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Abstract

Background: Pituitary adenomas are one type of intracranial tumor, which can be divided into microadenoma (≤ 1
cm), macroadenoma (> 1 cm), and giant adenoma (≥ 4 cm) according to their diametral sizes. They are benign,
typically slow-progressing, whereas the biological behavior of some of them is invasive, which presents a major
clinical challenge. Treatment of some pituitary adenomas is still difficult due to drug resistance or multiple relapses,
usually after surgery, medication, and radiation. At present, no clear prediction and treatment biomarkers have been
found in pituitary adenomas and some of them do not cause clinical symptoms, so patients are often found to be
ill through physical examination, and some are even found through autopsy. With the development of research on
pituitary adenomas, the immune response has become a hot spot and may serve as a novel disease marker and
therapeutic target.
The distribution and function of immune cells and their secreted molecules in pituitary adenomas are extremely
complex. Researchers found that infiltration of immune cells may have a positive effect on the treatment and
prognosis of pituitary adenomas. In this review, we summarized the advance of tumor immunity in pituitary
adenomas, revealing the immunity molecules as potential biomarkers as well as therapeutic agents for pituitary
adenomas.

Conclusion: The immune studies related to pituitary adenomas may help us find relevant immune markers. At the
same time, the exploration of immunotherapy also provides new options for the treatment of pituitary adenomas.

Introduction
Pituitary adenomas (PAs) are benign intracranial tumors
with the third highest incidence, accounting for about
10–15% of intracranial tumors [1]. However, up to 20%
of PAs appear clinically invasive symptoms, showing
rapid growth and recurrence after treatment [2, 3]. More
seriously, studies have shown that 0.2% of PAs are more
likely to become pituitary cancer [4]. PAs can lead to
clinical symptoms by oppressing the normal pituitary
gland and invading the cavernous sinus or skull base

structure. In addition, a variety of “functioning” PAs se-
crete supraphysiologic levels of hormones, resulting in
profound systemic effects that reflect the changes in hor-
mone levels [5]. At present, the treatment of PAs mainly
depends on surgical resection [6]. However, the
complete resection rate of tumors is only 66 to 78% [7].
When surgery and chemotherapy fail, radiotherapy be-
comes the treatment of choice against PAs. But radiation
strikes at healthy tissue. For example, it can lead to vis-
ual impairment, hypopituitary, and cerebrospinal fluid
leakage. Therefore, this clinical dilemma has inspired re-
searchers to find new markers and treatment methods
[8, 9]. With the deepening understanding of the tumor
environment and its development, immunotherapy is a
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promising alternative therapy for the treatment of drug-
resistant or recurrent PAs [9]. The mechanism of PAs
occurrence and development is still unclear, which may
be a result of multiple factors such as epigenetics, genes,
and tumor microenvironment(TME) [10, 11]. The TME
is a special environment generated by the interaction be-
tween tumor cells and the host during tumor develop-
ment [12]. It is a complex environment consisting of
fibroblasts, myofibroblasts, endothelial cells, immune
cells, and extracellular matrix (ECM) which can affect
tumor proliferation, invasiveness, and angiogenesis [13,
14]. Current research has focused on immune cells in
TME. A tumor is a systemic disease in which inflamma-
tory immune cells, chemokines, and cytokines influence
tumor growth and invasion [15]. The infiltrating im-
mune cells in brain tissue include macrophages, neutro-
phils, T cells, natural killer cells(NK cells), and other
immune cells. Recent studies have shown that they play
an important role in brain function and physiology; they
can influence behavior and participate in the pathogen-
esis of various neuropathologies [16]. Myeloid cells, such
as tumor-associated macrophages, dendritic cells, and
lymphocytes, such as T cells and B cells, make up the
tumor microenvironmental immune cells (TMICs)
(Fig. 1) [17]. They may be located in the core, margin, or
adjacent tertiary lymphoid structures (TLS) of the tumor
[18]. The role of these infiltrating immune cells and
their secreted molecules is complex and can ultimately
lead to tumor-promoting or anti-tumor effects through
interaction with the tumor and its host [19, 20]. There
are still few studies on the immunity of pituitary aden-
oma. In this review, we summarize the current

immunological studies on pituitary adenoma to point
out the prospect that immunity molecules may be help-
ful to prognosis prediction and clinical targeted therapy.

Immune cells infiltrate in PAs
Innate immunity (non-specific immunity) and adaptive
immunity(specific immunity)comprise the human im-
mune system, and adaptive immunity involves T and B
cells and their secreted factors [21]. As part of the nat-
ural immune cell population, NK cells can control tumor
growth by interacting with other immune cells and
tumor cells [22, 23]. For example, MHC-I offer CD8+T
lymphocytes cell antigens, such as from its protein and
virus protein antigen, and extracellular antigen by MHC
II usually provided to CD4+T lymphocyte, loss of MHC-
I during the process of tumor formation is one typical
method that cancer cells evade monitoring of CD8+T
cells, NK cells express to identify MHC-I molecules-
inhibition of cell surface receptors, and eliminate cannot
fully express a large number of MHC-I molecular targets
[24–26]. Current studies have shown that although the
number of NK cells in solid tumors is smaller than that
of CD8+T cells, CD4+T cells, and B cells, the presence of
NK cells in TME may be associated with a good progno-
sis [27, 28]. Macrophages can be polarized into M1 or
M2 macrophages. Tumor-associated macrophages(-
TAMs) are generally characterized as M2-like macro-
phages [29]. By stimulating tumor angiogenesis and
inhibiting the anti-tumor immune response mediated by
T cells, TAMs promote the proliferation, invasion, and
metastasis of tumor cells [30]. Recent studies by Zhang
et al. have shown that PA may produce excess lactate,

Fig. 1 Immune cells infiltrate in pituitary adenoma. Immune cells infiltrate in PAs. The role of immune cells in PAs invasion, migration, and
proliferation is unclear
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resulting in TME acidification, which reshapes TAMs
into an M2-type phenotype and then secrets CCL17
through TAMs to enhance tumor invasion through the
CCL17/CCR4/mTORC1 axis [31]. Meanwhile, M2 mac-
rophages may play a role in neoangiogenesis in pituitary
adenomas together with B cells, CD4 +T cells, and Foxp3
+ lymphocytes [32]. Dendritic cells (DCs) are the main
antigen-presenting cells and serve as a bridge between
adaptive and innate immune systems [33]. DCs pro-
motes tumorigenesis in some tumors and inhibits
tumorigenesis in others, which indicates the
phenomenon of tumor stage dependence, that is, DCs
show tumor inhibition effect in the early stage, but with
the tumor promotion, it can be changed to promote the
development of the tumor [33]. A key part of the adap-
tive immune response is CD4+T and CD8+T cells [34,
35]. Current studies have shown that CD4+T cells medi-
ate anti-tumor responses through a variety of mecha-
nisms, such as the CCR5 ligand that acts as the center of
CD4+ and CD8+T cell activation. CD8+T cells destroy
target cells by differentiating into cytotoxic T cells
(CTLS), releasing cytotoxic particles [36]. In addition, B
cell subsets have immunosuppressive and/or regulatory
functions and may play a key role in regulating the hu-
man immune response to tumors [37].
Research conducted by Wang et al. showed that there

is a different distribution of tumor-infiltration immune
cells (TIICs) between PAs and the normal pituitary
gland, and there are also differences among different PA
subtypes. In addition, three immune clusters can be
identified among PAs according to their distribution,
and each one of PAs shows unique characteristics [38].
PAs can be classified into functional pituitary adenomas
(FPAs) and non-functional pituitary adenomas (NFPAs)
according to the hormone secretion [39]. FPAs include
prolactinomas, somatotroph, corticotroph, thyrotrophin,
and rarely gonadotroph adenomas [40]. Existing studies
have shown that immune cells infiltrate differently in
both FPAs and NFPAs [14, 41–43]. According to im-
aging characteristics and pathological diagnosis, PAs can
be divided into invasive PAs and non-invasive PAs [44,
45]. There are also inconsistencies in the distribution of
infiltrating immune cells in PAs, depending on the ag-
gressiveness [46, 47]. For example, the infiltration of
CD8+T cells was positively correlated with PRL and PRL
and GH immunostaining in the tumor and was also
positively correlated with the invasions of PAs [41, 48].
The research of recent years has been recently reviewed
by us and is presented in Table 1 [5, 14, 32, 41, 42, 47–
59]. It is worth noting that the role of immune cells in
PAs is not yet clear and may vary among different tumor
stages and types. Therefore, before the exact role of im-
mune cells in pituitary tumors is understood, it is neces-
sary to define the immune characteristics of PAs [59].

Inflammatory factors associated with PAs
Current research has shown that cytokines including
interferon (IFN), interleukin insurance-linked securities
(ILs), and tumor necrosis factor (TNF) play a key role in
the differentiation of the pituitary gland and oncogenesis
of PAs [60, 61]. T helper type 1 (Th1) cells secrete TNF-
α, IFN-γ, and IL-2, and they induce cell-mediated im-
mune responses, whereas Th2 cells secrete IL-4, IL-5,
IL-6, IL-10, and IL-13 [60]. IFN is divided into type I
and type II. The main classes of type I IFN are IFN-α,
IFN-β, IFN-ɛ, IFN-κ, and IFN-ω. IFN-γ belongs to type
II IFN [62]. IFNs play a regulatory role in pituitary hor-
mone secretion. Both stimulatory and inhibitory effects
of IFNs (IFNα and IFNγ) on the secretion of ACTH,
PRL, and GH have been reported [63]. IFN-α signifi-
cantly inhibits hormone secretion and intracellular hor-
mone concentration in human GH secreting PAs,
prolactin, and NFPAs or gonadotropin adenoma [63].
TNF can trigger a variety of potential outcomes through
TNFR1 and TNFR2 activation signals, including cell pro-
liferation, gene activation, or cell death [64]. In invasive
PAs, TNF-α promotes pathological osteoclast formation
by directly inducing osteoclast differentiation, leading to
inflammatory bone destruction [65]. Therefore, Zhu
et al. proposed that TNF-α might be a novel target in
the treatment of osteo-invasive pituitary adenoma [66].
TNF-α also may be an important regulator of
hemorrhagic transformation in pituitary adenomas indi-
cated by the finding that hemorrhagic pituitary aden-
omas displayed higher protein and mRNA levels of
TNF-α [67]. The function of ILs is related to the expres-
sion and regulation of the immune response, which is
involved in many factors originating from lymphocytes
or macrophages. Qiu et al. reported that in the serum of
patients with PAs (include invasive and non-invasive
PAs), IL-4, IL-5, and IL-17A were significantly increased,
while Th1/Th2 ratio was significantly decreased [60].
Notably, serum IL-17A levels in patients with invasive
PA reported in this study were significantly higher than
those in patients with non-invasive PA. While another
study showed no significant difference between
serum IL-17A levels and PA growth types [68]. In
addition, the serum level of IL-4 was significantly
higher in patients with idiopathic hyperprolactine-
mia [69]. The bidirectional role of IL-6 in PAs has
also been reported. Paracrine IL-6 may be a condi-
tion that permits the growth of pituitary cells by
contributes to excessive hormone production,
growth, and neovascularization of pituitary aden-
omas, while autocrine IL-6 inhibits the aggressive
growth and malignant transformation of tumors
[70]. In vitro studies, an earlier study showed that
IL-2 and IL-6 stimulated the proliferation of GH3
cells [71]. Furthermore, other inflammatory factors
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present in TME also play complex roles that re-
quire further detailed exploration by researchers.
For example, macrophage migration inhibitory fac-
tor (MIF) is an immunomodulator that can be

induced by pituitary hormones, enhancing the pro-
duction of inflammatory cytokines such as TNF, IL-
1, and IFN, to play its role of anti-tumor or tumor
promotion [72].

Table 1 Immune studies of PAs

Cell type and
marker

Conclusion/distribution Ref. Population Methods Year

CD3 (T cells) FPAs > NFPAs; GH adenomas > ACTH adenomas > PRL
adenomas.

[5, 49] 67; 48 Immunohistochemistry 2020; 2016

CD4 (T cells) FPAs > NFPAs; GH adenomas > non-GH adenomas. T cell
phenotype was the CD4+ memory resting phenotype. May
have angiogenic effects.

[32, 41,
48, 49]

24; 134; 35;
48

Immunohistochemistry 2020 ;2020;
2015; 2016

CD8 (T cells) GH adenomas > non-GH adenomas. Positively correlated with
serum PRL and intratumoral immunostaining of PRL and GH.
Cavernous sinus invasion > non-invasive tumors. The number
of CD8+ lymphocytes was positively correlated with the num-
ber of CD68+ macrophages. FPAs > NFPAs (especially GHo-
mas). Cushing pituitary tumors had higher CD8+ T cells.

[41, 42,
48, 50–
52]

134; 191;
35; 27; 64;
115

Immunohistochemistry;
Computational approach;
RNA-seq.;

2020; 2018;
2015; 2019;
2020; 2020

FOXP3
(regulatory T
cells)

AIP-mutated GH tumors > sporadic ones and NPG. Cavernous
sinus invasion > non-invasive tumors. May have angiogenic
effects.

[32, 50,
53]

24; 27; 15 Immunohistochemistry 2020; 2019;
2019

CD20 (B cells) FPAs > NFPAs (especially GHomas). May have angiogenic
effects.

[32, 52] 24; 115 Immunohistochemistry;
RNA-seq.

2020; 2020

CD45
(lymphocytes)

The CD45 staining in pituitary adenomas was significantly
greater than that in normal pituitary. There was no statistically
significant difference among the various secretory types. High
(MIB-1 > 3%) proliferative indices > low (MIB-1 ≤ 3%)
proliferative indices.

[49, 54] 48; 72 Immunohistochemistry 2016; 2010

CD68
(macrophages)

The numbers of CD68+ cells showed a positive correlation
with the tumor sizes and Knosp classification grades. Sparsely
granulated GH and null cell tumors > densely granulated GH
and ACTH tumors. AIP-mutated GH tumors > sporadic ones
and NPG. The number of CD8+ lymphocytes was positively
correlated with the number of CD68+ macrophages. Gonado-
troph PitNETs present an increased CD68+ macrophage signa-
ture compared to somatotroph, lactotroph, and corticotroph
PitNETs. The percentage of CD68+ and CD163+ infiltrating
macrophages was significantly associated with the aggressive-
ness of gonadotropin tumors. Macrophages and NK cells are
positively correlated. M2 macrophages > M1 macrophages. In
the PA stroma, CD68+ macrophages > CD4+ T cells and
CD8+ T cells.

[31, 41,
47, 48,
51–53]

35; 134; 28;
35; 64; 115;
15

Immunohistochemistry;
Computational approach;
flow cytometry

2021; 2020;
2020; 2015;
2020; 2020;
2019

CD147 Invasion tumors > non-invasive tumors. [55] 55 Immunohistochemistry 2005

CD163 The most abundant type of immune cell in PitNETs, and
mainly CD163 +.

[14] 45 immunohistochemistry 2019

NK cells Macrophages and NK cells are positively correlated. [52] 115 Immunohistochemistry;
RNA-seq.

2020

Neutrophils PitNETs contained fewer neutrophils. NF-PitNETs had more
neutrophils than somatotropinomas.

[14] 45 Immunohistochemistry 2019

CTLA-4 There was no significant difference in CTLA-4 expression
among tumor subtypes.

[52] 115 Immunohistochemistry;
RNA-seq.

2020

PD-1 NFPAs>FPAs (especially GHomas). High (MIB-1 > 3%)
proliferative indices > low (MIB-1 ≤ 3%) proliferative indices.

[49, 52] 48; 115 Immunohistochemistry 2016; 2020

PD-L1 FPAs > NFPAs (especially GHomas). Positively correlated with
serum PRL and intratumoral immunostaining of PRL and GH.
The score tended to be higher (p = 0.050) in the cavernous
sinus invasion group. There was no difference between
primary and recurrent adenomas.

[5, 42,
49, 50,
52, 56]

67; 191;
48; 27; 115;
55.

Immunohistochemistry;
RNA-seq.

2020; 2018;
2016; 2019;
2020; 2020

Abbreviations: FPAs functional pituitary adenoma, NFPAs non-functional pituitary adenoma, GH growth hormone, PRL prolactin, ACTH adrenocorticotropic hormone,
FoxP3 forkhead box protein P3, NK cell natural killer cell, PitNETs pituitary neuroendocrine tumor, NPG normal pituitary glands, AIP aryl hydrocarbon receptor-
interacting protein, CTLA-4 co-inhibitory cytotoxic T lymphocyte-associated protein 4
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Status of immunotherapy for PAs
The relationship between tumor cells and the immune
system is divided into three stages according to the the-
ory proposed by Jun et al., at the initial stage, tumor cells
are recognized and cleared by immune cells. As tumors
develop, there is a phase of balance between tumor cells
and immune cells. Eventually, the immune response is
evaded by the tumor cells, and the immune system is
unable to cope with the tumors [73]. As the tumor
grows and changes, tumor cells can evade the immune
system, leading to further spread, infiltration, and even
metastasis. This kind of avoidance is achieved by the co-
stimulation and co-inhibition signals of tumor cells [74].
The immune checkpoint is a regulator of immune acti-
vation and plays an important role in maintaining self-
tolerance, controlling immune response intensity, and
reducing tissue damage [75]. Immune checkpoints can
be used by tumors to suppress T cell activation. The
most representative ones are the co-inhibitory cytotoxic
T lymphocyte-associated protein 4 (CTLA-4) and pro-
grammed cell death 1 (PD-1) pathways. T cell dysfunc-
tion, failure, and neutralization in tumors can be caused
by activation of the PD-1 signaling pathway [76]. CTLA-
4 is expressed in various types of tumors including PAs
and can play a role by limiting the CD4+T cell pheno-
type [77, 78]. As a result, blocking immune checkpoints
is a new approach to the treatment of many types of tu-
mors [79]. PD-L1 binds to the PD-1 receptor on acti-
vated T cells and inhibits the cytotoxic anti-tumor
function of T cells while blocking this interaction can
produce a lasting T cell response [80–82]. Blocking
CTLA-4 receptors on lymphocytes leads to T cell activa-
tion, which reduces tumor-mediated immune tolerance
[83]. When the CTLA-4 and PD-1 are blocked, the
stimulation signal of T cells are activated, the number of
cytotoxic T cells with anti-tumor activity increase, the
production and proliferation of pro-inflammatory cyto-
kines can also be promoted, and finally, the tumor de-
struction can be accelerated [84, 85]. While anti-
programmed cell death protein 1 (anti-PD-1) and anti-
cytotoxic T-lymphocyte-associated protein 4 (anti-
CTLA4) antibodies have been extensively used to target
immune checkpoints in many cancers, their use in pitu-
itary tumors has just commenced.
Recently, it has been reported that PD-L1 expression

is higher in pituitary tumors invading the cavernous
sinus [86]. In addition, the expression of PD-L1 also sig-
nificantly increased with the increase of serum GH, PRL,
ACTH, and cortisol levels [42]. Similar conditions also
exist in the expression of PD-1 [49, 52]. However, no
significant difference was found in CTLA4 expression
[52]. In animal experiments, Hanna R et al. provided a
new theoretical basis for the immunotherapy of PAs,
that is, anti-PD-L1 treatment successfully reduced the

plasma ACTH level of model mice, reduced the growth
of PAs, and improved the survival rate of model mice
[5]. In clinical application, a patient with ACTH-
secreting pituitary carcinoma who received clinical re-
mission using ipilimumab (anti-CTLA-4) and nivolu-
mab (anti-PD-1) ICI was reported by Sol et al. [87].
Moreover, immune checkpoints such as TIM3 and
LAG3 are also potential targets for immunotherapy of
pituitary adenomas [88]. In addition to immune
checkpoints, other methods of immunotherapy are be-
ing explored. Hazrati et al. published a report of a fe-
male with a macroprolactinoma refractory to
conventional therapy and was successfully treated
with immunotherapy. A Th1 activator adjuvant was
inoculated with autoantigens weekly for 24 weeks,
and following this therapy, her serum prolactin levels
decreased and adenoma almost disappeared [89].
However, the side effects of immunotherapy are var-
ied and any organ (skin, intestines, liver, and glands
like the thyroid and adrenal glands) may be affected,
leading to a variety of diseases (rash, pruritus, vitiligo,
diarrhea, colitis, hepatitis, hypophysitis,
hypothyroidism, primary adrenal insufficiency, and
diabetes) [90, 91]. So, further studies are needed to
refine the immunotherapy regimen for PAs. For ex-
ample, immunotherapy combined with radiation ther-
apy may be a promising option [92].

Future perspectives and conclusions
At present, the specific mechanism of the interaction be-
tween pituitary adenoma and the human immune sys-
tem is not clear, and studies are limited to the apparent
expression level of related markers. However, based on
the existing evidence, namely, the expression of immune
cells and the changes and differences of inflammatory
factors in pituitary adenomas, the immune research on
pituitary adenomas deserves further study. The following
points may be the direction of efforts: (1) comprehensive
analysis of the expression of different immune cells and
immune factors in the same batch of samples. (2) The
study should be conducted in different types of pituitary
adenomas. (3) Further mechanism study based on the
current apparent expression research. (4) Exploration of
new immune cell types and immune factors. At the same
time, the exploration of immunotherapy also provides a
new choice for the treatment of PAs. It should also be
kept in mind that the immune response is dynamic dur-
ing tumor development and that there may be inter-
patient heterogeneity. Individualized immunotherapy
strategies for individual patients at different stages are
very important. Therefore, it is necessary to determine
the immune landscape and its mechanism changes in pi-
tuitary adenoma, which is undoubtedly a challenge for
researchers.
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