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negatively correlated with 18F-FDG uptake
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Abstract

Background: This study aimed to investigate the correlation between miRNA-216b expression in patients with
non-small cell lung cancer (NSCLC) and 18F-fluorodeoxyglucose (FDG) uptake by PET/CT and to explore the clinical
application value of 18F-FDG PET/CT in miRNA-216b based on therapy for NSCLC.

Methods: Eighty patients with NSCLC and 40 healthy subjects were enrolled in our study. The SUVmax of the
lesion area by PET/CT imaging was calculated. SUVmax represented the highest concentration of 18F-FDG in the
lesion. The expression of miRNA-216b in the plasma and fiber bronchoscopic puncture of NSCLC patients was
detected by RT qPCR. Then Pearson correlation analysis was used to analyze the correlation between miRNA-216b
expression and 18F-FDG uptake in patients with different types of NSCLC.

Results: Compared with healthy subjects, SUVmax of early adenocarcinoma and advanced adenocarcinoma were
increased. Compared with healthy subjects, SUVmax of early squamous and advanced squamous were increased.
And the SUVmax content of advanced adenocarcinoma and squamous cell carcinoma was higher than that of early
adenocarcinoma and squamous cell carcinoma. Compared with healthy subjects, the expression of miRNA-216b in
the plasma of patients with early and advanced adenocarcinoma was reduced, and the expression of miRNA-216b
in the plasma of patients with early and advanced squamous cell carcinoma was reduced. Compared with adjacent
tissues, the expression of miRNA-216b in early adenocarcinoma tissues and advanced adenocarcinoma tissues was
reduced, and the expression in early squamous cell carcinoma and advanced squamous cell carcinoma was
reduced. Pearson correlation analysis showed a negative correlation between SUVmax and miRNA-216b (plasma
and tissue) in patients with four types of NSCLC.

Conclusion: miRNA-216b expression was negatively correlated with 18F-FDG uptake in NSCLC. miRNA-216b could
be used for the classification and staging of non-small cell lung cancer. 18F-FDG PET/CT may be used to evaluate
the therapeutic response in application of miRNA-216b-based cancer treatment.
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Background
Lung cancer is a serious global health problem. Statistics
on cancer-related deaths show that lung cancer accounts
for 25% of male and 15% of female deaths. It is the first
leading cause of cancer death in men and the second
leading cause in women [1–5]. According to histological
classification, lung cancer is divided into two types: non-
small cell lung cancer (NSCLC) and small cell lung can-
cer [6]. NSCLC accounts for 75–85% of lung cancer [7].
Therefore, it is important to explore the molecular
mechanism of the occurrence and development of NSCL
C, to determine its correlation with imaging, in order to
improve its detection rate and diagnostic accuracy. Posi-
tron emission tomography (PET) can detect the distribu-
tion of positron-emitting radionuclides in the body [8].
Short-metabolizing radioisotopes (radionuclides) are
used in tumor PET imaging. The most commonly used
radionuclide, 18F, can label glucose to produce 18F-fluor-
odeoxyglucose (18F-FDG). 18F-FDG is a glucose analog
that can be transported into cells by glucose transporters
on the cell membrane and catalyzed by hexokinase to
become glucose 6-phosphate. However, glucose 6-
phosphate cannot enter the tricarboxylic acid cycle to
participate in biochemical metabolism. It retains in cells,
then deposits in tissues. Glycolysis process of most ma-
lignant tumors are more active than normal tissues
(called the Warburg effect), so the number of glucose
transporters on tumor cell membranes is larger, and the
activity of hexokinase inside cells is increased, and the
ability to take up and concentrate 18F-FDG is signifi-
cantly enhanced. Therefore, we take advantage of this
feature of malignant tumor cells to label them with 18F-
FDG. And then, PET imaging is used to diagnose the
tumor.
In recent years, miRNAs have been reported to partici-

pate in the development of cancers [9–11]. A large
amount of literature shows that tumor-specific miRNAs
and their direct target genes play an important role in
the carcinogenesis and progression of non-small cell
lung cancer, which may provide diagnostic and thera-
peutic targets for patients [12–15]. Among them,
miRNA-216b has been found to be involved in the de-
velopment of various cancers, and a large number of re-
ports have confirmed that the expression of miRNA-
216b is significantly reduced in cancer tissues and
plasma. These findings indicate that miRNA-216b is ex-
pected to be a tumor diagnostic marker [16]. miRNA-
216b is reported to regulate the proliferation and inva-
sion of NSCLC by targeting SOX9 and is an important
tumor suppressor in NSCLC [17]. There are literature
data using 18F-FDG microPET-CT scanning to evaluate
the efficacy of miR-143 on poorly differentiated thyroid
cancer. The results showed that the uptake of 18F-FDG
in tumors was reduced, which corresponded to the

downregulation of Hexokinase 2 (HK2) expression in tis-
sues. Results suggested that miR-143 could be used to
specifically assess the therapeutic efficacy of advanced
thyroid cancer xenografts by 18F-FDG-microPET/CT
[18]. Therefore, we considered whether the expression
of miRNA-216b in NSCLC patients was related to the
uptake of 18F-FDG. At present, relationship between
miRNA-216b and the uptake of 18F-FDG is not clear.
Therefore, in this work, we aimed at exploring the cor-
relation between miRNA-216b expression and 18F-FDG
uptake in early and advanced NSCLC (squamous cell
carcinoma and lung adenocarcinoma) patients. We also
tried to clarify the role of FDG PET scans in assessing
treatment response in a next era where miR-216b ad-
dressed therapy could be available.

Methods
Patients
We retrospectively analyzed 80 patients with NSCLC
who underwent radical surgery for lung cancer in our
hospital between January 2016 and January 2019. There
were 50 men and 30 women, aged 35–65 years, with a
median of 40.6 years. Inclusion criteria for the patients
were pathological diagnosis confirmed as lung adenocar-
cinoma, squamous cell carcinoma, or adenosquamous
carcinoma; completed PET/CT images, tissue specimens,
and clinicopathological data; clinical confirmation of no
other malignant lesions; and no radiotherapy or chemo-
therapy before surgery. The study comprised of 40 cases
of adenocarcinoma (20 in early stage and 20 in advanced
stage) and 40 cases of squamous cell carcinoma (20 in
early stage and 20 in advanced stage). All patients were
divided into four groups according to the criteria of the
7th edition of the American Joint Committee on Cancer:
early squamous cell carcinoma group, advanced squa-
mous cell carcinoma group, early adenocarcinoma
group, and advanced adenocarcinoma group.
The control group included 40 healthy subjects: 25

men and 15 women who were randomly selected from
our hospital, aged 35–65 years, with a median age of 50
years. A series of tests was performed on healthy sub-
jects, including routine blood, urine, and stool examin-
ation; liver and kidney function tests; chest radiography;
tumor marker test; and CT and magnetic resonance im-
aging. Subjects with no significant abnormalities, no high
blood pressure, diabetes, and other chronic medical his-
tory were included. Subjects with any of the above ab-
normalities were excluded. The study was approved by
the Ethics Committee of our hospital and all patients
signed informed consent forms.

PET/CT imaging method
Patients underwent PET/CT before treatment. They
were fasted for at least 6 h before the test, and fasting

Zuo et al. World Journal of Surgical Oncology          (2021) 19:262 Page 2 of 10



blood glucose was measured and controlled below 6
mmol/L. Patients were intravenously injected with 18F-
FDG at 5.2 MBq/kg body weight, and rested for 1 h, and
then systemic imaging was performed with a maximum
intensity of 370 MBq (10 mCi). Whole PET body tomog-
raphy (two-dimensional scanning, average 6 or 7 beds, 4
min/bed) was performed using the uMI 510 PET/CT in-
strument (Shanghai United Imaging Medical Technology
Co. Ltd, China), and the radiochemical purity of 18F-
FDG was > 95%. The intensity of 18F-FDG uptake was
expressed as a standard uptake value (SUV). SUV =
radioactive concentration of the lesion (kBq/ml) /
injected dose (MBq) / body weight (kg). The maximum
SUV (SUVmax) represented the highest concentration of
18F-FDG in the lesion. Enhanced CT was performed
prior to PET (scan parameters: 140 kV, 90 mA, pitch
0.75, tube speed 7.5 s/rot, layer thickness 5 mm). To
minimize radiation, CT was adjusted to 76–151 mAs de-
pending on the patient’s weight. In order to match the
PET scan, spiral CT was performed by filtering back
projection to obtain 512 × 512 pixel images with a slice
thickness of 5 mm.

PET/CT image analysis
All PET/CT examinations were read by at least three ra-
diologists with several years of work experience and rele-
vant PET/CT training. The radiologists identified tumor
lesions by visual and SUVmax methods in a blinded man-
ner and independently assessed the scans based on the
location, size, morphology, degree of concentration, uni-
formity of radioactivity distribution, and relationship
with adjacent tissues. Based on the location of the lesion
shown on CT, the regions of interest without corre-
sponding radioactivity concentration abnormalities in
PET images and with the same lesion size was selected,
and the SUVmax of the lesion region was calculated by a
specific program.

Detection of miRNA-216b expression in plasma
When detecting the expression of miRNA-216b in the
plasma of NSCLC patients, healthy subjects were used as
controls. mirVana PARIS kit (Beijing Tiangen Biochem-
ical Technology Co., Ltd.) was used to obtain plasma
miRNAs from patients and healthy subjects. Total RNA
was reverse transcribed into cDNA. The reverse tran-
scription reaction system consisted of 4 μL 5× reverse
transcription buffer, 0.75 μL dNTP (10 mM), 1.2 μL pri-
mer, 0.2 μL reverse transcriptase, 3 μg RNA, and
double-distilled water. The cycling conditions for reverse
transcription were as follows: 25 °C for 30 min, 42 °C for
30 min, and 85 °C for 5 min. For measurement of
miRNA-216b expression level, 20-μL reaction system for
quantitative PCR consisted of 10 μL SYBR-Green I mix-
ture, 2 μL forward primer, 2 μL reverse primer, 2 μL

cDNA, and 4 μL double-distilled water. The thermal cyc-
ling conditions for real-time quantitative PCR were as fol-
lows: 95 °C for 30 s, 40 cycles of 95 °C for 5 s, and 60 °C
for 30 s. The primer sequences used are shown in Table 1.
The RT qPCR results were calculated using the 2−ΔΔCT

method. Three copies of each sample were analyzed.

Lung cancer tissue collection and miRNA 216b expression
When detecting miRNA-216b at the center of neoplasms
in NSCLC, adjacent tissues 1 cm from tumor margin
were selected as controls. Fiber bronchoscopic puncture
was performed. At the puncture site, 20 mL was sucked
by the puncture needle using a syringe for 20 s, and the
procedure was performed three times for each subject.
Total RNA was extracted from tissue samples using
TRIzol reagent (Shanghai Huiying Biological Technology
Co. Ltd.). A total of 2 μL RNase-free DNase I (Beijing
Baiao Laibo Technology Co. Ltd.) was used to remove
the DNA. Total RNA was reverse transcribed into
cDNA. The reverse transcription reaction system con-
sisted of 4 μL 5× reverse transcription buffer, 0.75 μL
dNTP (10 mM), 1.2 μL primer, 0.2 μL reverse transcript-
ase, 3 μg RNA, and double-distilled water. The cycling
conditions for reverse transcription were as follows: 25
°C for 30 min, 42 °C for 30 min, and 85 °C for 5 min.
For measurement of miRNA-216b expression level, 20-
μL reaction system for quantitative PCR consisted of 10
μL SYBR-Green I mixture, 2 μL forward primer, 2 μL re-
verse primer, 2 μL cDNA, and 4 μL double-distilled
water. The thermal cycling conditions for real-time
quantitative PCR were as follows: 95 °C for 30 s, 40 cy-
cles of 95 °C for 5 s, and 60 °C for 30 s. The primer se-
quences used were shown in Table 1.

Statistical analysis
The experimental data were processed and analyzed by
GraphPad Prism and SPSS 24.0 software, and the data

Table 1 Real-time quantitative PCR experimental primer
sequences

Gene Sequence (5′ to 3′)

miRNA-216b F: GCC GCG CTA AAG TGCTTA TAG TG

R: CAC CAG GGT CCG AGGT

U6 F: TGC GGG TGC TCG CTT CGG CAGC

R: CCA GTG CAG GGT CCG AGGT

miRNA-145 F: CAG TCT TGT CCA GTT TTC CCAG

R: TAT CCT TCT TCT CCT CTC TCT CTC

miRNA-28-3p F: CGG ATC CAG GCC CTT CAA GGA CTT TCT

R: CGA ATT CAC AGA GCT CCT GCT GTG TCA

U6, miRNA-145, and miRNA-28-3p were selected as the internal reference
gene when detecting the expression of miRNA-216b. Real-time quantitative
PCR results were calculated using the 2−ΔΔCT method, and each sample was
repeated three times
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were expressed as mean ± standard deviation. When the
data had a normal distribution, t tests were used for
comparison between two groups. Correlation analysis of
PET/CT SUVmax and miRNA-216b expression levels
was performed using Pearson correlation. P < 0.05 indi-
cated that the difference was statistically significant, and
P < 0.01 indicated that the difference was highly signifi-
cant. The larger the absolute value of the correlation co-
efficient, the stronger the correlation: the closer the
correlation coefficient was to 1 or 1, the stronger the
correlation. The closer the correlation coefficient was to
0, the weaker the correlation. Normally, the correlation
strength of the variables is judged by the following range
of values: correlation coefficient 0.8–1.0, extremely
strong correlation; 0.6–0.8, strong correlation; 0.4–0.6,
moderate correlation; 0.2–0.4, weak correlation; and
0.0–0.2, very weakly correlated or unrelated [12].

Results
Comparison of PET/CT imaging in patients with different
types of NSCLC
In normal condition of lungs, the bronchovascular bun-
dles were clear; there were no solid infiltrates in the
lungs, and no enlarged lymph nodes in the mediastinum
and hilum (Fig. 1A). In the lungs of patients with early
adenocarcinoma, ground-glass opacity was observed.
The boundary was clear, and the vascular bundle sign
was visible. Some lesions showed lobulation, burrs, and
vacuoles (Fig. 1B). Soft tissue masses were seen in the
lungs of patients with advanced adenocarcinoma, associ-
ated with tracheal stenosis, mediastinal and hilar lymph

node metastasis, and extensive planting metastasis in the
ipsilateral pleura (Fig. 1C). In early squamous cell carcin-
oma, soft tissue masses in the lungs showed lobes and
burrs, and the density was uneven (Fig. 1D). In patients
with advanced squamous cell carcinoma, the lungs
mainly showed local invasion, large soft tissue masses,
uneven density, visible lobes and burrs, and visible me-
tastasis of ipsilateral hilar lymph nodes (Fig. 1E).

Comparison of SUVmax in patients with different types of
NSCLC
The SUVmax of healthy individuals was ~ 0.6, the SUV-
max of early adenocarcinoma patients was increased to ~
3, and the SUVmax of patients with advanced adenocar-
cinoma was increased to ~ 4.3 (Fig. 2A); the difference
was significant (P < 0.001). The SUVmax of healthy indi-
viduals was ~ 0.6, the SUVmax of early squamous cell
carcinoma patients was increased to ~ 2.8, and the SUV-
max of patients with advanced squamous cell carcinoma
was increased to ~ 4.1 (Fig. 2B); the difference was sig-
nificant (P < 0.001). The SUVmax in carcinoma tissue
was significantly higher than in adjacent area among
four groups (P < 0.0001, seen in Supplementary Fig.1).
The data of tumor site, tumor size, and SUVmax for each
patient are shown in Supplementary Table 1. SUVmax of
controls are shown in Supplementary Table 2.

miRNA-216b expression levels in NSCLC tissues
The expression of miRNA-216b in plasma was detected.
Compared with healthy subjects, the expression of
miRNA-216b in the plasma of patients with early

Fig. 1 PET/CT imaging in patients with NSCLC. Pulmonary PET/CT in A normal individual, B patient with early adenocarcinoma, C patient with
advanced adenocarcinoma, D patient with early squamous cell carcinoma, and E patient with advanced squamous cell carcinoma

Zuo et al. World Journal of Surgical Oncology          (2021) 19:262 Page 4 of 10



adenocarcinoma tissues was reduced to ~ 60% (P <
0.001, Fig. 3A), the expression in the plasma of patients
with advanced adenocarcinoma tissues was reduced to
~ 46% (P < 0.001, Fig. 3B), the expression in the plasma
of patients with early squamous cell carcinoma was re-
duced to ~ 39% (P < 0.001, Fig. 3C), and the expression
in the plasma of patients with advanced squamous cell
carcinoma was reduced to ~ 28% (P < 0.001, Fig. 3D).
Then the expression of miRNA-216b in the tissues of

patients with small cell lung cancer was detected. Com-
pared with adjacent tissues, the expression of miRNA-
216b in early adenocarcinoma tissues was reduced to ~
51% (P < 0.001, Fig. 3E), the expression in advanced
adenocarcinoma tissues was reduced to ~ 34% (P <
0.001, Fig. 3F), the expression in early squamous cell
carcinoma was reduced to ~ 31% (P < 0.001, Fig. 3G),
and the expression in advanced squamous cell carcin-
oma was reduced to ~ 21% (P < 0.001, Fig. 3H).

Correlation between SUVmax and miRNA-216b expression
levels in adenocarcinoma
Pearson correlation analysis showed a negative correlation
between SUVmax and miRNA-216b expression levels in
early and advanced lung adenocarcinoma (Fig. 4A–D).

Correlation between SUVmax and miR-216b expression
levels in squamous cell carcinoma
Pearson correlation analysis showed a negative correl-
ation between SUVmax and miRNA-216b expression

levels in early and advanced lung squamous cell carcin-
oma (Fig. 5A–D).

Discussion
NSCLC has a poor prognosis and remains the leading
cause of cancer death worldwide. Therefore, accurate
and effective detection and evaluation are critical [19].
PET/CT is the most commonly used hybrid imaging
technology. It has high sensitivity and specificity for de-
tecting metabolic malignant tumors [20–23]. Quantita-
tive assessment of cancer treatment response is an
important step in achieving effective and personalized
patient care. PET combined with CT using 18F-FDG is a
powerful tool for providing predictive information on
therapeutic response [24–27].
We found that the SUVmax of patients with adenocar-

cinoma was higher than that of healthy individuals, and
the SUVmax of patients with squamous cell carcinoma
was also higher, indicating that the increase in PET/CT
SUV value can be used for early detection of non-small
cell lung cancer. The expression of SUVmax in patients
with advanced adenocarcinoma was higher than that in
patients with early adenocarcinoma, and the SUVmax of
patients with advanced squamous cell carcinoma was
also higher than that of patients with early squamous
cell carcinoma, suggesting that the level of PET/CT SUV
value can be used for the classification and staging of
lung cancer diagnosis. 18F-FDG uptake was also a visual
representation of energy uptake during malignant

Fig. 2 SUVmax for patients with different types of NSCLC. A Comparison of SUVmax between healthy individuals and adenocarcinoma patients. B
comparison of SUVmax between healthy individuals and squamous cell carcinoma patients. ***P < 0.001 vs. control
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proliferation of tumor cells, which helped us better
monitor tumor progression and prognosis.
MicroRNAs (miRNAs) are small, single-stranded non-

coding RNA molecules that regulate gene expression at
the post-transcriptional level. There is growing evidence
that miRNAs are aberrantly expressed in many human
cancers and play an important role in carcinogenesis and
cancer progression. They would interfere with all six
major tumor hallmarks: unlimited cell proliferation, au-
tonomous growth, anti-growth inhibition signaling, escape
from apoptosis, neoangiogenesis, and tissue invasion and
metastatic spread [28, 29]. Peripheral miRNA could be a

surrogate of miRNA expression in the tumor biopsy [30].
Recently, circulating and tumor miRNAs are found to be
dysregulated in a non-invasive lung cancer [31–33]. And
differential expression of specific miRNAs in lung cancer
is associated with histological subtyping [34, 35], tumor
metastasis [36], and prognostic outcome [37–39]. miRNAs
play direct or indirect roles in regulating oncogenes
(KRAS), tumor suppressor genes (FHIT, WWOX) [33,
40], and immune-related gene (TLR8) [41], which ultim-
ately promote cancer cell growth and dissemination.
miRNA-216b as a tumor suppressor is downregulated

in varieties of cancer types [42]. It was first reported in

Fig. 3 Expression of miRNA-216b in different types of NSCLC. A Expression of miRNA-216b in the plasma of patients with early adenocarcinoma.
B Expression of miRNA-216b in the plasma of patients with advanced adenocarcinoma. C Expression of miRNA-216b in the plasma of patients
with early squamous cell carcinoma. D The expression of miRNA-216b in the plasma of patients with advanced squamous cell carcinoma. E
Expression of miRNA-216b in early adenocarcinoma tissue. F Expression of miRNA-216b in advanced adenocarcinoma tissue. G Expression of
miRNA-216b in early squamous cell carcinoma tissue. H The expression of miRNA-216b in advanced squamous cell carcinoma. ***P < 0.001
vs. control
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human nasopharyngeal carcinoma [43]. miRNA-216b-5p
was decreased within human breast cancer tissues and
was correlated with lymph node metastasis and ad-
vanced tumor size, which functioned by targeting
HDAC8 [44]. miRNA 216b was also downregulated in
pancreatic cancer tissue and appeared to be related with
the inhibition of pancreatic cancer cells proliferation as
well as a KRAS-silencing induced apoptosis [45]. In
addition, miRNA-216b could suppress FoxM1 expres-
sion in human glioma, osteosarcoma, liver cancer, cer-
vical cancer, melanoma, and NSCLC [46–51]. Some
studies demonstrated that miRNA-216b can inhibit lung
cancer cell growth via diverse signal pathways [6, 47, 52,
53] and it was associated with cisplatin sensitivity by
modulating autophagy [54–56] and prognosis [57].
These studies implied that miRNA-216b played import-
ant role in lung carcinogenesis and dissemination and
needed further research, especially in clinical application.
In our study, the level of miRNA-216b was detected in
plasma and tumor tissue of NSCLC patients. It was

found that the levels of miRNA-216b in the plasma and
tumor tissues of patients with adenocarcinoma and
squamous cell carcinoma were significantly lower than
those in healthy people and adjacent tissues, respectively.
The levels of miRNA-216b in patients with advanced
adenocarcinoma and advanced squamous cell carcinoma
were lower than those of patients with early stage adeno-
carcinoma and early stage squamous cell carcinoma, re-
spectively. Our results suggested that the level of
miRNA-216b in patients may be used for the early de-
tection of NSCLC as well as for differentiating between
early and advanced cancer. Studies had shown that
miRNA-216b can inhibit the proliferation and invasion
of NSCLC cells by directly targeting the 3′ untranslated
region and negatively regulating the expression of SOX9,
which was an oncogene regulated by multiple miRNAs
in various types of human cancer [58]. In addition, the
upregulation of miRNA-216b expression was related to
the histological stage of NSCLC, and patients with lower
miRNA-216b levels had a shorter survival time [6]. Liu

Fig. 4 Correlation of SUVmax and miRNA-216b expression levels in adenocarcinoma. A Correlation analysis between SUVmax and miRNA-216b
expression of plasma in early adenocarcinoma. B Correlation analysis between SUVmax and miRNA-216b expression of plasma in advanced
adenocarcinoma. C Correlation analysis between SUVmax and miRNA-216b expression of tissue in early adenocarcinoma. D Correlation analysis
between SUVmax and miRNA-216b expression of tissue in advanced adenocarcinoma
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et al. also demonstrated that serum exosomal miRNA-
216b levels were significantly lower in NSCLC patients
and were closely associated with poor prognosis [57]. In
addition, some studies reported that miRNA-216b was
involved in the cisplatin sensitivity by modulating au-
tophagy and apoptosis [52, 54, 56]. Combining these
studies, we thought that targeted therapy based on
miRNA-216b showed great potential in non-small lung
cancer.
Pearson correlation analysis showed that expression

levels of SUVmax and miRNA-216b were negatively cor-
related with adenocarcinoma and squamous cell carcin-
oma patients. We believed that both miRNA-216b
expression and 18F-FDG uptake could be used as indica-
tors to assess activity of lung lesions and their negative
correlation supported the role of detecting miRNA-216b
and its possible application in NSCLC. Although our re-
sults supported the association between miRNA216b
and lung cancer growth, further researches in this field
were needed to assess the real value in clinical practice.

On the other hand, for clinical transformation, 18F-FDG
PET/CT could be an indicator to evaluate the thera-
peutic response and treatment efficacy of targeting
miRNA-216b. The miRNA-based tumor therapy, par-
ticularly synthetic Mimics, Antigomirs, LNAs, and
peptide-conjugated phosphorodiamidate morpholino
oligomers (PPMOs), is a new development direction for
tumor therapy [59]. However, there are some challenges
to apply miRNA in therapeutics. Firstly, the mechanism
between miRNA-216b and 18F-FDG uptake is still not
clarified, because there are some other unknown factors
that could influence their relationship. Next, off-target
effects of miRNA-216b might result into more complex
biological process, which is the major challenge in the
field of miRNA treatment [60]. However, our study
contributed to our understanding of the role of miR-
216b in the molecular pathogenesis of cancer and
therapy as well as the potential value of 18F-FDG
PET/CT in the evaluation of miRNA-based thera-
peutic approaches in NSCLC.

Fig. 5 Correlation between SUVmax and miRNA-216b expression levels in squamous cell carcinoma. A Correlation analysis between SUVmax and
miRNA-216b expression of plasma in early squamous cell carcinoma. B Correlation analysis between SUVmax and miRNA-216b expression of
plasma in advanced squamous cell carcinoma. C Correlation analysis between SUVmax and miRNA-216b expression of tissue in early squamous
cell carcinoma. D Correlation analysis between SUVmax and miRNA-216b expression of tissue in advanced squamous cell carcinoma
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Conclusion
Our work demonstrated that in patients with NSCLC,
miRNA216b expression was reduced, and this
phenomenon was correlated with tumor staging. 18F-
FDG uptake in patients with NSCLC was increased and
was correlated with tumor staging; miRNA-216b expres-
sion level was negatively correlated with 18F-FDG up-
take. Hence, our results supported the role of
miRNA216b in early detection of lung cancer. In
addition, a strong relation between miRNA216 expres-
sion and FDG uptake was highlighted. Whether miR-
NA216b could be adopted as a possible marker to
evaluate tumor response in the field of miRNA216b-
based cancer treatment as well as its real applicability in
clinical practice warrants further investigation.
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