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Abstract 

Background:  Clear cell renal cell carcinoma (ccRCC) is the most common and lethal renal cell carcinoma (RCC) histo-
logical subtype. Ferroptosis is a newly discovered programmed cell death and serves an essential role in tumor occur-
rence and development. The purpose of this study is to analyze ferroptosis-related gene (FRG) expression profiles and 
to construct a multi-gene signature for predicting the prognosis of ccRCC patients.

Methods:  RNA-sequencing data and clinicopathological data of ccRCC patients were downloaded from The Cancer 
Genome Atlas (TCGA). Differentially expressed FRGs between ccRCC and normal tissues were identified using ‘limma’ 
package in R. GO and KEGG enrichment analyses were conducted to elucidate the biological functions and pathways 
of differentially expressed FRGs. Consensus clustering was used to investigate the relationship between the expres-
sion of FRGs and clinical phenotypes. Univariate and the least absolute shrinkage and selection operator (LASSO) 
Cox regression analysis were used to screen genes related to prognosis and construct the optimal signature. Then, a 
nomogram was established to predict individual survival probability by combining clinical features and prognostic 
signature.

Results:  A total of 19 differentially expressed FRGs were identified. Consensus clustering identified two clusters of 
ccRCC patients with distinguished prognostic. Functional analysis revealed that metabolism-related pathways were 
enriched, especially lipid metabolism. A 7-gene ferroptosis-related prognostic signature was constructed to stratify 
the TCGA training cohort into high- and low-risk groups where the prognosis was significantly worse in the high-risk 
group. The signature was identified as an independent prognostic indicator for ccRCC. These findings were validated 
in the testing cohort, the entire cohort, and the International Cancer Genome Consortium (ICGC) cohort. We further 
demonstrated that the signature-based risk score was highly associated with the ccRCC progression. Further strati-
fied survival analysis showed that the high-risk group had a significantly lower overall survival (OS) rate than those in 
the low-risk group. Moreover, we constructed a nomogram that had a strong ability to forecast the OS of the ccRCC 
patients.

Conclusions:  We constructed a ferroptosis-related prognostic signature, which might provide a reliable prognosis 
assessment tool for the clinician to guide clinical decision-making and outcomes research.
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Introduction
Renal cell carcinoma (RCC) is one of the most com-
mon types of urological tumors, accounting for almost 
3% of all adult malignancies in western countries [1]. 
The incidence of RCC is increasing at an annual rate of 
3–5%, with an estimated 140,000 kidney cancer-related 
deaths per year [2, 3]. Clear cell renal cell carcinoma 
(ccRCC) is the most common and lethal subtype of RCC 
and accounts for 90% of all kidney cancers [1]. Despite 
improvements in the surgery and other comprehensive 
treatment methods, the clinical outcomes for ccRCC 
remain unsatisfactory, with a median overall survival 
(OS) ranging from 16 to 50 months based on site of met-
astatic involvement [4, 5]. Surgical resection remains the 
definitive treatment for patients with localized disease. 
Approximately 30% of patients present metastatic at the 
time of diagnosis, which requires systemic therapies and 
is associated with high mortality [2]. The complexity 
and heterogeneity of ccRCC have made prognostication 
and choice of treatment strategy difficult [6]. In ccRCC 
patients, the tumor grade at the time of diagnosis may 
affect the survival rate. The 5-year tumor-specific mor-
tality rate for grade 1 patients is about 7%, and that for 
grade 4 patients is about 58% [7]. Therefore, to improve 
the therapeutic outcomes and life quality of patients, 
there is an additional need for developing more effective 
biomarkers for early screening and diagnosis.

Programmed cell death (PCD) is a fundamental self-
destruction process in cell development and growth, 
which is widely considered a positive process that both 
prevents and treats cancer [8]. However, abundant stud-
ies have demonstrated that PCD can also cause unwanted 
effects that may even promote tumorigenesis, progres-
sion, and metastasis [9–11]. Ferroptosis is a recently dis-
covered type of PCD, which is characterized by the lipid 
peroxidation caused by iron accumulation [12]. Ferropto-
sis is closely related to the metabolism of iron, fatty acids, 
amino acids, as well as the biosynthesis of glutathione, 
phospholipids, and NADPH [13, 14]. The iron metabo-
lism and lipid peroxidation are reported to be two pivotal 
mechanisms of ferroptosis [15]. Preliminary evidence 
suggests that ferroptosis may have a tumor suppres-
sor function that could be potentially beneficial for can-
cer therapy [13]. On the other hand, substantial studies 
have also shown the crucial role of ferroptosis in tumor 
initiation and progression [16–19]. For example, some 
authors evaluated the GPX4 expression in HCC tissue 
samples and verified that GPX4 was significantly over-
expression and associated with an increased malignancy 

grade [20]. There is longstanding evidence that various 
primary tumors and also metastases express DPP4 to a 
variable extent [21]. In addition, other ferroptosis regula-
tory genes such as S1R [22], NRF2 [23], and NFS1 [24] 
have also been shown to be strongly correlated with tum-
origenesis and progression. Nevertheless, whether the 
ferroptosis-related genes (FRGs) affect the prognosis of 
ccRCC patients has not been investigated in detail.

In the present study, we performed a genome-wide 
comparative analysis of FRGs expression profiles and 
investigated differentiated FRGs expression patterns 
in ccRCC patients based on The Cancer Genome Atlas 
(TCGA) and The International Cancer Genome Consor-
tium (ICGC) databases. We constructed a 7-gene signa-
ture that could predict the outcome of ccRCC patients. 
Our results demonstrate that some FRGs play vital roles 
in ccRCC progression, which might serve as potential 
prognostic biomarkers and therapeutic targets for ccRCC 
patients.

We present the following article in accordance with the 
MDAR reporting checklist.

Materials and methods
Data acquisition
We obtained the RNA-sequencing data of 72 normal 
kidney and 539 KIPC samples with corresponding clini-
cal information from TCGA (https://​cance​rgeno​me.​nih.​
gov/) database. We excluded cases (n = 5) without fol-
low-up records (survival time code of 0 months). Time 
to follow-up ranges from 0.07 to 122.27 months with an 
average length of 37.90 months in this study. Patients (n 
= 48) with incomplete clinical data were excluded from 
this analysis. RNA-seq data and clinical information of 
another 90 ccRCC were downloaded from ICGC (https://​
dcc.​icgc.​org/) database, which was used as an independ-
ent external validation set.

We searched the previous literature to identify 61 
ferroptosis-related genes (FRGs) described so far to be 
involved in ferroptosis [13, 18, 25]. The list of genes is 
presented in Table S1. The expression data of the FRGs 
were extracted and used for subsequent analysis.

Data preprocessing and differentially expressed FRGs 
screening in ccRCC​
Raw expression data were background corrected, quan-
tile normalized, and logarithmic conversion using the R 
language. The ensemble gene IDs were then converted 
to gene symbols through the GRCh38 reference genome 
(http://​asia.​ensem​bl.​org/​index.​html) in this study. The 
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tumor and normal tissues were compared to identify 
differentially expressed FRGs based on the significance 
threshold of |logFC (fold change)| > 1 and a false discov-
ery rate (FDR) < 0.05. Next, these differentially expressed 
FRGs were subjected to construct protein-protein inter-
action (PPI) network on the Search Tool for the Retrieval 
of Interacting Genes/Proteins (STRING, http://​string.​
embl.​de/) [26]. Visualization was then rendered using 
Cytoscape (http://​www.​cytos​cape.​org/).

Functional enrichment analysis
The biological processes (BP), cellular components 
(CC), and molecular functions (MF) of the differently 
expressed FRGs were examined using gene ontology 
(GO) enrichment analysis. The Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analy-
sis was applied to explore the significant pathways of dif-
ferentially expressed FRGs. All enrichment analyses were 
conducted with the ‘ClusterProfiler’ R package [27]. A P 
value < 0.05 was regarded as statistically significant.

GSCALite (http://​bioin​fo.​life.​hust.​edu.​cn/​web/​GSCAL​
ite/) database represents an important online platform, 
which can help the cancer research community to discover 
cancer pathways and drugs [28]. In the current research, we 
also used the GSCALite database to determine the degree 
of gene activation or inhibition of classical pathways.

Non‑negative matrix factorization consensus clustering
To study the association between the expression profiles 
of FRGs and clinical subtypes in ccRCC, we clustered the 
ccRCC cohort into diverse clusters by consensus clus-
tering with ‘ConsensusClusterPlus’ in R [29]. Principal 
component analysis (PCA) was carried out to evaluate 
the gene expression patterns in the different clusters. We 
then compared the OS difference between clusters by the 
Kaplan–Meier survival analysis in R. Chi-square test was 
used to compare the frequency distribution of age, gen-
der, grade, AJCC stage, and TNM stage between different 
clusters. No analysis was performed on the N stage owing 
to some missing data.

Construction and validation of the ferroptosis‑related 
prognostic risk signature
The expression data of the differentially expressed FRGs 
were explored using the univariate Cox regression analy-
sis to screen FRGs with prognostic values (P < 0.05). The 
TCGA-ccRCC dataset was then randomly divided into 
a training cohort (n = 294) and a testing cohort (n = 192) 
for subsequent validation. The least absolute shrinkage 
and selection operator (LASSO) Cox regression was then 
conducted to construct a prognostic signature within the 
training cohort. We repeated the simulations 1000 times 
for which the optimal penalty parameter (λ) was identified 

via 10-fold cross validation following the minimum cri-
teria. In addition, only genes with non-zero coefficients 
were chosen to further calculate the risk score. The risk 
score was estimated using the following formula: Risk 
Score=

∑
n

i=1(Expi ∗ Coei) . N, Expi, and Coei represented 
gene number, level of gene expression, and coefficient value, 
respectively. The median risk score was chosen as a cutoff 
value to dichotomize the training cohort into high- and low-
risk groups. The Kaplan–Meier survival curve was used to 
evaluate the differences in OS between the two groups by 
the log-rank test. Additionally, the receiver operating char-
acteristic (ROC) curve and the area under the ROC curve 
(AUC value) was applied to estimate the accuracy of the 
prognostic signature [30]. To determine whether risk score 
was an independent prognostic factor, the univariate and 
multivariate Cox regression analyses were performed. The 
Kaplan–Meier survival curve of the individual gene in the 
signature was analyzed using the optimum cut-off value 
through the X-Tile software [31]. Besides, the testing cohort, 
the entire cohort, and the ICGC cohort were applied as vali-
dation cohorts to verify the predictive capacity of the con-
structed signature according to the same formula.

The clinical application of the ferroptosis‑related 
prognostic signature
To test the usability and feasibility of the signature in the 
clinic, the relationship between the ferroptosis-related 
risk signature and clinical parameters in TCGA-ccRCC 
patients was performed. We explored the power of the 
ferroptosis-related prognostic signature to predict the 
survival stratified by various clinical characteristics using 
the Kaplan–Meier analysis. In addition to this, a nomo-
gram integrated the prognostic signature and clinical 
parameters, was constructed as a quantitative prediction 
tool to evaluate clinical prognosis [32]. Following that, 
calibration curves were generated to evaluate the con-
cordance between actual and predicted survival. Moreo-
ver, the concordance index (C-index) was computed to 
evaluate the model performance for predicting progno-
sis, with a C-index of 1 indicating perfect discrimination 
and a C-index of 0.5 indicating a random guess. Decision 
curve analysis (DCA) was applied to assess the clinical 
usefulness of the nomogram by calculating the net ben-
efits for a range of threshold probabilities.

The expression patterns, SNVs, CNVs, and drug sensitivity 
of the genes in the signature
To confirm the reliability of the genes in the signature, we 
verified the expression in different pathological tumors 
based on the data from the TCGA database. GSCALite 
database was then employed to explore single nucleotide 
variations (SNVs) and copy number variations (CNVs) of 
the genes in the signature in ccRCC patients.

http://string.embl.de/
http://string.embl.de/
http://www.cytoscape.org/
http://bioinfo.life.hust.edu.cn/web/GSCALite/
http://bioinfo.life.hust.edu.cn/web/GSCALite/
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CellMiner (https://​disco​ver.​nci.​nih.​gov/​cellm​iner/​
home.​do) database was used to examine the expression 
levels of the signature-related genes in the different 
ccRCC cells and the resulting values were represented 
as a heatmap. To provide support for the drug selec-
tion of gene targeting therapy, we then analyzed the 
correlation of gene expression and drug sensitivity in 
ccRCC patients with the GSCALite database.

Results
Differentially expressed FRGs in ccRCC​
We first investigated the expression levels of 61 FRGs 
in ccRCC and normal samples based on the TCGA 

database. A total of 19 differentially expressed FRGs 
was eventually determined, including 13 downregu-
lated genes (MT1G, ACSF2, CHAC1, ACSL4, AKR1C2, 
PEBP1, PTGS2, AKR1C1, CBS, GOT1, ACO1, FDFT1, 
and HMGCR) and 6 upregulated genes (ALOX12, 
CD44, SLC7A11, ALOX5, HMOX1, and ALOX15B) in 
ccRCC tissues (Fig.  1A and B). The box diagram was 
utilized to exhibit the expression patterns, median 
values, and data ranges of the differentially expressed 
FRGs in tumor and non-tumor cases (Fig.  1C). The 
interaction network among these genes was presented 
in Fig.  1D, and the result indicated that PTGS2 and 
HMOX1 seemed to be the hub genes in this network.

Fig. 1  Identification of differentially expressed FRGs in the TCGA database. A The heatmap demonstrates the expression of 19 differentially 
expressed FRGs in ccRCC samples compared to normal samples. B Volcano plot of 19 differentially expressed FRGs in ccRCC samples compared to 
normal samples. C The box diagram exhibits the expression patterns, median values, and data ranges of the 19 differentially expressed FRGs. D The 
correlation network of the 19 differentially expressed FRGs

https://discover.nci.nih.gov/cellminer/home.do
https://discover.nci.nih.gov/cellminer/home.do
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Two ferroptosis subgroups were different in clinical 
phenotypes and OS via consensus clustering analysis
According to expression levels of 61 FRGs, the ccRCC 
patients were clustered into 2 subtypes (cluster 1 
and cluster 2) with k = 2 as the optimal value as the 
grouping was suboptimal when they were classified 
into more than 2 clusters (Fig. 2A–C). Moreover, PCA 
was performed to compare the transcriptional profile 
between cluster 1 and cluster 2. The result demon-
strated that there was a significant distinction between 
the two subgroups (Fig.  2D). We compared the OS 
between two clusters and observed that cluster 2 had 
a shorter OS than cluster 1 for the ccRCC patients 
(Fig. 2E). We then evaluated associations between the 
clustering and the clinicopathological parameters of 
ccRCC patients. The result showed that there were dif-
ferences in grade (P < 0.05), AJCC stage (P < 0.001), T 
stage (P < 0.01), M stage (P < 0.01), and survival sta-
tus (P < 0.05) between two clusters, but did not pre-
sent any differ significantly in age and gender (Fig. 2F). 
Therefore, these results suggested that ferroptosis was 
closely related to clinical phenotypes and the progres-
sion of ccRCC.

Functional enrichment analysis of the differentially 
expressed FRGs
To elucidate the biological functions and pathways of 
the 19 differentially expressed FRGs, GO functional 
annotation and KEGG pathway enrichment analyses 
were conducted. The results revealed that these dif-
ferently expressed FRGs were significantly enriched in 
the BP related to several metabolic processes, such as 
cofactor metabolic process, fatty acid metabolic pro-
cess, and fatty acid derivative metabolic process (Fig. 3A 
and B). Furthermore, the lipoxygenase pathway was 
also involved. In terms of CC, we found that the dif-
ferently expressed FRGs were significantly enriched in 
peroxisomal membrane, microbody membrane, and 
caveola. Through the MF, the differently expressed 
FRGs were notably related to oxidoreductase activity, 
dioxygenase activity, and lyase activity. In the KEGG 
pathway enrichment analysis, these genes were shown 
to be mostly associated with pathways in arachidonic 
acid metabolism, serotonergic synapse, and ferroptosis 
(Fig.  3C and D). In addition, we explored the effect of 
the differentially expressed FRGs in multiple classical 
signaling pathways on ccRCC using the GSLA database. 

The results revealed that some FRGs were associated 
with the activation or inhibition of oncogenic pathways 
(Fig. 3E and F).

Prognosis‑related FRGs selecting and construction 
of a prognostic signature based on seven FRGs 
in the training cohort
We conducted a univariate Cox regression analysis and 
found that expression levels of 11 FRGs (CBS, GOT1, 
FDFT1, HMOX1, CD44, ACO1, AKR1C2, PEBP1, 
CHAC1, HMGCR, and SLC7A11) were closely cor-
related with the OS (P < 0.05; Fig.  4A). Genes (CBS, 
CD44, AKR1C2, CHAC1, and SLC7A11) with HR > 1 
were considered as risk genes, while the remaining six 
genes (GOT1, FDFT1, HMOX1, ACO1, PEBP1, and 
HMGCR) with HR < 1 as protective genes. According 
to the expression of the eleven genes mentioned above 
in the training cohort, a prognostic risk signature was 
constructed using LASSO Cox regression analysis. As 
a result, a 7-gene prognostic signature (CBS, HMOX1, 
CD44, AKR1C2, CHAC1, HMGCR, and SLC7A11) was 
identified (Fig. 4B and C). Survival analyses based on the 
optimal cut-off expression of the individual gene showed 
that high expression of risk genes (CBS, CD44, AKR1C2, 
CHAC1, and SLC7A11) was correlated with poor prog-
nosis, while high expression of protective genes (HMOX1 
and HMGCR) displayed the opposite patterns (Fig. S1).

Based on the 7 candidate FRGs, the risk score of 
each patient was calculated according to the following 
formula: risk score = (3.8463 × CBS) + (− 0.0021 × 
HMOX1) + (0.0101 × CD44) + (0.0208 × AKR1C2) + 
(0.0252 × CHAC1) + (− 0.1354 × HMGCR) + (0.3774 
× SLC7A11). We then used the median risk score as a 
cutoff point for classifying ccRCC patients in the train-
ing cohort (n = 294) into high-risk group (n = 147) and 
low-risk group (n = 147). Kaplan–Meier survival curve 
analysis showed that OS was significantly different 
between the predicted two risk groups and the high-risk 
group had a significantly shorter survival time compared 
to the low-risk group (P = 4.709e-06; Fig. 4D). The ROC 
curve analysis suggested the risk signature had a promis-
ing predictive value for ccRCC survival prediction (AUC 
= 0.734) (Fig. 4E). We then ranked the risk scores of the 
patients and then analyzed their distributions (Fig.  4F). 
Compared to the high-risk group, the distributions of 
risk scores and the survival status showed survival rate 
and time were significantly increased in the low-risk 

Fig. 2  Consensus clustering analysis of FRGs expression profiles of the ccRCC patients in the TCGA dataset. A The consensus maps show the 
consensus clustering matrix for FRGs in the ccRCC dataset for k = 2, 3. The optimal clustering is represented by k = 2. B Consensus clustering 
cumulative distribution function (CDF) for k = 2 to 9. C The tracking plot for k = 2 to 9. D Principal component analysis demonstrates the gene 
expression differences between two clusters (cluster1 and cluster 2). E The OS in cluster 2 is significantly shorter than that in cluster 1. F Heatmap 
shows the clinical features between the two ccRCC patient clusters. *P < 0.05; **P < 0.01; ***P < 0.001

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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Fig. 3  GO and KEGG functional annotation analyses of 19 differentially expressed ferroptosis-related genes. A Bubble chart of significantly enriched 
GO term. B The circle shows the scatter map of the specified gene in each GO term. The red circles and blue circles represent upregulation and 
downregulation genes, respectively. The higher the Z-score value, the higher the enrichment pathway expression. C Bubble chart of significantly 
enriched KEGG pathways. D The circle shows the scatter map of the specified gene in each KEGG pathway. The red circles and blue circles represent 
upregulation and downregulation genes, respectively. The higher the Z-score value, the higher the enrichment pathway expression. E The pie chart 
of the correlation between differentially expressed FRGs and classical cancer pathways. Red color represents activates pathways and green color 
represents inhibits pathways. F Network diagram of the correlation between differentially expressed FRGs and classical cancer pathways. Red color 
represents activates pathways and blue color represents inhibits pathways
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Fig. 4  Construction and evaluation of a prognostic signature based on seven FRGs in the training cohort. A Univariate Cox analysis reveals 11 
candidate prognosis-related FRGs. B The optimal penalty parameter (λ) at the vertical line is selected following the minimum criteria (left). C Lasso 
coefficient profiles of the 11 candidates prognosis-related FRGs. D Kaplan–Meier curve shows that the high-risk group had significantly shorter OS 
than the low-risk group. E ROC curve demonstrates the veracity and reliability of the signature. F Risk score distribution of TCGA-ccRCC patients. G 
The distributions of risk scores and the survival status. H The heatmap displays that the expression levels of the seven FRGs in the high- and low-risk 
groups
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group (Fig.  4G). The heatmap displayed the expres-
sion of the seven candidate FRGs between two groups 
(Fig. 4H).

Validation of the ferroptosis‑related signature 
in the testing cohort, the entire cohort, and the ICGC 
cohort
To verify the accuracy and robustness of the prognos-
tic risk signature, the predictive ability of this signature 
was further validated in the testing cohort (n = 192), 
the entire cohort (n = 486). The prognostic risk score 
was calculated for patients in each cohort according to 
the prognostic signature. The detailed clinical features 
of ccRCC patients were listed in Table  1. We observed 
that the results in the testing and entire cohort were 
consistent with the outcome in the training cohort. 
Kaplan–Meier survival curve revealed that patients in 
the high-risk group presented worse OS than their low-
risk counterparts in both the testing cohort (P = 2.149e-
08) (Fig.  5A) and the entire TCGA-ccRCC cohort (P = 
7.724e-13) (Fig. 5D). ROC curve analysis indicated that 
the AUC values in the testing cohort and the entire 
TCGA- ccRCC cohort were 0.762 (Fig.  5B) and 0.749 

(Fig.  5E), respectively. The distribution of risk score, 
survival result, and the seven gene expression heatmap 
in the testing cohort and entire cohort were shown in 
Fig. 5C and Fig. 5F.

Then the prognostic signature was validated in the 
ICGC cohort (n = 90). The OS was significantly poorer 
in the high-risk group than in the low-risk group (P = 
1.592e-02) (Fig. S2A). The AUC value for the prognostic 
signature was 0.71, suggesting well-prediction perfor-
mances (Fig. S2B). The distribution of risk score, sur-
vival status, and gene expression of ccRCC patients in 
the ICGC cohort was presented in Fig. S2C, which were 
similar to the above cohorts. Taken together, these results 
revealed that the risk signature could accurately predict 
the clinical outcomes of ccRCC patients.

The ferroptosis‑related signature was an independent 
prognostic indicator
To identify whether the ferroptosis-related signature 
could serve as an independent prognostic indicator, uni-
variate and multivariate Cox regression analyses were 
conducted with the risk score and clinical parameters. In 
the TCGA training cohort, univariate analyses showed 

Table 1  Characteristics of ccRCC patients included in this study

Variable Training cohort (n = 294) Testing cohort (n = 192) TCGA cohort (n = 486) P
Number (%) Number (%) Number (%)

Age 0.9261

  ≤ 60 148 (50.34) 95 (49.48) 243 (50.00)

  > 60 146 (49.66) 97 (50.52) 243 (50.00)

Gender 0.6231

  Female 102 (34.69) 62 (32.29) 164 (33.74)

  Male 192 (65.31) 130 (67.71) 322 (66.26)

Grade 0.1454

  G1 7 (2.38) 3 (1.56) 10 (2.06)

  G2 125 (42.52) 85 (44.27) 210 (43.21)

  G3 126 (42.86) 68 (35.42) 194 (39.92)

  G4 36 (12.24) 36 (18.75) 72 (14.81)

AJCC stage 0.9623

  I 142 (48.3) 94 (48.96) 236 (48.56)

  II 32 (10.88) 18 (9.38) 50 (10.29)

  III 72 (24.49) 48 (25) 120 (24.69)

  IV 48 (16.33) 32 (16.67) 80 (16.46)

T stage 0.5685

  T1 144 (48.98) 98 (51.04) 242 (49.79)

  T2 41 (13.95) 20 (10.42) 61 (12.55)

  T3 101 (34.35) 71 (36.98) 172 (35.39)

  T4 8 (2.72) 3 (1.56) 11 (2.26)

M stage 0.9837

  M0 248 (84.35%) 161 (83.85%) 409 (84.16%)

  M1 46 (15.65%) 31 (16.15%) 77 (15.84%)



Page 10 of 18Sun et al. World Journal of Surgical Oncology          (2022) 20:120 

that the age and risk score were significantly related to 
OS. Besides, subsequent multivariate analyses suggested 
that the age and risk score were still strongly related to 
OS (Table  2). Both the testing and the entire cohorts 
yielded very similar results (Table  2). Therefore, the 
signature-based risk score was an independent adverse 
prognostic indicator for OS in ccRCC patients.

Prognostic risk score indicated strong associations 
with clinical characteristics in ccRCC​
To explore whether the prognostic signature could bet-
ter predict KIPC clinicopathological characteristics, 
an analysis was performed to explore the associations 
between the risk signature and clinical parameters. Sig-
nificant differences were observed between two groups in 

grade (P = 6.264e-06) (Fig. 6A), AJCC stage (P = 1.6973–
06) (Fig.  6B), T stage (P = 4.884e-06) (Fig.  6C), and M 
stage (P = 0.002) (Fig. 6D). Simultaneously, we observed 
that the advanced-stage tumor was closely linked to the 
high-risk patients; however, the early-stage tumors were 
closely linked to the low-risk patients.

To investigate the prognostic value of our ferroptosis-
related signature in different subgroups, we conducted 
stratified survival analysis with the following clinical 
parameters: age (≤ 60 and > 60), gender (female and male), 
tumor grade (G1–2 and G3–4), AJCC stage (I & II and III 
& IV), T stage (T1–2 and T3–4), and M stage (M0 and 
M1). Interestingly, survival analysis indicated the high-risk 
group suffered an obviously lower OS than those in the 
low-risk group for all hierarchical cohorts (Fig.  7). Thus, 

Fig. 5  Validation of the prognostic risk signature in the testing cohort and entire cohort. Kaplan–Meier curve analysis of high-risk and low-risk 
patients in the testing cohort (A) and the entire TCGA cohort (D). ROC curve analysis of the testing cohort (B) and the entire TCGA cohort (E). The 
risk score distribution, survival status, and risk gene expression in the testing cohort (C) and the entire TCGA cohort (F)
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Table 2  Univariate and multivariate Cox regression analysis of clinical factors and prognostic risk signature in the training cohort, the 
testing cohort and the entire cohort

Variable Training cohort Testing cohort Entire cohort

Univariate Multivariate Univariate Multivariate Univariate Multivariate

HR P HR P HR P HR P HR P HR P

Age: ≤ 65 vs. > 65 1.03 1.23e-03 1.04 1.10e-04 1.03 5.91e-03 1.04 9.28e-04 1.03 1.24e-05 1.04 2.98e-07

Gender: Female vs. Male 0.95 0.82 1.20 0.43 0.91 0.70 0.78 0.36 0.94 0.70 1.03 0.87

Grade: G1–2 vs. G3–4 2.05 7.1e-07 1.27 0.16 2.72 3.51e-09 1.67 7.49e-03 2.30 2.24e-14 1.31 3.09e-02

AJCC stage: I/II vs. III/IV 1.95 3.4e-13 1.75 0.08 1.91 3.42e-09 2.17 8.13e-03 1.93 9.60e-21 1.98 1.40e-03

T stage: T1–2 vs. T3–4 2.14 2.92e-11 1.00 0.99 1.80 1.35e-05 0.58 4.80e-02 1.99 3.80e-15 0.73 0.11

M stage: M0 vs. M1 4.07 1.76e-10 0.96 0.94 5.05 8.65e-11 1.38 0.50 4.39 2.68e-19 1.13 0.75

Risk score: Low vs. High 1.42 6.65e-12 1.46 5.13e-11 1.78 6.33e-08 1.68 4.14e-04 2.08 8.98e-22 2.04 6.91e-14

Fig. 6  The relationship between the risk score and clinicopathological parameters. The distribution of risk scores between high- and low-risk 
patients was stratified according to A Grade, B AJCC stage, C T stage, and D M stage
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these findings suggested the classification of the risk signa-
ture might be applied to precisely determine the patients 
with poor prognosis, regardless the clinical parameters.

Development of a personalized prognostic nomogram
A nomogram is a powerful tool that has been exten-
sively applied to quantitatively determine individuals’ 
risk in clinical decision-making by incorporating multi-
ple clinical factors [33]. To establish a viable method for 
predicting survival in ccRCC patients, we developed a 
prognostic nomogram based on the constructed prog-
nostic risk signature and several clinical features. The 
nomogram was devoted to estimating the probability 
of 1-, 3-, and 5-year survival (Fig. 8A). Each factor was 
assigned a score in proportion to its risk contribution 
to survival. The C-index used to evaluate the OS of the 
nomogram was 0.771. Calibration curves showed opti-
mal agreement when compared with an ideal model 
(Fig.  8B), particularly for 3- and 5-year survival pre-
dicted probabilities. DCA indicated that the nomogram 
had a wide and practical range of threshold probability 

for the TCGA-ccRCC cohort for predicting survival 
rates (Fig. 8C).

The expression patterns, SNVs, CNVs of the seven 
candidate genes in the signature for ccRCC patients
Additionally, we explored the association between the 
expression level of individual signature-related genes 
and clinicopathological parameters. In terms of grade 
alone, CBS, CD44, and CHAC1 increased with tumor 
grade, while HMGCR was decreased. No significant 
difference in the expression of HMOX1, AKR1C2, and 
SLC7A11 was detected between different tumor grades 
(Fig.  9A). As for different AJCC stage, CBS, HMGCR, 
CHAC1, and HMOX1 were significantly differentially 
expressed, with higher expression levels of CBS and 
CHAC1 indicating higher advanced AJCC stage, while 
HMGCR and HMOX1 showed the opposite trend 
(Fig. 9B). Regarding the T stage, it was noted that CBS, 
CD44, CHAC1, and SLC7A1 were significantly up-reg-
ulated in advanced T grade, whereas HMGCR was sig-
nificantly down-regulated (Fig.  9C). CBS, CD44, and 

Fig. 7  Kaplan–Meier survival analysis of the OS in high- and low-risk ccRCC patients stratified by clinical parameters. A, B Age (≤ 60 and > 60), C, D 
gender (female and male), E, F grade (G1–2 and G3–4), G, H AJCC stages (stages I/II and III/IV), I, J T stages (T1–2 and T3–4), and K, L M stages (M0 
and M1)
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HMGCR also represented similar trends in the N stage 
as the T stage (Fig. 9D). Taken together, the expression 
of CBS, CD44, CHAC1, and SLC7A1 were positively 
associated with tumor progression, while HMOX1 and 
HMGCR were negatively associated with tumor pro-
gression, which was in line with the above study. In addi-
tion, AKR1C2 expression appeared to be independent of 
tumor progression.

We then used the GSCALite database to study the 
SNVs of the seven candidate genes in the signature for 
ccRCC patients. The results indicated that the most fre-
quent mutation type was single nucleotide polymor-
phism (SNP) (Fig. S3A), and missense mutation was 
the most fraction among these mutations (Fig. S3B). In 
addition, C > T transversion was the most common type 
of SNV (Fig. S3C). The characteristic of the frequently 
mutated genes was showed in Fig. S3D. We also analyzed 
the CNVs of the seven candidate genes in the signature 

and found heterozygous mutations (amplification and 
deletion) in all genes (Fig. S3E).

Drug sensitivity of the seven candidate genes 
in the signature for ccRCC patients
We next utilized the CellMiner database to explore the 
expression of seven candidate genes in diverse kidney 
cancer cell lines, including 786-O, A498, ACHN, CAKI-
1, RXF 393, SN12C, UO-31, and TK-10. We observed 
that the expression levels of these genes showed great 
heterogeneity in different cell lines (Fig. 10A). In addi-
tion, we also investigated the drug sensitivity of the 
seven candidate genes for the ccRCC patients using the 
GSCALite database. Four of them (CD44, SLC7A11, 
AKR1C2, and HMOX1) were highly related to drug sen-
sitivity to a number of chemotherapy drugs (Fig.  10B), 
which provided direct support for drug targeted 
therapy.

Fig. 8  Development and validation of the nomogram predicting OS for ccRCC patients in the TCGA cohort. A Prognostic nomogram for ccRCC 
patients based on the constructed prognostic signature and clinicopathological parameters. B Calibration curves of the nomogram to predict OS at 
1, 3, and 5 years. C The DCA curve of the nomogram
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Discussion
It has been previously reported that ccRCC is a malig-
nant disease; the pathogenesis may be related to the 
reprogramming of energetic metabolisms, such as tri-
carboxylic acid cycle, aerobic glycolysis, amino acids, 
fatty acids, and dysfunctional oxidative phosphorylation 
[34, 35]. Ferroptosis is a programmed cell death caused 
by iron-dependent lipid peroxidation and is different 
from other types of cell death [13, 36]. A wide variety of 
human diseases, including cancer, have been associated 
with the abnormal function of ferroptosis, and inhibition 
or upregulation of ferroptosis modulates the metabolic 
reprogramming of cancer cells [13, 37]. At present, few 
studies have been performed on ferroptosis in ccRCC, 
and the results also remain controversial [38]. Therefore, 
investigating the expression patterns of FRGs is critical 
to understand the role of ferroptosis in ccRCC patients.

In this study, we systematically explored the RNA-
seq-expression and clinical information of ccRCC from 
the TCGA database. We found that 19 out of 61 FRGs 
were differentially expressed. To gain more insights 
into the functional roles of the differentially expressed 
FRGs in ccRCC, we carried out the functional enrich-
ment analysis to investigate the associated biological 
processes and pathways. Functional annotation showed 
that many biological processes and pathways related to 
metabolism were enriched, especially lipid metabolism. 
The current consensus is that the execution of ferrop-
tosis could result from the direct effects of lipid peroxi-
dation [13]. Moreover, the increased lipid peroxidation 
is a principal mechanistic pathway in renal carcinogen-
esis induced by different chemicals. Therefore, we have 

reason to believe that ferroptosis may be involved in 
tumor metabolic reprogramming. We then categorized 
the ccRCC cohort into two clusters through consensus 
clustering analysis. Interestingly, the OS was dramati-
cally different between the two clusters, suggesting that 
the levels of FRGs were significantly related to the prog-
nosis of ccRCC patients.

Using Cox and Lasso regression analyses, we con-
structed a risk signature based on seven prognostic FRGs 
(CBS, HMOX1, CD44, AKR1C2, CHAC1, HMGCR, and 
SLC7A11). Every patient with ccRCC was assigned into 
high- and low-risk groups according to the median risk 
score. We noticed that the OS was shorter for the high-
risk patients compared to the low-risk patients. The 
ROC curves revealed that the signature performed well. 
Recently, more and more studies have reported that the 
abnormal expression of the FRGs is involved in human 
cancer [15, 16, 37]. We further demonstrated that the 
signature-based risk score was highly associated with 
the ccRCC progression. It was also observed that the risk 
scores were higher in individuals with more advanced 
stage disease. Further stratified survival analysis showed 
that the high-risk group suffered a significantly lower OS 
rate than those in the low-risk group for all hierarchical 
cohorts. In addition, the signature of the seven FRGs was 
independent of other clinical factors. We then developed 
a nomogram that reduced the prognostic signature com-
bined with other clinical parameters into a single numeri-
cal estimate of the probability of an event to predict the 
prognosis of every individual patient. Taken together, the 
above results showed the potential role of ferroptosis in 
ccRCC.

Fig. 9  The expression patterns of the seven prognostic FRGs. Expression of CBS, HMOX1, CD44, AKR1C2, CHAC1, HMGCR, and SLC7A11 in ccRCC 
samples with different Grade (A), AJCC stage (B), T stage (C), and M grade (D)
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Our results showed that the expression level of CBS, 
CD44, AKR1C2, CHAC1, and SLC7A11was positively 
associated with the progression of ccRCC, while con-
trary results appeared in HMOX1 and HMGCR. Cys-
tathionine β-synthase (CBS), a fundamental enzyme in 
l-cystathionine synthesis, catalyzes the condensation 
of serine and homocysteine to form cystathionine [39]. 
An increasing body of evidence points to the key roles 
of CBS in tumor progressions, such as ovarian cancer 
[40] and colon cancer [41]. However, another research 
regarded CBS as a negative regulatory role in hepato-
cellular carcinoma [42]. CD44 is an important cancer 
stem cell marker in tumors and implicates in malignant 
processes including cell motility, tumor growth, and 
angiogenesis [43]. In fact, CD44 has been observed in 

many human tumors and is associated with a poor sur-
vival rate [44]. Aldo-Keto reductase 1C2 (AKR1C2), 
a member of Aldo-Keto reductase subfamily, could 
mediate similar prostaglandin D2 conversion toward 
the accumulation of proliferative signals through PI3K/
Akt signaling pathway to promote prostate cell prolif-
eration [45]. In addition, Zhang et al. demonstrated that 
AKR1C2 could act as a targetable oncogene in esopha-
geal squamous cell carcinoma via activating PI3K/AKT 
signaling pathway. ChaC glutathione-specific γ-glutamyl 
cyclotransferase 1 (CHAC1) is a proapoptotic γ-glutamyl 
cyclotransferase that depletes glutathione. There are 
few studies on CHAC1 at present, and its clinical sig-
nificances and biological functions in tumors remain 
unknown. Solute carrier family 7 member 11 (SLC7A11; 

Fig. 10  Association of the seven candidate FRGs expression with drug sensitivity. A The heatmap shows the difference of the seven candidate 
FRGs expression among seven human kidney cancer cell lines. B The sensitivity of seven candidate FRGs in various drugs. The red dots represent 
sensitivity to the drug, while blue dots represent the opposite
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in ccRCC patients. The underlying mechanisms whereby 
differentially expressed FRGs exert their biological roles 
in metabolism-associated biological processes. We then 
established a novel promising prognostic nomogram 
incorporating for providing individualized survival pre-
diction. Therefore, our constructed ferroptosis-related 
signature is of great clinical importance and may help 
facilitate personalized medicine in the clinical setting.
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also known as xCT) is a cystine/glutamate antiporter 
that imports cystine into the cells while exporting glu-
tamate [46]. SLC7A11 is highly expressed in human 
tumors, and its overexpression inhibits ROS-induced 
ferroptosis and abrogates p53(3KR)-mediated tumor 
growth suppression in xenograft models [47]. Results 
from a recent study suggested that smoking could 
induce the expression of SLC7A11, and the overexpres-
sion of SLC7A11 could promote lung tumor progression 
[48]. These results suggest that the four genes (CBS, 
CD44, AKR1C2, and SLC7A11) are significantly linked 
to tumorigenesis and progression, which are partly con-
sistent with our research.

Heme oxygenase-1 (HMOX-1), a phase II enzyme that 
responds to electrophilic stimuli, has been reported to 
play protective or detrimental effects in different dis-
eases, including cancers. HMOX-1 is elevated in a vari-
ety of human malignancies, indicating that it contributes 
to settle the tumor microenvironment for cancer cell 
growth, angiogenesis, and metastasis [49]. However, 
emerging evidence has revealed HMOX-1 functions as 
a negative regulator in erastin- and sorafenib-induced 
hepatocellular carcinoma and knockdown of HMOX-1 
by specific shRNA increased erastin- and sorafenib-
induced growth inhibition [23]. Hydroxymethylglutaryl-
coenzyme A reductase (HMGCR), the rate-limiting 
enzyme in the mevalonate pathway, is generally believed 
to be a candidate metabolic oncogene [50]. For example, 
Li et al. found that HMGCR is upregulated in gastric can-
cer and promotes the growth and migration of the cancer 
cells by activating Hedgehog/Gli1 signaling [51]. Inter-
estingly, another study reported that oral atorvastatin 
and its metabolites are detectable in human breast sam-
ples, suggesting that HMGCR may be directly inhibited in 
breast tumors [52]. It is evident from the above study that 
HMOX-1 and HMGCR have both tumor-promoting and 
tumor-suppressive properties. Clearly, further research will 
be needed to elucidate the role of cancers, especially ccRCC.

However, despite these encouraging results, there 
existed some limitations. Firstly, since the retrospective 
nature of this study, a prospective research is required to 
assess the potential applicability of our conclusions. More-
over, it is necessary to perform additional experiments to 
confirm the specific mechanism of key genes for clinical 
applications. In addition, some prognostic genes may be 
excluded because merely a single phenotype was consid-
ered to construct a prognostic signature in our study.

Conclusions
In conclusion, we provided insights into the roles of FRGs 
in ccRCC and constructed a promising risk prognostic 
signature that exhibited potential as a biomarker of OS 
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