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Abstract 

Background:  Numerous studies have implicated autophagy in the pathogenesis of thyroid carcinoma. This investi-
gation aimed to establish an autophagy-related gene model and nomogram that can help predict the overall survival 
(OS) of patients with differentiated thyroid carcinoma (DTHCA).

Methods:  Clinical characteristics and RNA-seq expression data from TCGA (The Cancer Genome Atlas) were used in 
the study. We also downloaded autophagy-related genes (ARGs) from the Gene Set Enrichment Analysis website and 
the Human Autophagy Database. First, we assigned patients into training and testing groups. R software was applied 
to identify differentially expressed ARGs for further construction of a protein-protein interaction (PPI) network for 
gene functional analyses. A risk score-based prognostic risk model was subsequently developed using univariate Cox 
regression and LASSO-penalized Cox regression analyses. The model’s performance was verified using Kaplan-Meier 
(KM) survival analysis and ROC curve. Finally, a nomogram was constructed for clinical application in evaluating the 
patients with DTHCA. Finally, a 7-gene prognostic risk model was developed based on gene set enrichment analysis.

Results:  Overall, we identified 54 differentially expressed ARGs in patients with DTHCA. A new gene risk model based 
on 7-ARGs (CDKN2A, FGF7, CTSB, HAP1, DAPK2, DNAJB1, and ITPR1) was developed in the training group and vali-
dated in the testing group. The predictive accuracy of the model was reflected by the area under the ROC curve (AUC) 
values. Univariate and multivariate Cox regression analysis indicated that the model could independently predict the 
prognosis of patients with THCA. The constrained nomogram derived from the risk score and age also showed high 
prediction accuracy.

Conclusions:  Here, we developed a 7-ARG prognostic risk model and nomogram for differentiated thyroid carci-
noma patients that can guide clinical decisions and individualized therapy.

Keywords:  Differentiated thyroid carcinoma, Autophagy-related genes, Prognostic risk model, Nomogram, Gene set 
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Introduction
Autophagy involves autophagosome induction, phago-
phore nucleation and expansion, and lysosomal degrada-
tion [1, 2]. During cellular stress, autophagy is activated 
to maintain cellular homeostasis and energy balance 

[3]. Autophagy has been implicated in numerous can-
cer types [4] but its role in cancer is controversial. For 
instance, inhibition of autophagy may contribute to 
tumour growth and metastasis but promote chemothera-
peutic sensitivity [5–7].

Thyroid cancer (THCA) is the most common endo-
crine malignancy [8]. Since the 1980s, advances in 
medical imaging technology and fine-needle aspira-
tion technology for thyroid nodules have led to the 
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detection of an increasing thyroid cancer incidence 
[9–11]. In 2017, the incidence of thyroid cancer in 
Korean women was 78.5/105, second only to breast can-
cer among female cancers [12]. Based on pathological, 
clinical, and genetic features, malignant thyroid cancer 
can be classified into 5 subtypes: papillary, follicular, 
Hürthle cell, poorly differentiated, and anaplastic thy-
roid carcinoma [13]. Follicular thyroid carcinoma and 
papillary thyroid carcinoma are known as differentiated 
thyroid carcinomas and account for > 96% of thyroid 
carcinomas; these subtypes have good overall survival 
after standardized treatment with surgery, radioiodine 
ablation, and hormone therapy [14, 15]. However, dis-
tant metastasis, refractoriness to radioactive iodine, 
or locoregional recurrence significantly reduce over-
all DTHCA survival [16–18]. Numerous reports have 
implicated autophagy in thyroid carcinoma growth and 
treatment. For instance, inhibiting lactate dehydroge-
nase A (LDHA) activates autophagy via AMPK signal-
ling, which has anti-cancer effects in papillary thyroid 
carcinoma [19]. Recent studies have shown that bai-
calein induces autophagy through ERK/PI3K/Akt sig-
nalling to suppress the growth of thyroid cancer cells 
[20]. Furthermore, autophagy can function as a thera-
peutic target for thyroid cancer treatment. For radi-
oiodine (RAI)-refractory differentiated thyroid cancer, 
increasing the iodide uptake and concentration abil-
ity of thyroid follicular cells can significantly improve 
therapeutic efficacy [21]. Some researchers have 
focused on mediating the active iodine uptake func-
tion of the sodium iodide symporter (NIS), finding that 
autophagy-activating compounds activate the accumu-
lation of intracellular Ca2+ and FOS, thus mediating the 
upregulation of NIS and restoration of RAI uptake [21, 
22]. Wang et al. also found that inhibition of autophagy 
increased the sensitivity of BRAF-mutated thyroid can-
cer cells to the chemotherapeutic drug vemurafenib 
[23]. The above research results reflect the great poten-
tial of autophagic mechanism in the field of thyroid 
cancer treatment. The development of new autophagy-
related diagnostic biomarkers may improve the early 
diagnosis and individualized treatment of DTHCA.

Here, autophagy-related genes (ARGs) were retrieved 
from the HADb database and GSEA website while 
THCA patients’ clinical features and gene expression 
data were downloaded from The Cancer Genome Atlas 
(TCGA). After differential expression analysis (between 
tumour and normal tissue) and functional enrichment 
analysis, prognosis-related genes were identified through 
Cox regression analyses. Next, a prognostic model was 
developed using LASSO-penalized COX regression anal-
ysis and its accuracy and independence validated. Finally, 
a prognostic nomogram for estimating patients’ overall 

survival based on independent clinical features and risk 
scores was constructed.

Materials and methods
Acquisition of ARGs
In total, 232 and 394 ARGs used in this study were 
acquired from the HADb database (http://​www.​autop​
hagy.​lu) and GO_AUTOPHAGY gene datasets from the 
Gene Set Enrichment Analysis (GSEA, http://​www.​gsea-​
msigdb.​org/​gsea/​msigdb), respectively, as described pre-
viously [24]. Selection of ARGs that were common to the 
2 datasets resulted in the identification of 531 ARGs for 
further analysis.

Clinical features and gene expression data of THCA 
patients in TCGA​
Clinical characteristics and transcriptome data were 
obtained from TCGA (https://​portal.​gdc.​cancer.​gov). 
In particular, the RNA-seq dataset contained data from 
510 DTHCA tumour and 58 non-tumour tissues. The 
DTHCA patients were randomly assigned to the training 
group (n = 252) and testing group (n = 249) by random 
selection in SPSS (v.22.0). Patient data included age, gen-
der, survival status, and pathological stage.

Selection of differentially expressed autophagy‑related 
genes
The Wilcoxon signed-rank test on R software (v.4.0.3) was 
employed to select differentially expressed autophagy-
related genes (DEARGs). The cut-off criteria were | false 
discovery rate (FDR) < 0.05 and log2(fold change) | ≥ 1.

Gene function analysis
To elucidate the DEARGs’ biological function, they were 
uploaded into Metascape (https://​metas​cape.​org). Sub-
sequently, enrichment analysis based on Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analyses was performed. The cut-off criteria 
were set as follows: p-value ≤ 0.05, Min Enrichment > 
1.5, and Min Overlap = 3.

Analysis of the PPI network
A PPI network was designed on the STRING v.11.0 data-
base (https://​www.​string-​db.​org) and visualized with 
Cytoscape v.3.8.2 (https://​cytos​cape.​org). MCODE v2.0, a 
Cytoscape plugin was used to identify densely connected 
modules (MCODE score ≥ 4.0, degree cut-off = 2).

Establishment of an ARG prognostic model
The DEARG expression data were subjected to univariate 
Cox regression analysis to assess the associations of ARGs 
with OS (p ≤ 0.05 was applied as the inclusion criterion). 
RNA expression was normalized by log2 transformation. 

http://www.autophagy.lu
http://www.autophagy.lu
http://www.gsea-msigdb.org/gsea/msigdb
http://www.gsea-msigdb.org/gsea/msigdb
https://portal.gdc.cancer.gov
https://metascape.org
https://www.string-db.org
https://cytoscape.org
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The hazard ratio (HR) was used to classify ARGs as pro-
tective or risk factors, with HR > 1 indicating protec-
tive factors and HR < 1 indicating risk factors. Based on 
LASSO-penalized Cox regression analysis, the prognosis-
associated genes were used to develop a prognostic model. 
The risk score was the linear combination of gene expres-
sion and was calculated for each patient as follows: risk 
score=

∑n
i=1

(

Coefi ∗ Expi
)

 . Coefi stands for the regression 
coefficient of an ARG. Expi indicates the relative expression 
values of that ARG. The patients were then classified into 
the high- and low-risk groups using the median risk score 
of the training group as cutoff. Thereafter, Kaplan-Meier 
(KM) analysis and two-sided log-rank test were applied 
to compare OS between the two groups. The R package 
“timeROC” was used for ROC curve analysis to evaluate 
the prognostic model’s specificity and sensitivity. The abil-
ity of the prognostic risk model and clinical characteristics 
to independently predict OS was elucidated based on uni-
variate and multivariate Cox regression analysis. Subgroup 
analysis was used to evaluate the model’s applicability.

Multivariate ROC analysis
To compare the prognostic accuracy of our ARG signa-
ture to the TNM staging system, multivariate ROC anal-
ysis was performed by R package “timeROC”, “survival”, 
and “survminer”.

Construction and validation of the nomogram
To enable clinicians to conveniently use the prognostic 
model in assessing the 3- and 5-year OS of patients with 
DTHCA, we used the independent risk factors (risk score 
and age) to create a nomogram and then validated its 
predictive ability by plotting calibration curves for com-
paring differences between predicted and actual survival. 
The Harrell concordance index (C-index) was used to 
assess the nomogram’s predictive accuracy.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) for both the high- 
and low-risk groups was performed based on the C2.CP.
KEGG.v7.4 gene set using GSEA software (version 4.1.0). 
The statistical significance criteria were set as NOM p < 
0.05 and FDR < 0.25.

Statistical analysis
Data analysis was performed using R version 4.0.3. KM 
analysis was performed using the R packages “survival” 
and “survminer”, and differences were assessed by the 
log-rank test. ROC curves were plotted using the R pack-
age “timeROC”. Univariate and multivariate Cox regres-
sion analysis was used to test the model’s prognostic 
independence. p ≤ 0.05 indicates statistical significance.

Cell culture
The human normal thyroid epithelial cell line N-thy-ori-3-1 
and the thyroid cancer cell lines FTC-133 and TPC-1 were 
obtained from Procell (Wuhan, China). All cell lines were 
cultured in DMEM (Irvine Scientific, Carlsbad, CA) sup-
plemented with 10% foetal bovine serum (FBS).

RNA extraction and qPCR analysis
RNA was extracted from the cell using HiPure Total 
RNA Mini Kit (R4111-03, Magen, China). HiScript 
II QRT SuperMix Kit (Vazyme, China) was used for 
reverse transcription. qRT-PCR was conducted using the 
SYBR GREEN MIX Kit (Vazyme, China) by the CFX96 
Real-time PCR Detection System (Bio-Rad, USA). 
GAPDH was selected as the internal housekeeping gene, 
and relative gene expression was calculated by the 2−ΔΔCt 
method. Each qRT-PCR was repeated three times.

Results
Identification of DEARGs in THCA patients
A total of 531 identified ARGs were used in the study 
(Table S1). Gene expression data and clinical informa-
tion on 58 normal and 510 DTHCA tissues were down-
loaded from the TCGA database (Table 1). Application 
of the criteria FDR < 0.05 and | log2(FC) | ≥ 1 resulted 
in 54 DEARGs. Of these, 23 were downregulated and 
31 were upregulated (Fig. 1A–C)

Functional annotation of DEARGs
To elucidate the biological function and mechanisms 
of the 54 DEARGs, GO biological process and KEGG 
pathway enrichment analyses were done. The DEARGs 
showed strong enrichment in the GO terms autophagy, 
intrinsic apoptotic pathway in response to endoplas-
mic reticulum stress and positive regulation of cell 
death (Fig. 2A, B). KEGG pathway enrichment analysis 
revealed that the DEARGs were closely related to path-
way autophagy-animal and apoptosis (Fig. 2C, D).

Analysis of the PPI network
Examination of the PPI network of interaction between 
the DEARGs revealed 47 nodes and 208 edges (Fig. 3A; red 
= upregulation, green = downregulation). Next, 30 genes 
with > 2 edges were selected as the hub DEARGs for fur-
ther analysis (Fig. 3B). Enrichment analysis of the module 
with the highest score revealed that the DEARGs in the 
module were associated with autophagy (Fig. 3C, D).

Design of the ARG‑based prognostic model
Univariate Cox regression analysis of the correlations of 
ARGs with OS in THCA patients identified 10 progno-
sis-related genes (p < 0.05, Fig.  4A). LASSO-penalized 
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Cox regression analysis was performed to establish a risk 
score prognostic model that included 7-genes (Fig.  4B, 
C). The risk score for each patient was determined 
using the equation: Risk score = (0.46026029*CDKN2A 
expression) − (0.29526375*CTSB expression) + 
(0.36900263*FGF7 expression) + (0.36720186*HAP1 
expression) − (0.03896433*DAPK2 expression) + 
(0.20590309*DNAJB1 expression) + (0.46793624*ITPR1 
expression) and median risk score was set as the cut-off 
value point to divide the training group into a high-risk 
group (n = 126) and low-risk group (n = 126). Results 
of the Kaplan-Meier analysis confirmed that patients 
with high-risk scores had poorer prognosis (p = 0.002, 
Fig.  5A). ROC analysis of the training group revealed 
AUC values for 1-, 3-, and 5-year OS of 0.765, 0.773, and 
0.897, respectively (Fig. 5C). Additionally, THCA patients 
in the training group were ranked by risk score to reveal 
the relationship between risk score and prognosis. This 

analysis showed that most of the dead patients were from 
the high-risk group and that higher risk scores correlated 
with increasing mortality rate (Fig. 5E, G, I). To validate 
the prognostic model, similar analyses were done on 
the testing group and testing group on the basis of the 
risk score and the same cut-off criteria used for analysis 
in the training group (Fig. 5F, H, J). Consistent with the 
training group, patients with high-risk scores showed 
poorer prognosis than those with low scores (p = 0.013, 
Fig. 5B). The ROC curve AUC values of the testing group 
were 0.967, 0.97, and 0.751 for 1-, 3-, and 5-year survival 
(Fig. 5D). Together, these data show that the prognostic 
model has good predictive accuracy.

Independent prognostic testing of the prognostic model
Using univariate and multivariate Cox regression analy-
sis, we assessed whether clinical features such as age, 
gender, tumour stage, N (lymph node), T (tumour), M 
(metastasis) (Table S2), as well as the risk score prog-
nostic model independently correlated with OS. Uni-
variate regression analysis found that age, tumour 
stage, T, and risk score influenced the OS. Multivariate 
regression analysis revealed that age (p = 0.01, HR = 
1.134 95%, CI=1.031–1.248) and risk score (p = 0.001, 
HR = 2.143 95% CI = 1.346–3.413) were independent 
risk factors for THCA prognosis (Fig.  6A, B). Clinical 
subgroup analysis with the prognostic model showed 
that prognosis was poorer in the high-risk group for 
both female (p = 0.006) and male (p = 0.003), disease 
stage III–IV (p < 0.001), age < 65 group (p = 0.042), 
and age ≥ 65 group (p = 0.035) (Fig. 6C–E). These data 
indicate that the model can be applied to predict prog-
nosis independently.

Comparison between ARG signature and TNM staging 
system
We plotted the ROC curves to compare the ARG sig-
nature and TNM staging system in the prediction of 
thyroid cancer prognosis. The ROC curves’ AUC values 
of ARG signature for 1-, 3-, and 5-year OS were 0.823 
(Fig.  7A), 0.871 (Fig.  7B), and 0.912 (Fig.  7C) higher 
than the AUC values of the TNM staging system. Mul-
tivariate ROC analysis revealed that our ARG signature 
displayed high prognostic value compared with the 
TNM staging system.

Construction and validation of the nomogram
To make the prognostic model convenient for clinicians, 
we quantified it and included other independent prog-
nostic factors to develop a nomogram. The nomogram 
for 3- and 5-year OS is shown in Fig. 8A. The nomogram’s 

Table 1  Clinical characteristics of the TCGA-THCA dataset

Clinical characteristic TCGA-THCA (n = 
501)

Percentage

Survival status
  Alive 485 96.8%

  Dead 16 3.2%

Age
  ≥ 65 76 15.2%

  < 65 425 84.8%

Gender
  Female 366 73.1%

  Male 135 26.9%

T
  T1 142 28.3%

  T2 164 32.7%

  T3 170 33.9%

  T4 23 4.6%

  TX 2 0.5%

N
  N0 229 45.7%

  N1 222 44.3%

  NX 50 10.0%

M
  M0 282 55.3%

  M1 9 1.8%

  MX 210 42.9%

AJCC stage
  Stage I 281 56.1%

  Stage II 52 10.4%

  Stage III 111 22.2%

  Stage IV 55 10.9%

  Unknown 2 0.4%
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concordance index (C-index) of 0.911 (se = 0.044) showed 
that the nomogram’s predictive ability was moderate 
(Fig. 8B, C).

Pathways associated with the prognostic genes
In the high-risk group, the genes were linked to 
autophagy and cancer pathways, including MAPK, 
MTOR, PPAR, regulation of autophagy, and WNT sig-
nalling (Fig. 9).

Expression level of signature mRNAs in the thyroid cancer 
cell
We performed qRT-PCR to validate the signature mRNA 
expression level. The results showed that ITPR1 was 
highly expressed in both FTC-133 and TPC-1 thyroid 
cancer cell lines, and the hazard ratio of ITPR1 indi-
cated that ITPR1 was an oncogene, and showed research 

potential of its biological mechanism. The expression of 
some mRNAs (FGF7, DAPK2) remains unknown due to 
missing primer sequence (Fig. 10).

Discussion
Rapid advances in sequencing technology have led to the 
development of molecular markers to facilitate the detec-
tion and monitoring of the clinical course of many can-
cers [25]. However, the use of individual genetic markers 
in determining thyroid cancer prognosis has significant 
limitations. For example, RAS mutations, especially 
NRAS codon 61 mutations are associated with high inci-
dence of distant metastasis but do not affect overall sur-
vival in THCA patients [26]. A study involving 599 PTC 
patients found that although the BRAF V600E mutation 
significantly increases PTC recurrence, it is not suit-
able as an independent prognostic factor [27]. Thus, an 

Fig. 1  Differentially expressed autophagy related genes (DEARGs) between thyroid carcinoma tissues and non-tumour normal tissues. (A)Volcano 
plot for the DEARGs blue: downregulate red: upregulate. (B) Heatmap of 54 DEARGs. The depth of blue indicates the level of low expression, and 
the depth of red indicates the level of high expression. (C) Boxplot of the DEARGs
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Fig. 2  GO and KEGG functional enrichment analysis. (A) The circus plot of GO biological processes enrichment analysis. (B) Heatmap for the 
GO biological processes enrichment analysis. (C) The bubble plot of KEGG pathway enrichment analysis. (D) Heatmap for the KEGG pathway 
enrichment analysis

Fig. 3  Protein-Protein Interaction (PPI) network analysis of DEARGs in THCA: (A) PPI network plot for DEAGRs Red: upregulate genes Green: 
downregulate genes. (B) Hub genes with more than 2 interactions. (C) Subnet modules of PPI network analysis. (D) GO biological processes 
enrichment analysis for the subnet modules
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effective, gene-based independent prognostic model is 
needed to guide personalized therapy. Numerous stud-
ies have implicated that autophagy is crucial for the 
tumour progression and efficacy of targeted therapy in 
thyroid carcinoma. Thus, we assume autophagy-related 
genes have potential prognostic value in DTHCA [28–
30]. To confirm our hypothesis, a multiple-step bio-
informatic analysis was performed. First, we acquired 
autophagy-related genes from the HADb database and 
GO_AUTOPHAGY gene datasets. Differential expres-
sion analysis and PPI network analysis were performed 
to identify the hub autophagy-related genes in DTHCA. 

Next, we used hub autophagy-related genes to screen out 
the autophagy-related genes associated with prognosis 
by univariate Cox regression analysis and constructed 
a seven-autophagy-related gene signature to predict 
DTHCA patients’ prognosis through LASSO-penalized 
Cox regression analysis.

Here, we constructed a prognostic model for DTHCA 
comprising CDKN2A, FGF7, CTSB, HAP1, DAPK2, 
DNAJB1, and ITPR1 genes. CDKN2A, also known as 
multiple tumour suppressor 1, is an inhibitor of CDK4 
that suppresses cancer cell proliferation by arresting 
the cell cycle at phase G1 [31–33]. However, CDKN2A 

Fig. 4  Key prognostic-related genes and construction of prognostic risk model: (A) Forest plot of 10 prognostic-related genes (B) Lasso Cox 
regression of 7 genes used in the prognostic risk model. (C) Lasso filters variables

(See figure on next page.)
Fig. 5  Performance and validation of the prognostic risk model: (A) Kaplan-Meier analysis of the training group. (B) Kaplan-Meier analysis of the 
testing group. (C) The ROC curve of overall survival for training group. (D) The ROC curve of overall survival for testing group. (E) The number of 
different risk group patients in training group. (F) The number of different risk group patients in testing group. (G) Survival status in training group. 
(H) Survival status in testing group. (I) Expression level of risk prognostic model gene in the training group. (J) Expression level of risk prognostic 
model gene in the testing group
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Fig. 5  (See legend on previous page.)
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Fig. 6  Independent prognostic testing and clinical subgroup analysis of the prognostic model: (A, B) Univariate and multivariate Cox regression 
analysis of clinical characteristic and risk score. (C) Gender. (D) Tumour stage. (E) Age

Fig. 7  Multivariate ROC analysis compare the predictive ability of ARG signature to TNM staging system: (A) Multivariate ROC curves for 1-year OS. 
(B) Multivariate ROC curves for 3-year OS. (C) Multivariate ROC curves for 5-year OS
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upregulation may enhance autophagy in non-endometri-
oid endometrial carcinoma, which protects cells against 
unfavourable conditions, promoting tumorigenesis [34]. 
A previous study revealed that CDKN2A CpG islands’ 
methylation results in the inactivation of the CDKN2A 
gene, the phenomenon of hyper-methylation was more 
present in the PTC patients with metastases and high 

AMES risk [35]. This research result indicated CDKN2A 
might function as a tumour suppressor in PTC, but the 
autophagy mediated by CDKN2A effect on the thyroid 
has not been reported until now. FGF7, a member of 
the FGF family, exerts biological functions by interact-
ing with its high-affinity binding receptor, FGFR2-IIIb 
[36]. The binding of FGF7 and FGFR2-IIIb could signal to 

Fig. 8  Nomogram and calibration curve of prognostic risk model: (A) Nomogram to predict 3- and 5-year overall survival of thyroid cancer (THCA) 
patients. (B, C) The calibration curves for 3-year (B) and 5-year (C) survival
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SRC tyrosine kinase inducing phosphorylation of F-actin 
binding protein and cortactin, which promote the migra-
tion of tumour cells [37]. In our bioinformatics analysis, 
FGF7 is lowly expressed in thyroid cancer; Tetsuo et  al. 
demonstrated that this expression is associated with its 

DNA promoter methylation [38]. It has been reported 
that in thyroid epithelial cells, FGFR2-IIIb reduces the 
expression of FGF7 and increases the ratio of FGF4/FGF7 
and couples epithelial signalling with expansion of stomal 
to favour tumour growth [39]. DNAJB1, which belongs 

Fig. 9  Gene set enrichment analysis

Fig. 10  RT-qPCR analysis for the signature mRNAs. (ns: not significant, *p < 0.05, **:p < 0.01, ***p < 0.001, ****p < 0.0001)
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to the heat shock 40 protein family is associated with 
autophagy and participates in tumour progression [40]. 
In autophagy, DNAJB1 acts as a link between WIPI2 and 
ATG2A and WIPI2 depletion reduces the autophago-
some number [41]. In addition, DNAJB1 is correlated 
to the essential tumour suppressor gene p53. Cui et  al. 
found that DNAJB1 interacts with PDCD5 and can facili-
tate tumour progression via inhibiting the apoptotic 
function of wtp53 [42]. DAPK2 is located on chromo-
some 12p11.21 and encodes a calcium/calmodulin (Ca2+/
CaM) dependent protein kinase [43]. Beclin-1, a core 
autophagic protein is a direct DAPK2 substrate. Acti-
vated DAPK2 induces autophagy via Beclin-1 phospho-
rylation [44]. 2,3′,4,4′,5-pentachlorobiphenyl (PCB118) 
enhances autophagy and damages thyroid ultrastructure 
via the DAPK2/PKD/VPS34 pathway [45]. Jiang et  al. 
revealed that DAPK2 could promote I-κBα degrada-
tion through inducing selective autophagy and further 
contributing to anaplastic thyroid carcinoma develop-
ment [46]. The effect of DAPK2 on differentiated thyroid 
tumours has remained to be reported. HAP1, encoding 
the Huntington (HTT) gene, is expressed in the nerv-
ous system and endocrine organs, such as the thyroid 
gland [47]. Several studies have shown that HAP1 func-
tion as an autophagy-regulating gene and plays a role 
in the development of neurodegenerative diseases and 
neurodevelopmental disorders [48, 49]. Diagnostic and 
therapeutic potential has been reported for HAP1 in 
breast and pancreatic cancer, but its role in thyroid can-
cer needs further study [50, 51]. In mammals, ITPR1 
participate in encoding IP3-gated calcium channel, reg-
ulating calcium homeostasis in endoplasmic reticulum 
[52]. ITPR1-mediated induction of autophagy is thought 
to promote renal cell carcinoma by suppressing NK cells 
[53]. In papillary thyroid carcinoma, expression of ITPR1 
was promoted via effect of lncRNA SLC26A4-AS1 medi-
ated ETS1 recruitment, suppressing tumour growth by 
enhancing autophagy [54]. However, regression analysis 
revealed high ITPR1 expression is associated with poor 
THCA prognosis. CTSB belongs to the cysteine protease 
family that affects tumour growth and invasion through 
interaction with cellular proteins [55]. CTSB upregula-
tion in papillary thyroid cancer correlates with positive 
lymph node metastasis and cancer cell migration via 
p38-mediated EMT [56]. CTSB regulates autophagy via 
enhancing the lysosomal membrane permeabilization 
process and reducing the functional lysosomes required 
by autophagy flux [57]. High CTSB expression has 
been associated with suberoylanilide hydroxamic acid 
(SAHA)-induced autophagy, which suppresses breast 
cancer growth [58]. This finding is consistent with our 
past findings and shows that the role of CTSB in thy-
roid cancer merits further investigation. Several analyses 

suggested that our prognostic model has excellent accu-
racy and independence. Our prognostic model’s predic-
tive ability for DTHCA patient’s OS is better than the 
widely used TNM staging system by conducting mul-
tivariate ROC analysis. However, this result still needs 
more patients to validate in the clinical practice. After 
that, a nomogram was constructed to screen out the 
relatively high-risk patients in clinical practice; and this 
population might need extended resection and lymphad-
enectomy. Nomograms are widely used to predict prog-
nosis, skip metastasis, and central lymph node metastasis 
in thyroid carcinoma [59–61]. To give clinicians a practi-
cal tool for individualized prognosis prediction, we con-
structed a nomogram based on the independent factors 
in the multivariate Cox regression analysis. It is worth 
mentioning that our nomogram has better predictive 
ability than other thyroid prognosis-related nomograms, 
as quantified by the concordance index (C-index:0.911 
95% CI:0.867–0.955), the C-index of Wang’s nomogram 
was 0.797 (95% CI: 0.730–0.864), and that of Zhang’s 
nomogram was 0.717 (95% CI, 0.603–0.831) [62, 63].

However, this study had two main limitations. First, 
all transcriptome data and information on clinical 
characteristics were obtained from public datasets 
and lacked external validation. Second, further clinical 
cases and experiments are needed to clarify the mecha-
nism by which ARGs affect thyroid cancer develop-
ment. Despite these limitations, our prognostic model 
showed excellent predictive accuracy and clinical appli-
cability and may guide individualized therapy.

Conclusion
In conclusion, we developed a novel seven-mRNA 
(CDKN2A, FGF7, CTSB, HAP1, DAPK2, DNAJB1, ITPR1) 
risk model and nomogram that could help assess the prog-
nosis of patients and guide clinical decision-making and 
individualized therapy for differentiated thyroid cancer.
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