig. 3C–H, patients with low-risk score were more prone to 
relapse/progression with higher RFS/progression-free sur-
vival (PFS) time than patients with high-risk score. Further-
more, the AUC of IRL classifier (AUC of 5-year PFS: 0.761 
and AUC 3-year PFS: 0.712 in GSE65858 database, AUC of 
5-year RFS: 0.736 and AUC 3-year RFS: 0.766 in GSE25727 
dataset, AUC of 5-year RFS: 0.707 and AUC 3-year RFS: 
0.723 in GSE27020 dataset) verified that the predictive 
accuracy of the IRL classifier was satisfactory.

The K-M curves and the log-rank test showed that 
patients in the high-BARX1-DT group had worse OS 
than the patients in the low group (Fig.  S1A, p-value 
< 0.001), patients in the high-KLHL7-DT group also 
had worse OS compared with the patients in the low 
group (Fig.  S1B, p-value = 0.048), and high expression 
of LINC02154 had significantly worse OS compared to 
patients with low expression of LINC02154 (Fig.  S1C, 
p-value = 0.010) in the TCGA cohort. Similar results 
were observed in GEO cohorts, except for LINC02154 
(Fig. S1D–F).

Prognostic significance and clinical application of IRL 
classifier
To adjudicate whether the IRL classifier is independent 
of the clinical features, univariate and multivariate Cox 
regression analysis uncovered that IRL score (p-value < 
0.05) was an independent predictor of poor prognosis, in 
spite of other clinicopathologic characteristics in TCGA 
(Table 1) and GEO datasets (Table 2).

In addition, to evaluate the predictive capacity of IRL 
classifier, IRL classifier (AUC: 0.813) performed better 
in predicting prognosis than margin status (AUC: 0.62), 
lymphovascular invasion (AUC: 0.644), and TNM stage 
(AUC: 0.451) in TCGA datasets (Fig.  4A); IRL classifier 
(AUC: 0.805) performed better in predicting prognosis 
than age (AUC: 0.569), sex (AUC: 0.421), and TNM stage 
(AUC: 0.549) in GSE65858 datasets (Fig. 4C). IRL classi-
fier (AUC: 0.739) performed better in predicting progno-
sis than age (AUC: 0.548) and TNM stage (AUC: 0.455) 
in GSE27020 datasets (Fig.  4E). Notably, DCA chart 
shows that the IRL classifier outperforms age, margin 
status, lymphovascular invasion, and TNM stage accord-
ing to the net benefit of risk stratification using the model 
(y-axis) and the continuity of potential death threshold 
(x-axis) in TCGA and GEO cohorts (Fig. 4B, D, and F).

Estimation of immune infiltration
Based on the ESTIMATE algorithm, compared with the 
low-risk group, the immune score (p-value < 0.05) of the 
high-risk group was lower, yet the stromal score (p-value 
< 0.05) of the high-risk group was higher (Fig. 6A and B), 
while ESTIMATE score did not exert statistical difference 
(Fig.  6C). Similar results were observed in GEO cohorts 
(Fig. 6D–F).

We investigate the difference in infiltrating immune 
cells between the two groups; the CIBERSORTx results 

(See figure on next page.)
Fig. 1  IRLs selected by Lasso regression analysis and random forest (RF). A The two dotted vertical lines are drawn at the optimal values by 
minimum criteria (right) and 1-se criteria (left). B Lasso coefficient profiles of the 11 IRLs. A vertical line is drawn at the optimal value by 1-se criteria 
and results in 11 nonzero coefficients. C Distribution diagram of regression tree and error. D The top 15 most important variables ranked by 
IncNodePurity. E Venn diagram presents the intersection of three results to identify hub genes
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Fig. 1  (See legend on previous page.)
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Fig. 2  Development of IRL classifier for prediction of OS in LSCC patients in TCGA and GSE65858 database. A and B Distribution of IRL score in TCGA 
database. C Time-independent ROC curves with AUC values to evaluate predictive efficacy of IRL score in TCGA database. D Kaplan-Meier estimates 
of patients’ survival status and time using the median risk score cutoff which divided patients into low-risk and high-risk groups in TCGA database. E 
and F Distribution of IRL score in GSE65858 database. G Time-independent ROC curves with AUC values to evaluate predictive efficacy of IRL score 
in GSE65858 database. H Kaplan-Meier estimates of patients’ survival status and time using the median risk score cutoff which divided patients into 
low-risk and high-risk groups in GSE65858 database
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Fig. 3  Development of IRL classifier for prediction of RFS/PFS in LSCC patients in TCGA and GEO database. A Kaplan-Meier curves of RFS analysis 
for IRL classifier in TCGA database. B Time-independent ROC curves with AUC values to evaluate predictive efficacy of IRL score in TCGA database. C 
Kaplan-Meier curves of PFS analysis for IRL classifier in GSE65858 database. D Time-independent ROC curves with AUC values to evaluate predictive 
efficacy of IRL score in GSE65858 database. E Kaplan-Meier curves of RFS analysis for IRL classifier in GSE25727 database. F Time-independent ROC 
curves with AUC values to evaluate predictive efficacy of IRL score in GSE25727 database. G Kaplan-Meier curves of RFS analysis for IRL classifier in 
GSE27020 database. H Time-independent ROC curves with AUC values to evaluate predictive efficacy of IRL score in GSE27020 database
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demonstrate that compared with high-risk group, CD8 
T cells (p = 0.009) and activated NK cells (p = 0.002) 
and so on were more abundant in low-risk group 
(Fig. 5A). In addition, the ssGSEA results uncover that 
compared with high-risk group, activated CD8 T cells 
(p = 0.009) and Th17 cells (p = 0.023) were significantly 
higher in low-risk groups (Fig. 5B). This finding reveals 
that CD8 T cells were significantly richer in low-risk 
group.

IRL score was significantly negatively correlated with 
CD8 T cells (R = −0.22, p = 0.034) (Fig.  5C) and acti-
vated CD8 T cells (R = −0.24, p = 0.013) (Fig.  5D). 
Importantly, compared to high-risk group, CD8 T cells 
(p-value < 0.05) were more abundant in low-risk group 
(Fig. 5E), and IRL score was significantly negatively asso-
ciated with CD8 T cells (R = −0.21, p = 0.032) (Fig. 5F) 
in GEO dataset, which line with the results of the TCGA 
dataset.

Correlation IRL classifier with immunological 
characteristics of the TME
We explore the relationship between tumor immuno-
genicity and IRL score. As a result, the IRL score was sig-
nificantly negatively correlated with TMB (R = −0.24, p 
= 0.014) (Fig.  6G), while the IRL score was not signifi-
cantly correlated with MSI (Fig. 6H). We investigate the 
potential cause of CD8 T cells enriched in IRL low-risk 
group; as a result, IRL score was significantly negatively 
associated with CD8 T cells the expression of critical 
chemokines (CXCL9, CXCL10, and CCR3) in TCGA and 
GEO datasets (Fig. 7A–F).

ELISA
We detected the level of CXCL9 and CXCL10 in Hep-2 
cells after IFN-gamma treatment and negative control 
Hep-2 cells derived supernatants. ELISA results showed 
that the secretion of CXCL9 (Fig.  7G) and CXCL10 

Table 1  Univariable and multivariable Cox regression analysis for prediction of survival in TCGA database

These variables were eliminated in the multivariate cox regression model, so the HR and p-values were not available

HR hazard ratio, CI confidence intervals, NA not available

*p < 0.05

Factors Subgroup Univariable analysis Multivariable analysis

HR (95% CI) P HR (95% CI) P

Age 1.00 (0.97–1.04) 0.984 NA NA

Sex Female 1

Male 0.28 (0.14–0.56) 0.000* 0.31 (0.11–0.88) 0.028*

Smoking history No 1

Yes 0.65 (0.35–1.18) 0.156 NA NA

Alcohol history No 1

Yes 0.77 (0.43–1.39) 0.388 NA NA

Number of lymph nodes 1.00 (0.98–1.01) 0.558 NA NA

Number of positive LNs 1.00 (0.95–1.04) 0.892 NA NA

Lymph node ratio 1.41 (0.28–7.13) 0.675 NA NA

Margin status Negative 1 1

Positive 4.68 (2.08–10.51) 0.000* 2.89 (0.97–8.62) 0.058

Lymphovascular No 1 1

Invasion Yes 4.10 (2.23–7.55) 0.000* 1.62 (0.70–3.62) 0.262

Tumor grade G1-G2 1

G3-G4 0.51 (0.25–1.04) 0.064 NA NA

Clinical T T1-T2 1

T3-T4 0.72 (0.35–1.50) 0.376 NA NA

Clinical N N0 1

N1-N3 1.44 (0.80–2.57) 0.222 NA NA

Clinical stage I-II 1

III-IV 0.86 (0.36–2.03) 0.729 NA NA

Mutation count 0.99 (0.98–1.01) 0.542 NA NA

Fraction genome altered 1.44 (0.29–7.18) 0.654 NA NA

IRL score 1.78 (1.46–2.17) 0.000* 1.57 (1.13–2.20) 0.007*
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(Fig. 7H) in IFN-gamma group was significantly upregu-
lated than negative control group.

In vitro migration assay
Further analysis evaluating the CXCL9 and CXCL10 as 
well as CD8+ T cell recruitment in LSCC was performed 
using transwell migration assays in vitro.

The supernatant of Hep-2 cells after IFN-gamma treat-
ment cells induced more CD8+ T-cell migration in com-
parison with that of negative control, while the CCL3 and 

CCL20 neutralizing antibodies significantly inhibited the 
CD8+ T cells chemotaxis ability (Fig. 7I).

ssGSEA
To investigate potential biological pathways between 
high-risk and low-risk groups, we carried out ssGSEA 
to explore the predefine pathway in LSCC. In TCGA 
cohorts, the ssGSEA results showed that CD8 T effec-
tor was significantly involved in the low-risk group, while 

Table 2  Univariable and multivariable Cox regression analysis for prediction of survival in GEO database

These variables were eliminated in the multivariate cox regression model, so the HR and p-values were not available

HR hazard ratio, CI confidence intervals, NA not available

*p < 0.05

Dataset Factors Subgroup Univariable analysis Multivariable analysis

HR (95% CI) P HR (95% CI) P

GSE65858 Age 0.92 (0.86–0.99) 0.024* 0.98 (0.92–1.05) 0.536

Sex Female 1

Male 0.28 (0.14–0.56) 0.000* 0.28 (0.03–2.82) 0.280

Smoking history No 1

Yes 0.29 (0.02–3.92) 0.348 NA NA

Alcohol history No 1

Yes 0.74 (0.12–4.55) 0.743 NA NA

Pack years 1.02 (0.97–1.06) 0.457 NA NA

HPV status Negative 1

Positive 0.12 (0.08–35.24) 0.933 NA NA

Clinical T T1-T2 1

T3-T4 1.12 (0.36–3.52) 0.952 NA NA

Clinical N N0 1

N1-N3 1.31 (0.80–2.12) 0.514 NA NA

Clinical stage I-II 1

III-IV 1.06 (0.72–2.54) 0.952 NA NA

Treatment modalities Mono-treatment 1

Multi-treatment 1.44 (0.29–7.18) 0.654 NA NA

IRL score 1.32 (1.06–1.74) 0.003* 1.6 8 (1.44–2.42) 0.004*

GSE27020 Age 1.02 (0.99–1.06) 0.193 NA NA

Sex Female 1

Male 21.94 (0.34–32.16) 0.377 NA NA

Smoking history No 1

Yes 20.53 (0.06–28.44) 0.679 NA NA

Alcohol history No 1

Yes 1.17 (0.58–2.33) 0.664 NA NA

Tumor grade G1-G2 1

G3-G4 0.90 (0.64–1.26) 0.998 NA NA

Clinical stage I-II 1

III-IV 1.00 (0.61–1.65) 0.525 NA NA

Radiation therapy Yes NA NA

No 2.22 (0.98–4.99) 0.055 NA NA

IRL score 1.92 (1.42–2.61) 0.000* 1.92 (1.42–2.61) 0.000*
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p53 signaling pathway, EMT2, EMT3, and TGF-beta 
signaling pathway were significantly enriched in the high-
risk group (Fig. 8A). Similar results were found in GEO 
cohorts (Fig. 8B). As shown in the radar plot (Fig. 8C and 
D), IRL score was significantly negatively correlated with 
CD8 T effector while was significantly positively asso-
ciated with p53 signaling pathway, EMT2, EMT3, and 
TGF-beta signaling pathway in TCGA and GEO datasets.

Immunotherapeutic prediction of IRL classifier
We applied TIDE to evaluate the potential clinical effi-
cacy of immunotherapy in different IRL groups. The 
result uncovered that the number of immunotherapeutic 
responders was significantly higher in low-risk groups 
(41/55) compared to high-risk groups (13/54) (two-sided 
chi-square test, p-value < 0.001) (Fig.  9A). In addition, 
compared to responders, nonresponders had a higher 

Fig. 4  The predictive precision and clinical application of the IRL classifier were assessed and compared to clinicopathologic features. A ROC 
curves in TCGA database. B DCA in TCGA database. C ROC curves in GSE65858 database. D DCA in GSE65858 database. E ROC curves in GSE27020 
database. F DCA in GSE27020 database

(See figure on next page.)
Fig. 5  Analyzing of infiltrating immune cells between high-risk group and low-risk group. A CIBERSORTx tool in TCGA database. B ssGSEA in TCGA 
database. C Correlation between IRL classifier and CD8 T cells in TCGA database. D Correlation between IRL classifier and activated CD8 T cells in 
TCGA database. E Comparison of CD8 T cells between IRL different subgroups in GEO database. F Correlation between IRL classifier and CD8 T cells 
in GEO database
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Fig. 5  (See legend on previous page.)
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IRL score (p-value < 0.001) (Fig.  9B), while TMB (p = 
0.12), and MSI (p = 0.37) did not exert statistical differ-
ence between responders and nonresponders (Fig.  9C 
and D).

Discussion
LSCC TCGA datasets were utilized as discovery cohorts, 
and three LSCC GEO datasets were used as validation 
cohorts. Based on machine learning approach, three 

prognosis-related IRLs (BARX1-DT, KLHL7-DT, and 
LINC02154) were selected to build an IRL classifier. 
The IRL classifier could availably classify patients into 
the low-risk and high-risk groups based on the differ-
ent endpoints, including recurrence-free survival (RFS) 
and overall survival (OS). In terms of predictive abil-
ity and clinical utility, the IRL classifier was superior to 
other clinical characteristics. Encouragingly, similar 
results were observed in the GEO databases. Immune 

Fig. 6  The comparison of the microenvironment score between IRL different subgroups in TCGA and GEO database. A Immune score in TCGA 
database. B Stromal score in TCGA database. C ESTIMATE score in TCGA database. D Immune score in GEO database. E Stromal score in GEO 
database. F ESTIMATE score in GEO database. G Correlation between IRL score and TMB. H Correlation between IRL score and MSI
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infiltration analysis displayed immune cells that are sig-
nificantly richer in low-risk group, CD8 T cells and acti-
vated NK cells via CIBERSORTx algorithm as well as 
activated CD8 T cell via ssGSEA. Additionally, compared 
with the high-risk group, immune score, CD8 T effector 

was higher in the low-risk group, yet stromal score, score 
of p53 signaling pathway and TGF−beta signaling path-
way, was lower in the low-risk group. Corresponding 
results were confirmed in GEO dataset. IRL score is sig-
nificantly negatively correlated with TMB, but not with 

Fig. 7  Correlation between IRL score and three critical chemokines in LSCC. A CXCL9 in TCGA database. B CXCL10 in TCGA database. C CCR3 in 
TCGA database. D CXCL9 in GEO database. E CXCL10 in GEO database. F CCR3 in GEO database. G The expression of CXCL9 in the supernatant of 
Hep-2 after IFN-gramma cells and negative control Hep-2 cells detected by ELISA assay. H The expression of CXCL9 in the supernatant of Hep-2 
after IFN-gramma cells and negative control Hep-2 cells detected by ELISA assay. I Migration of CD8+ T cells towards supernatants of Hep-2 after 
IFN-gramma cells, negative control Hep-2 cells, and anti-CXCL9 and CXCL10 were detected utilizing the transwell assay. *p < 0.05, **p ≤ 0.01, and 
***p ≤ 0.001
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Fig. 8  Comparison of biological pathway between IRL different subgroups in TCGA and GEO database. A TCGA database. B GEO database. C The 
radar plot in TCGA database. D The radar plot in GEO database
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MSI. Finally, TIDE analysis uncovered that the IRL clas-
sifier maybe effectually predict the clinical response of 
immunotherapy in LSCC.

An increasing body of evidence indicates that IRLs, as 
modulators of the expression of genes related to immune 
cell that mediates immune inhibition as well as immune 
stimulatory, are involved in the TME, the differentia-
tion of immune cell, and cancer immunity cycle [20–23]. 
NcRNA-RB1 (a lncRNA expressed in the RB1 promoter) 
suppresses the expression of calreticulin, which is a cal-
cium-binding chaperone and affects the presentation 
of antigen to cytotoxic T cells, and prevents tumor cells 

release “killing me” signal [20]. Pei et al. (2018) indicated 
that the interaction of small nucleolar RNA host gene 1 
(LncRNA-SNHG1) with miR-448 negatively regulates the 
protein level of IDO to inhibit Treg cells differentiation in 
circulating peripheral blood and impede immune escape 
[21]. In vivo experiments exhibited that the suppression 
of NEAT1 (a nuclear paraspeckle localized LncRNA) by 
the miR-155/Tim-3 pathway reduces CD8+ T-cell apop-
tosis and enhances active cytolytic function, thereby 
achieving immune activity [22, 23]. In addition, Tim-3 
upregulated in chronic infection as well as in exhausted 
T cells in tumors. In turn, the increased Tim-3 expression 

Fig. 9  A The distribution of immunotherapeutic response in two groups stratified by IRL classifier in LSCC cohort based on the TIDE algorithm. 
Two-sided chi-square test was used to analyze contingency tables for ICIs responder. B Comparison of IRL score between responder group and 
non-responder group. C Comparison of TMB between responder group and non-responder group. D Comparison of MSI between responder group 
and non-responder group
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results in CD8+ T-cell death. These studies indicated 
that IRLs participate in the modulators of immune 
response and the cancer immunity cycle. Currently, 
immunotherapy targeting ICIs have been applied in the 
clinical trial of advanced LSCC, yet most patients did not 
respond to these inhibitors. Thus, it is necessary to inves-
tigate novel prospective prognostic IRLs markers, which 
may be useful for guiding the selection and improvement 
of immunotherapy.

To our knowledge, this is the first study conducted to 
identify new IRLs, establish an IRL classifier to precisely 
predict prognosis, and then comprehensively investigate 
the IRL classifier correlated with immunological char-
acteristics from multiple perspectives, such as immune-
related cells infiltrating, tumor microenvironment (TME) 
scoring, microsatellite instability (MSI), tumor mutation 
burden(TMB), and chemokines, thus analyzing immuno-
therapy response in LSCC.

Based on RF and Lasso, which were applied to identify 
reliable feature variables, 3 IRLs (BARX1-DT, KLHL7-
DT, and LINC02154) were identified as hub genes, which 
were combined to construct an IRL classifier. It can effec-
tually divide patients into low-risk group with longer sur-
vival and high-risk group with shorter survival based on 
the different endpoints, including RFS and OS. Addition-
ally, external GEO database (GSE65858, GSE27020, and 
GSE25727 datasets) was utilized to verify the predictive 
performance of the IRL classifier. As a result, patients 
with low-risk score were more prone to survival and had 
higher OS/RFS time than patients with high-risk score, 
which is consistent with the results of the TCGA dataset. 
Furthermore, the higher AUC of IRL classifier in multiple 
transcriptome sets confirmed that the predictive accu-
racy of the prognostic model was satisfactory.

Univariate and multivariate Cox analysis verified that 
IRL classifier was an independent predictor of poor 
prognosis in multi-transcriptome datasets, regardless of 
other clinical features, which indicated that IRL classifier 
was a robust risk model. Additionally, the performance 
of the IRL classifier in predicting mortality outcomes is 
superior to clinical features. Importantly, DCA results 
demonstrated that survival-associated treatment deci-
sions for LSCC patients based on the IRL classifier had 
a net benefit compared to treatment decisions based 
on other clinical features or treatment for all patients 
or none. To sum up, the current IRL classifier will be 
helpful for clinicians to tailor survival-related treatment 
decisions.

The proportion and number of immune cells infiltra-
tion in the TME are considered important elements 
influencing cancer progression and immunotherapy 
response. According to the ESTIMATE algorithm, 

compared to the high-risk group, the immune score of 
the low-risk group was higher, which indicated that low-
risk group is in a state of immune activation. Addition-
ally, the CIBERSORTx tool and ssGSEA algorithm were 
used for the first time to analyze the immune cell infil-
tration landscape in LSCC. The CIBERSORTx results 
demonstrate that compared with high-risk group, CD8 T 
cells and activated NK cells were more abundant in low-
risk group. Analogously, the ssGSEA results uncover that 
compared to high-risk group, activated CD8 T cells and 
Th17 cells were significantly richer in low-risk group. 
This finding indicates that immune-activated cells, such 
as CD8 T cells [24], were significantly richer in low-
risk group, which can effectively recognize antigens to 
kill tumor cells and enhance the effect of ICI immuno-
therapy. Since chemokines and chemokine receptors 
induce the recruitment of multiple immune cells into the 
TME, including the movement of CD8 positive T cells 
to enhance immune infiltration and antitumor immunity 
[25], we found that IRL classifier was markedly nega-
tively related to CCR3, CXCL10, and CXCL9 expression 
in LSCC tissues. Importantly, in  vitro migration assay 
verified that the secretion of CXCL9 and CXCL10 can 
promote CD8+ T-cell recruitment in LSCC. Thus, we 
speculate that 3 IRLs (BARX1-DT, KLHL7-DT, and 
LINC02154) may boost the development of an immu-
nosuppressive TME by thoroughly downregulating the 
expression of key immunomodulators such as CCR3, 
CXCL10, and CXCL9 and subsequently decreasing the 
recruitment of effector CD8 T cells, thereby exerting 
resistance to checkpoint immunotherapy. Interestingly, 
ssGSEA results and correlation analysis show that sign-
aling pathways related to tumor invasion and metastasis, 
such as p53 signaling pathway, EMT2, EMT3, and TGF-
beta signaling pathway, were mainly involved in high-
risk groups, which are recognized as immunosuppressive 
and play a key role in tumorigenesis [26]. However, CD8 
T effector was significantly involved in low-risk group, 
which indicates that the low-risk group was immune 
activation and maybe respond better to immunotherapy.

The immunogenicity of the tumor is the basis of 
initiating antitumor immune response, and higher 
frequency of somatic mutations may lead to more 
neoantigens produced by tumor cells and improve the 
immune killing ability of T cells to tumor cells [27]. 
TMB, defined as the total number of somatic gene 
non-synonymous mutations, is considered an effec-
tive indicator for tumor immunotherapy [28]. In our 
research, the IRL score was significantly negatively cor-
related with TMB, which hints that the IRL classifier 
maybe predicts immunotherapeutic efficiency in LSCC. 
According to TIDE algorithm, there were more immu-
notherapy responders in the IRL classifier low-risk 
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groups, and the IRL classifier was robustly negatively 
linked to the immunotherapeutic response. Hence, 
IRL classifier was proved to be efficient for the immu-
notherapy response prediction in LSCC cohort. All of 
these supported that IRL classifier was a potent tool for 
determining the immunotherapy sensitivity for LSCC 
patients.

While significant, our research inevitably has limita-
tions. First, we merely extract retrospectively imper-
fect data (TCGA and GEO datasets), analyzing them 
through biological algorithm approaches. Therefore, 
our results still need to be externally validated in large 
sample sizes multicenter prospective cohorts. Second, 
while bioinformatics tools are helpful in exploiting the 
discovery of novel biomarkers for diagnosis, treatment, 
and prognosis, in  vitro and vivo experiments in LSCC 
are also of importance to further elucidate the molecu-
lar mechanisms of hub IRLs.

Finally, in fact, patients with LSCC did not receive 
corresponding ICIs treatment, and the response to 
immunotherapy was computed using cutting-edge 
bioinformatics technologies. Though the IRL classi-
fier can stratify LSCC patients with different immune 
responses, external data validation is lacking. Hence, 
multicenter large-scale studies are needed to evaluate 
its usefulness in clinical trials and strengthen its clinical 
evidence.

Conclusion
Based on BARX1-DT, KLHL7-DT, and LINC02154, 
the IRL classifier was established, which can be uti-
lized to predict the prognosis, immune infiltration, 
and immunotherapeutic efficiency in patients with 
LSCC and might facilitate individualized counseling for 
immunotherapy.
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