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Abstract 

Objective:  Lung adenocarcinoma (LUAD) is one of the major subtypes of lung cancer that is associated with poor 
prognosis. The aim of this study was to identify useful biomarkers to enhance the treatment and diagnosis of LUAD.

Methods:  GEO2R was used to identify common up-regulated differentially expressed genes (DEGs) in the GSE32863, 
GSE40791, and GSE75037 datasets. The DEGs were submitted to Metascape for gene ontology and pathway enrich-
ment analysis as well as construction of the protein-protein interaction (PPI) network, while the molecular complex 
detection (MCODE) plug-in was employed to filter important subnetworks. The expression levels of the hub genes 
and their prognostic values were evaluated using the UALCAN, GEPIA2, and Kaplan-Meier plotter databases. The 
timer algorithm was utilized to determine the correlation between immune cell infiltration and the expression levels 
of hub genes in LUAD tissues. In addition, the hub gene mutation landscape and the correlation analysis with tumor 
mutational burden (TMB) score were evaluated using maftools package and ggstatsplot package in R software, 
respectively.

Results:  We identified 156 common up-regulated DEGs, with gene ontology and pathway enrichment analysis 
indicating that they were mostly enriched in mitotic cell cycle process and cell cycle pathway. DEGs in the subnet-
work with the largest number of genes were AURKB, CCNB2, CDC20, CDCA5, CDCA8, CENPF, and KNTC1. The seven 
hub genes were highly expressed in LUAD tissues and were associated with poor prognosis. These hub genes were 
negatively correlated with most immune cells. The somatic mutation landscape showed that AURKB, CDC20, CENPF, 
and KNTC1 had mutations and were positively correlated with TMB scores.

Conclusions:  Our findings demonstrate that increased expression of seven hub genes is associated with poor prog-
nosis for LUAD patients. Additionally, the TMB score indicates that the high expression of hub gene increases immune 
cell infiltration in patients with lung adenocarcinoma which may significantly improve response to immunotherapy.
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Introduction
Lung cancer is the leading cause of cancer-related mor-
bidity and mortality worldwide and is mainly divided 
into non-small cell lung cancer and small cell lung can-
cer [1]. The proportion of lung adenocarcinoma (LUAD) 
in non-small cell lung cancer is approximately 55% [2]. 
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Recently, there has been a significant increase in the inci-
dence of LUAD, but the specific pathogenesis of LUAD 
still remains unclear [3]. Despite the availability of several 
therapeutic options for patients with LUAD, including 
surgery, targeted therapy, and immunotherapy, the over-
all survival rate of patients is still poor [4, 5]. As a result, 
it is critical to identify effective biomarkers associated 
with the progression of LUAD that could serve as thera-
peutic targets.

The recent advancement in chip sequencing technol-
ogy has generated a lot of microarray data from various 
tumor samples [6]. Bioinformatics techniques have been 
extensively utilized in cancer research to identify use-
ful biomarkers using large amounts of microarray data-
sets [7, 8]. The purpose of this research was to analyze 
three LUAD microarray datasets from the GEO database, 
namely GSE32863, GSE40791, and GSE75037. GEO2R 
algorithms were used to identify differentially expressed 
genes (DEGs) between tumor and normal tissues. The 
common up-regulated genes were then analyzed in 
Metascape for gene ontology and pathway enrichment 
[9, 10]. Metascape was also used for PPI network con-
struction, and the MCODE online plug-in was utilized to 
identify the significant subnetworks of the PPI network 
[9]. The subnetwork with the greatest number of hub 
genes was chosen for further analysis. We compared the 
expression levels of key genes between tumor and normal 
samples using the GEPIA2 and UALCAN datasets [11, 
12] and determined their prognostic value for patients 
with LUAD using the Kaplan-Meier Plotter database 
[13]. Finally, the Timer database was used to explore the 
correlation between hub genes and the infiltration of six 
different types of immune cells in LUAD tissues, includ-
ing B cells, CD4+ T cells, CD8+ T cells, neutrophils, 
macrophages, and dendritic cells [14]. Our aim was to 
identify useful prognostic markers and immune-related 
therapeutic targets.

Methods
Acquisition of data
All GSE datasets analyzed were downloaded from the 
GEO database—an open access database for storing 
microarray and high-throughput sequencing data [15]. 
The GSE32863 dataset contained data for 58 LUAD tis-
sues and 58 adjacent normal lung tissues analyzed using 
the Illumina HumanWG-6 v3.0 expression beadchip; 
the GSE40791 dataset contained data for 94 LUAD sam-
ples and 100 normal samples analyzed using the Affy-
metrix Human Genome U133 Plus 2.0 Array, while the 
GSE75037 dataset contained data for 83 LUAD tis-
sues and 83 adjacent normal tissues analyzed using the 
Illumina HumanWG-6 v3.0 expression beadchip. In 
GSE32863 and GSE75037, each pair of tissues came from 

the same patient, but in GSE40791, each sample was 
from each patient. Therefore, a total of 335 patients were 
included in this study.

Analysis of DEGs
GEO2R was used to identify DEGs in the three GSE data-
sets with the parameters set as P > 0.05 and |logFC| > 2. 
A volcano map was used to visualize the DEGs, while a 
Venn diagram was used to identify up-regulated and 
down-regulated DEGs in the three GSE datasets. In this 
study, we were interested in the up-regulated DEGs that 
were common among the three datasets.

Analysis of gene ontology and pathway enrichment
Gene ontology (GO) has been widely used to analyze 
specific functions of genes classified into molecular func-
tion (MF), biological process (BP), and cellular compo-
nent (CC) after annotating a given gene list. The purpose 
of pathway enrichment analysis is to use statistical meth-
ods to find significantly enriched pathway analysis in the 
target gene list. Metascape is an online tool for GO and 
biological pathway enrichment analysis, which presents 
results in form of high-quality charts and sententious 
explanation [9]. We used Metascape for GO analysis of 
the common up-regulated DEGs with the cutoff of P 
value, min overlap, and min enrichment set as less than 
0.01, 3, and 1.5, respectively.

Construction of the PPI network
We also used Metascape to construct the PPI network—
the interaction network of all proteins based on the rel-
evance and similarity of the submitted gene list. We then 
selected the significant subnetworks from the overall PPI 
for subsequent analysis using the MCODE plug-in. We 
investigated the subnetwork with the largest number of 
genes and explored the characteristics of its constituent 
hub genes.

Verification of the expression level of hub genes
GEPIA2 is a database that can analyze RNA sequenc-
ing expression data from 9736 tumor samples and 8587 
normal samples from the TCGA and GTEx projects 
[11], while UALCAN is a comprehensive and interactive 
online database that validates the expression level of can-
didate genes in different tumors in the TCGA database 
[12]. The GEPIA2 database was used to verify the differ-
ential expression of hub genes between the tumor tissues 
and adjacent tissues of LUAD patients, while the UAL-
CAN database was used to analyze the expression level 
of hub genes in different stages in patients with LUAD. In 
addition, we further analyzed the co-expression correla-
tion between hub genes and the expression level of hub 
genes in different cancers using GEPIA2.
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Analysis of prognosis
The Kaplan-Meier Plotter is an online survival analysis 
database for 54,000 genes in 21 malignant tumors [16]. 
We used the Kaplan-Meier Plotter to determine the abil-
ity of the hub genes to predict OS of LUAD patients. In 
addition, we also analyzed the prognostic significance 
of the hub genes in different types of cancer using the 
GEPIA2 database.

Analysis of immune infiltration, somatic mutation, 
and TMB score
We collected mRNA-seq data from 513 lung adenocarci-
noma patients in the TCGA database. We then used the 
Timer algorithm to explore the infiltration of six immune 
cells, including B cell, macrophage, myeloid dendritic 
cell, neutrophil, CD4+ T cell CD4+, and T cell CD8+ 
in specific tumor tissues [14]. The multi-gene correla-
tion map was displayed using the pheatmap and ggstat-
splot packages in R software. To investigate the mutation 
frequency of hub genes in lung adenocarcinoma, we 
downloaded the hub gene mutation data from the TCGA 
database and visualized the somatic mutation landscape 
using the maftools package in R software. The ggstatsplot 
package in R software was used to explore the correlation 
between the TMB score and the hub genes.

Results
Identification of DEGs in LUAD
We identified 307 up-regulated and 591 down-regulated 
DEGs in the GSE32863 dataset (Fig.  1A), 2298 DEGs 
including 721 up-regulated and 1250 down-regulated 
genes in the GSE40791 dataset (Fig. 1B), and 2550 DEGs 
including 1122 up-regulated and 1428 down-regulated 
genes in the GSE75037 dataset (Fig.  1C). Venn diagram 
analysis identified 156 common up-regulated genes and 
434 down-regulated genes among the three GSE datasets 
(Fig. 1D, E).

Gene ontology functional and pathway enrichment 
analysis of DEGs
In this study, Metascape was used to perform gene 
ontology functional annotation and pathway enrich-
ment analysis of the common up-regulated genes 
from the three datasets. Gene ontology was explored 
according to the following three categories, namely bio-
logical processes (BP), cellular components (CC), and 
molecular functions (MF). BP terms were most signifi-
cantly enriched in the mitotic cell cycle process, spin-
dle assembly, meiotic spindle assembly, collagen fibril 
organization, and double-strand break repair via break-
induced replication (Fig.  2A, Table  1). CC terms were 
enriched in midbody, apical plasma membrane, cell-cell 

Fig. 1  Screening of differentially expressed genes (DEGs). A–C Volcano maps showing the distribution of DEGs in three datasets. D, E Venn 
diagrams showing the intersection of common up-regulated and common down-regulated genes, respectively
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junction, lateral plasma membrane, and fibrillar colla-
gen trimer (Fig. 2B, Table 2). MF terms were most sig-
nificantly enriched in cell adhesion molecule binding, 
kinase binding, extracellular matrix structural constitu-
ents, protein homodimerization activity, and calcium 
ion binding (Fig.  2C, Table  3). In addition, the results 
of pathway enrichment analysis revealed that all up-
regulated DEGs were mainly enriched in cell cycle, cell 
cycle checkpoints, integrin cell surface interactions, 

APC/C:Cdh1-mediated degradation of Cdc20, and 
other APC/C:Cdh1-targeted proteins in late mitosis/
early G1 and SUMOylation of DNA replication pro-
teins (Fig. 2D, Table 4).

PPI network construction and hub gene screening
The PPI network was constructed using Metas-
cape and each code represented the specific com-
mon up-regulated DEG in the network (Fig.  3A). The 

Fig. 2  GO and pathway enrichment analysis of common up-regulated DEGs. A–C The enrichment analysis results of biological processes (BP), 
cellular components (CC), and molecular functions (MF). D The results of pathway enrichment analysis

Table 1  The analysis of biological process enrichment

Term Description Count LogP

GO:1903047 Mitotic cell cycle process 23 −10.799

GO:0051225 Spindle assembly 8 −5.971

GO:0090306 Meiotic spindle assembly 3 −5.039

GO:0030199 Collagen fibril organization 5 −4.645

GO:0000727 Double-strand break repair via break-induced replication 3 −4.451

GO:0007096 Regulation of exit from mitosis 3 −3.970

GO:0061484 Hematopoietic stem cell homeostasis 3 −3.893

GO:0048871 Multicellular organismal homeostasis 11 −3.860

GO:0098742 Cell-cell adhesion via plasma-membrane adhesion molecules 8 −3.807

GO:0097435 Supramolecular fiber organization 13 −3.559

GO:0007218 Neuropeptide signaling pathway 5 −3.500

GO:0010035 Response to inorganic substance 11 −3.428

GO:0015718 Monocarboxylic acid transport 5 −3.408

GO:0009312 Oligosaccharide biosynthetic process 3 −3.307

GO:0010951 Negative regulation of endopeptidase activity 7 −3.275

GO:2000027 Regulation of animal organ morphogenesis 5 −3.172

GO:0007169 Transmembrane receptor protein tyrosine kinase signaling pathway 11 −3.099

GO:0045216 Cell-cell junction organization 6 −3.037

GO:0030177 Positive regulation of Wnt signaling pathway 5 −2.951

GO:0031669 Cellular response to nutrient levels 6 −2.907
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molecular complex detection (MCODE) algorithm 
was applied to identify densely connected network 
components. In the whole screening process, seven 
clusters of MCODE with closely related functions 
were found and displayed in different colors, namely 
MCODE1, MCODE2, MCODE3, MCODE4, MCODE5, 
MCODE6, and MCODE7 (Fig.  3B). MCODE1 con-
sisted of AURKB, CCNB2, KNTC1, CENPF, CDCA8, 
CDCA5, and CDC20; MCODE2 consisted of COL3A1, 
COL1A1, COL5A2, and COL10A1; MCODE3 consisted 
of TUBB2B, MCM4, PRC1, and KIF20A; MCODE4 
consisted of EEF1A2, MCM2, and CDC45; MCODE5 
consisted of LCN2, MMP9, and TCN1; MCODE6 con-
sisted of AURKA, PTTG1, and UBE2C; MCODE7 con-
sisted of MUC20, GALNT6, and MUC16, respectively. 
MCODE1 had the largest number of genes and further 
analysis was carried out to determine the clinical sig-
nificance of each gene in LUAD.

Expression analysis
Using the expression analysis function in the GEPIA2 
database, we found that all the genes in MCODE1 apart 
from KNTC1 were significantly up-regulated in tumor 
tissues compared to normal samples (Fig.  4). Further-
more, we found that the expression levels of the seven 
genes were significantly higher in the tumor tissue 
than in normal tissues regardless of tumor stage using 
UALCAN (Fig.  5). The seven genes were also highly 
expressed in most cancers (Supplementary Fig. 1).

Survival analysis
Kaplan-Meier analysis showed that high expression levels 
of the hub genes were associated with shorter overall sur-
vival of patients with LUAD (Fig. 6). The specific data is 

Table 2  The analysis of cellular component enrichment

Term Description Count LogP

GO:0030496 Midbody 9 −5.802

GO:0016324 Apical plasma membrane 11 −5.142

GO:0005911 Cell-cell junction 12 −4.671

GO:0016328 Lateral plasma membrane 5 −4.645

GO:0005583 Fibrillar collagen trimer 3 −4.451

GO:0031261 DNA replication preinitiation complex 3 −4.451

GO:0045120 Pronucleus 3 −4.339

GO:0098687 Chromosomal region 8 −3.127

GO:0045171 Intercellular bridge 4 −3.091

GO:0048471 Perinuclear region of cytoplasm 11 −2.553

GO:0016363 Nuclear matrix 4 −2.465

GO:0035580 Specific granule lumen 3 −2.304

Table 3  The analysis of molecular function enrichment

Term Description Count LogP

GO:0050839 Cell adhesion molecule binding 14 −5.655

GO:0019900 Kinase binding 15 −4.649

GO:0005201 Extracellular matrix structural constituent 7 −4.293

GO:0042803 Protein homodimerization activity 13 −3.950

GO:0005509 Calcium ion binding 13 −3.748

GO:0008028 Monocarboxylic acid transmembrane 
transporter activity

4 −3.516

GO:0008017 Microtubule binding 7 −3.080

GO:0019842 Vitamin binding 5 −2.831

GO:0017111 Nucleoside-triphosphatase activity 10 −2.596

GO:0098632 Cell-cell adhesion mediator activity 3 −2.594

GO:0004866 Endopeptidase inhibitor activity 5 −2.475

GO:0016860 Intramolecular oxidoreductase activity 3 −2.473

GO:0003682 Chromatin binding 9 −2.325

GO:0005518 Collagen binding 3 −2.175

Table 4  The analysis of significant pathway enrichment

Term Description Count LogP

R-HSA-1640170 Cell cycle 21 −9.543

R-HSA-69620 Cell cycle checkpoints 12 −7.004

R-HSA-216083 Integrin cell surface interactions 7 −6.318

R-HSA-174178 APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 
targeted proteins in late mitosis/early G1

5 −4.237

R-HSA-4615885 SUMOylation of DNA replication proteins 4 −3.946

R-HSA-5173105 O-linked glycosylation 5 −3.408

R-HSA-421270 Cell-cell junction organization 4 −3.352

R-HSA-202733 Cell surface interactions at the vascular wall 5 −2.993

R-HSA-196854 Metabolism of vitamins and cofactors 5 −2.375

R-HSA-193648 NRAGE signals death through JNK 3 −2.365

R-HSA-983189 Kinesins 3 −2.365

R-HSA-69275 G2/M Transition 5 −2.319
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as follows: The HR of AURKA is 2.78, 95% CI is 2.2–3.51, 
and Logrank P is less than 1e−16; the HR of CCNB2 is 
2.68, 95% CI is 2.05–3.49, and Logrank P = 4.1e−14; the 
HR of CDC20 is 2.46, 95% CI is 1.92–3.15, and Logrank P 
= 1.2e−13; the HR of CDCA5 is 2.32, 95% CI is 1.8–2.99, 
and Logrank P = 2.5e−11; the HR of CDCA8 is 1.99, 
95% CI is 1.58–2.51, and Logrank P = 3.5e−09; the HR 
of CENPF is 1.66, 95% CI is 1.31–2.10, and Logrank P 
= 2.1e−05; the HR of KNTC1 is 1.47, 95% CI was 1.16–
1.86, and Logrank P = 0.0015. High expression of the 
hub genes was also associated with poor prognosis in the 
majority of cancers, although the results in LUAD and 
lung squamous cell carcinoma were inconclusive (Sup-
plementary Fig. 2).

Analysis of immune infiltration, somatic mutation, 
and TMB score
To investigate the potential function of the hub genes in 
LUAD patients, we used the TIMER algorithm to deter-
mine if the expression levels of the hub genes were asso-
ciated with the infiltration levels of six types of immune 
cells in the tumor microenvironment of LUAD. AURKB 
was negatively correlated with B cell, macrophage, mye-
loid dendritic cell, CD4+ T cell, and CD8+ T cell infil-
tration; CCNB2 was negatively correlated with B cell, 
macrophage, myeloid dendritic cell, and CD4+T cell 
infiltration; CDC20 was negatively correlated with B cell, 
macrophage, myeloid dendritic cell, and CD4+ T cell 

infiltration; CDCA5 was negatively correlated with neu-
trophil, but positively correlated with B cell and CD4+T 
cell infiltration; CDCA8 was negatively correlated with 
B cell and CD4+ T cell, but positively correlated with 
neutrophil infiltration; CENPF were negatively corre-
lated with B cell and myeloid dendritic cell infiltration; 
KNTC1 was negatively correlated with B cell but posi-
tively correlated with neutrophil infiltration (Fig.  7A, 
Table 5).

Somatic mutation analysis showed that AURKB, 
CDC20, CENPF, and KNTC1 had different types of 
mutations in patients with lung adenocarcinoma, and the 
main type was missense mutation (Fig. 7B). In addition, 
an increase in the expression of the four genes was asso-
ciated with an increase in the TMB score (Fig.  7C–F). 
High TMB scores are associated with good response to 
immune therapy [17].

Discussion
LUAD is one of the most important subtypes of non-
small cell lung cancer, with high incidence and mortal-
ity [18]. Currently, there are no effective biomarkers for 
the accurate diagnosis of LUAD patients [19]. Therefore, 
we used bioinformatics tools to screen candidate genes 
for the diagnosis and prognosis of LUAD from the GEO 
database. In addition, we explored the correlation among 
the immune cell infiltration and TMB score and the 
expression levels of these genes in the LUAD tissues.

Fig. 3  The protein-protein interaction (PPI) network constructed using common up-regulated DEGs. A The landscape of PPI network. B The 
significant subnetworks originating from the overall PPI network
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First, we identified 156 common up-regulated genes 
and 434 common down-regulated genes among the 
three GSE datasets obtained from the GEO database. 
The 156 common up-regulated genes were then sub-
mitted to Metascape for GO and pathway enrich-
ment analysis. Biological processes (BP), molecular 
functions (MF), and cellular components (CC) were 
included in the GO analysis. Subsequently, the PPI 
network was constructed based on common up-regu-
lated genes using Metascape and the MCODE plug-in 
was used to screen out seven important subnetworks 
in the PPI network, namely MCODE 1, MCODE 2, 
MCODE 3, MCODE 4, MCODE 5, MCODE 6, and 
MCODE 7 [20]. MCODE 1 contained the largest num-
ber of key genes, including AURKB, CDC20, CDCA5, 
CDCA8, CENPF, KNTC1, and CCNB2. Expres-
sion analysis using GEPIA2 and UALCAN databases 

showed that all the hub genes in MCODE 1 except 
KNTC1 were highly expressed in LUAD tissues com-
pared to normal tissues. In addition, survival analysis 
using the Kaplan-Meier Plotter database showed that 
high expression of these key genes was associated with 
poor prognosis in patients with LUAD. Furthermore, 
we explored the correlation of these candidate genes 
with the infiltration of six immune cells in patients 
with LUAD to determine the potential response of 
the tumors to immunotherapy. It is worth noting 
that through somatic mutation analysis, we found 
that AURKB, CDC20, CENPF, and KNTC1 had dif-
ferent frequencies of mutations in patients with lung 
adenocarcinoma, and mainly missense mutation type. 
Furthermore, we analyzed the correlation between 
the expression of four genes and the TMB score and 
found that with the increase of the expression of these 

Fig. 4  Comparison of the expression levels of hub genes between tumor tissues and normal tissues in LUAD patients using the GEPIA2 database. 
A–G The expression levels of AURKB, CCNB2, CDC20, CDCA5, CDCA8, CENPF, and KNTC1 in LUAD tissues are significantly higher in tumor tissues 
than in normal lung tissues



Page 8 of 14Xu et al. World Journal of Surgical Oncology           (2022) 20:99 

genes in patients with lung adenocarcinoma, the TMB 
score also increased. It is well known that a high TMB 
score indicates that cancer patients have better immu-
notherapy effects. Therefore, if we can improve the 
proportion of immune cell infiltration in lung adeno-
carcinoma tissues in future clinical studies, it may be 
able to effectively improve the efficacy of immunother-
apy and prolong the survival period of patients with 
lung adenocarcinoma.

AURKB (aurora kinase B) is a protein-coding gene that 
acts as a key regulator of mitosis [21]. Many studies have 
confirmed that AURKB is a crucial carcinogenic factor 
in different kinds of carcinoma. For example, AURKB 
was found to be expressed at higher levels in renal cell 
carcinoma tissues than in normal kidney tissues, sug-
gesting that it may regulate renal cell carcinoma pro-
gression by modulating the intestinal immune network 
for IgA production and signaling pathways involving 
cytokine-cytokine receptor interactions [22]. Further-
more, AURKB was overexpressed in gastric cancer and 
was strongly linked to clinicopathological features of the 

disease. Silencing of AURKB may decrease the invasive 
and migratory capacities of gastric cancer cells by dis-
rupting the VEGFA/Akt/mTOR and Wnt/-catenin/Myc 
pathways [23]. Additionally, AURKB activation was asso-
ciated with acquired resistance to EGFR TKIs, suggest-
ing that AURKB should be targeted in NSCLC patients 
scheduled for anti-EGFR treatment but who lack resist-
ance mutations [24].

CDC20 (cell division cycle 20) appears to act as a regu-
latory protein interacting with several other proteins at 
multiple points in the cell cycle [25]. Min Shi et al. found 
that CDC20 played a crucial role in the development of 
hepatocellular carcinoma by regulating the PHD3 protein 
[26]. Besides, Yang Gao et al. found that targeting CDC20 
sensitized colorectal cancer cells to radiotherapy through 
mitochondrial-dependent apoptotic signaling [27]. Qin 
Zhang et  al. found that CDC20 combined with CD44 
or β-catenin could serve as an important indicator for 
the prognosis of patients with prostate cancer [28]. Fur-
thermore, Huan Deng et  al. found that CDC20 was up-
regulated in LUSC at the mRNA and protein levels [29]. 

Fig. 5  The analysis of expression levels of hub genes in different stages of LUAD patients using the UACALN database. A–G The expression levels 
of AURKB, CCNB2, CDC20, CDCA5, CDCA8, CENPF, and KNTC1 were significantly higher in tumor tissues than in normal tissues during the different 
stages of LUAD
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Fig. 6  The survival analysis of hub genes based on the Kaplan-Meier database. A–G High expression levels of AURKB, CCNB2, CDC20, CDCA5, 
CDCA8, CENPF, and KNTC1 were associated with short OS in patients with LUAD

(See figure on next page.)
Fig. 7  The correlation between the expression levels of hub genes and the infiltration of six immune cells and the TMB score in LUAD patients. A 
CDCA5 was positively correlated with B cell and CD4+ T cell; CDCA8 and KNTC1 were positively correlated with neutrophil; the rest of hub genes 
were negatively correlated with most immune cells. B Oncoplot displaying the somatic landscape of the LUAD cohort. The mutation frequencies 
of AURKB, CDC20, CENPF, and KNTC1 in LUAD patients were 1%, 1%, 6%, and 3%, respectively. In addition, missense mutation is the main mutation 
type. C–F Correlation analysis between hub gene expression and TMB score. AURKB, CDC20, CENPF, and KNTC1 were all positively correlated with 
the TMB score, and the Spearman correlation coefficients were 0.46, 0.47, 0.40, and 0.39, respectively
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Fig. 7  (See legend on previous page.)
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However, the role and mechanisms of action of CDC20 
in LUAD remain unclear.

CDCA5 (cell division cycle associated 5) is another 
protein-coding gene involved in DNA repair [30]. 
CDCA5 promotes the progression of bladder cancer by 
dysregulating mitochondria-mediated apoptosis, cell 
cycle regulation, and activation of the PI3k/AKT/mTOR 
pathway [31]. Additionally, CDCA5 aids in the develop-
ment of esophageal squamous cell carcinoma and may 
be an important target for esophageal squamous cell car-
cinoma immunotherapy [32]. Moreover, CDCA5 phos-
phorylation and activation by mitogen-activated protein 
kinase are critical for human lung cancer [33].

CDCA8 (cell division cycle associated 8) is a compo-
nent of the chromosomal passenger complex, which 
is required for mitosis and cell division [34]. Increased 
CDCA8 expression in ovarian tissues probably plays 
a critical role in the development of ovarian cancer 
through the PLK1 pathway [35]. Besides, CDCA8 is 
involved in the construction of meiotic spindles and 
chromosomal segregation during human oocyte meio-
sis [36]. CDCA8 overexpression has been shown to 
accelerate the development of cutaneous melanoma 

and is associated with poor prognosis [37]. Additionally, 
aurora kinase B-mediated phosphorylation and activa-
tion of CDCA8 plays a major role in human lung cancer 
[38]. Moreover, miR-133b suppressed cell proliferation, 
motility, and invasion in lung adenocarcinoma by target-
ing CDCA8 [39].

CENPF is a gene that encodes a protein that is involved 
in the centromere-kinetochore complex association [40]. 
Overexpression of CENPF in breast cancer was associ-
ated with poor prognosis and tumor bone metastases 
by controlling parathyroid hormone-related peptide 
(PTHrP) production via activating PI3K-AKT-mTORC1 
[41]. Besides, the HnRNPR-CCNB1/CENPF axis was 
involved in the proliferation and metastasis of gastric 
cancer [42]. Additionally, silencing CENPF substantially 
reduced LUAD cell tumor development in an experimen-
tal xenograft lung cancer model using naked mice arm-
pits of the right forelimb. However, there are no sufficient 
studies on the mechanism of CENPF in LUAD [43].

KNTC1 encodes a protein participating in the pro-
cesses that guarantee correct chromosomal segregation 
during cell division [44]. A recent study indicated that 
silencing KNTC1 with shRNA inhibited cell viability 
and caused apoptosis in esophageal squamous cell car-
cinoma [45]. Moreover, relevant bioinformatics publica-
tions demonstrated that KNTC1 was associated with a 
poor outcome in patients with hepatocellular carcinoma 
and cervical cancer [46, 47]. However, there has been 
no research on the mechanism of action of KNTC1 in 
patients with LUAD.

CCNB2 (cyclin B2) is a member of the B-type cyclins 
family that can interact with p34cdc2, and is a critical 
component of the cell cycle regulation [48]. CCNB2 has 
been shown to promote the proliferation of triple-nega-
tive breast cancer cells in vitro and in vivo [49]. As vali-
dated by a comprehensive bioinformatics study, CCNB2 
has been identified as a promising therapeutic target for 
ovarian cancer [50]. Additionally, miR-335-5p disrupts 
the cell cycle and increases lung adenocarcinoma metas-
tasis by targeting CCNB2 [51]. Moreover, CCNB2 had 
been identified as a marker of responsiveness to immune 
checkpoint inhibitors (ICI) in NSCLC and overexpres-
sion of CCNB2 is a poor prognostic indicator in Chinese 
patients with NSCLC [52, 53].

In recent years, an increasing number of studies 
have revealed that diverse immune components in 
the tumor microenvironment play a significant role in 
the molecular process of various tumors and develop-
ment. A study on the advanced lung cancer inflamma-
tion index, for example, discovered that it can predict 
shorter overall survival not only in patients with lung 
adenocarcinoma, but also in patients with other tumors 
at a low level of expression [54]. TMED2, MOESIN, 

Table 5  The analysis of the correlation between immune cell 
infiltration and hub gene expression level in LUAD patients

Symbol Variable Correlation P value

AURKB B cell −0.269 <0.001

AURKB Macrophage −0.147 <0.001

AURKB Myeloid dendritic cell −0.200 <0.001

AURKB T cell CD4+ −0.281 <0.001

AURKB T cell CD8+ −0.045 <0.05

CCNB2 B cell −0.343 <0.001

CCNB2 Macrophage −0.095 <0.05

CCNB2 Myeloid dendritic cell −0.143 <0.01

CCNB2 T cell CD4+ −0.281 <0.001

CDC20 B cell −0.199 <0.001

CDC20 Macrophage −0.116 <0.05

CDC20 Myeloid dendritic cell −0.107 <0.01

CDC20 T cell CD4+ −0.152 <0.001

CDCA5 B cell 0.264 <0.001

CDCA5 Neutrophil −0.115 <0.01

CDCA5 T cell CD4+ 0.177 <0.001

CDCA8 B cell −0.281 <0.001

CDCA8 Neutrophil 0.100 <0.05

CDCA8 T cell CD4+ −0.175 <0.001

CENPF B cell −0.207 <0.001

CENPF Myeloid dendritic cell −0.104 <0.05

KNTC1 B cell −0.088 <0.05

KNTC1 Neutrophil 0.146 <0.001
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DPYSL2, and LncRNA MEG3 have been discovered to 
enhance the occurrence and development of patients 
with lung adenocarcinoma via several immune-related 
regulatory mechanisms [55–58]. Furthermore, the hunt 
for efficient immune checkpoint inhibitors and indica-
tors to predict the efficacy of immunotherapy is critical. 
It is well known that pembrolizumab and chemother-
apy are currently the first-line treatments for small cell 
lung cancer, and their therapeutic effectiveness has 
been widely accepted [59]. In the studies related to 
lung adenocarcinoma patients, it was found that indi-
viduals with smoking history could benefit more from 
the treatment of immune checkpoint inhibitors and 
that the combination of immune checkpoint inhibitors 
nivolumab and ipilimumab was much more effective 
than monotherapy [60, 61]. However, there is currently 
a scarcity of effective indicators of tumor immuno-
therapy. We expect that further indicators similar to 
PD-L1 will emerge in the future to predict the efficacy 
of NSCLC immunotherapy [62]. Therefore, we expect 
that the results of this study will provide reference 
value to the immunotherapy of lung adenocarcinoma 
patients from different molecular subtypes. The find-
ings of our research were acquired through data mining 
of an online database using bioinformatics techniques. 
The limitations of this study include the absence of spe-
cific in vitro or in vivo experiments to validate the sig-
nificance of the selected hub genes in LUAD patients. 
Additionally, the results of our study may include par-
tial bias owing to the issue of data quantity and quality. 
As a result, there is a need for further studies to vali-
date our findings and identify the role of these genes in 
lung adenocarcinoma.

Conclusion
In conclusion, the high expression of the candidate genes 
screened in this study is associated with poor progno-
sis in LUAD patients. High expression of the candidate 
genes combined with the TMB score indicates a better 
response to immunotherapy in patients with lung ade-
nocarcinoma. However, there is a need for more experi-
ments to validate the significance and mechanism of 
action of these genes in LUAD patients.
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