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Abstract

Background: Esophageal adenocarcinoma (EAC) often presents at a late, incurable stage, and mortality has
increased substantially, due to an increase in incidence of EAC arising out of Barrett’s esophagus. When diagnosed
early, however, the combination of surgery and adjuvant therapies is associated with high cure rates. Metabolomics
provides a means for non- invasive screening of early tumor-associated perturbations in cellular metabolism.

Methods: Urine samples from patients with esophageal carcinoma (n = 44), Barrett’s esophagus (n = 31), and
healthy controls (n = 75) were examined using 1H-NMR spectroscopy. Targeted profiling of spectra using Chenomx
software permitted quantification of 66 distinct metabolites. Unsupervised (principal component analysis) and
supervised (orthogonal partial least-squares discriminant analysis OPLS-DA) multivariate pattern recognition
techniques were applied to discriminate between samples using SIMCA-P+ software. Model specificity was also
confirmed through comparison with a pancreatic cancer cohort (n = 32).

Results: Clear distinctions between esophageal cancer, Barrett’s esophagus and healthy controls were noted when
OPLS-DA was applied. Model validity was confirmed using two established methods of internal validation,
cross-validation and response permutation. Sensitivity and specificity of the multivariate OPLS-DA models were
summarized using a receiver operating characteristic curve analysis and revealed excellent predictive power (area
under the curve = 0.9810 and 0.9627 for esophageal cancer and Barrett’s esophagus, respectively). The metabolite
expression profiles of esophageal cancer and pancreatic cancer were also clearly distinguishable with an area under
the receiver operating characteristics curve (AUROC) = 0.8954.

Conclusions: Urinary metabolomics identified discrete metabolic signatures that clearly distinguished both Barrett’s
esophagus and esophageal cancer from controls. The metabolite expression profile of esophageal cancer was also
discrete from its precursor lesion, Barrett’s esophagus. The cancer-specific nature of this profile was confirmed
through comparison with pancreatic cancer. These preliminary results suggest that urinary metabolomics may have
a future potential role in non-invasive screening in these conditions.
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Background
Once a rare malignancy, esophageal carcinoma is the
sixth most frequent cause of death worldwide and the
most rapidly rising cancer in the United States [1,2].
Esophageal adenocarcinoma (EAC) represents over 50%
of all esophageal cancers in the western world, and the
incidence of EAC arising from Barrett’s esophagus (BE)
continues to increase at an alarming rate [1,3,4]. Nearly
60% of cases are diagnosed at an advanced, incurable
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stage; however, if diagnosed early these cancers are highly
curable with a combination of surgical, endoscopic and
adjuvant therapies [5]. Expected five-year survival rates for
stage I disease approach 60% to 90%, highlighting the
importance of developing effective screening tools to
facilitate early diagnosis [4,6,7].
The majority, if not all cases of EAC arise from a

region of BE, a well-recognized premalignant condition
and common complication of gastro-esophageal reflux
disease (GERD) affecting 12% to 20% of patients suffer-
ing from reflux [2,5,8,9]. BE remains the strongest indi-
vidual risk factor for development of EAC and the only
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known precursor lesion [8]. Despite the presence of a well-
defined histopathologic metaplasia-dysplasia-carcinoma
sequence, current screening strategies for early detection
have failed to reduce mortality from esophageal cancer in
randomized prospective trials, and many studies have
questioned their cost-effectiveness [9,10].
New sensitive tools are needed to overcome shortcom-

ings of current screening and surveillance approaches
for BE and esophageal cancer. Urinary metabolomics
may offer one such potential for non-invasive screening
of early tumor-associated perturbations in cellular me-
tabolism. Identification of a discrete, urinary metabolo-
mic signature associated with esophageal cancer and its
precursor lesion, could allow for non-invasive screening
in targeted, high-risk populations while helping to fur-
ther elucidate underlying molecular pathogenesis and
progression of disease. Furthermore, knowledge gained
from metabolomics-based research could help advance
personalized therapeutic approaches guided by early
metabolic responses before phenotypic changes develop.
Currently, application of metabolomics-based techni-

ques in the investigation of esophageal cancer remains
limited. The majority of studies are serum-based and
have included patients with late stage disease. The
current case–control study sets out to compare the urin-
ary metabolomic profiles of patients with early stage or lo-
cally advanced esophageal carcinoma and BE with healthy,
age- and gender-matched controls. We hypothesize that
global metabolite analysis of urine using NMR spectros-
copy combined with statistical pattern recognition reduc-
tive techniques will reveal a characteristic metabolomic
signature associated with esophageal carcinoma and its
precursor lesion BE.

Methods
Study outline and sample collection
This study was approved by the Alberta Cancer Research
Ethics Board and the Human Research Ethics Board of
the University of Alberta. Written and informed consent
was obtained from all participants prior to study enroll-
ment. Random urine samples were collected preopera-
tively from patients with esophageal carcinoma (n = 44),
BE (n = 31) as well as pancreatic cancer (n = 32) in the
Edmonton region (results pertaining to pancreatic cancer
cohort currently in press, Annals of Surgical Oncology
2012). Samples were collected prior to the initiation of
chemoradiation therapy in patients with malignancy. For
all cases, histologic findings were obtained and follow-up
data were available to ensure accurate disease classifica-
tion. Controls (n = 75) were healthy, age- and gender-
matched male and female volunteers with no declared
history of malignancy. Breastfeeding or pregnant women
were excluded from study enrollment, as were patients
with uncontrolled bacterial, viral or fungal infection.
Additionally, subjects with compromised renal function
reflected by impaired creatinine clearance were excluded
to avoid confounding effects of impaired metabolite excre-
tion. Patients with stage IV esophageal carcinoma were
also excluded, as the aim of this study was the develop-
ment of a metabolomic profile with potential uses in early
detection and screening.
Urine samples were stored at −80°C prior to NMR

analysis and within five hours of collection. Before data
acquisition, samples were thawed and prepared by add-
ing 75 μl of a chemical shift standard (Chenomx Inc.,
Edmonton, AB, Canada) containing 5.046 mM sodium
2,2-dimethyl-2-silapentane-5-sulfonate-d6 (DSS-d6) and
0.2% NaN3 in 99.8% w/v D20) to 675 μl of urine. The
pH was adjusted using small additions of NaOH or HCl
to obtain a final pH of 6.75 +/− 0.05 in order to reduce
pH variation among samples. A 700 μl aliquot of pre-
pared sample was then transferred to a 5mm NMR tube
(Wilmad, Nuena, NJ, USA) immediately prior to NMR
acquisition.

1H-NMR spectroscopic acquisition
1H-NMR spectra were acquired according to previously
published and accepted methods [11,12]. Briefly, one-
dimensional 1H-NMR spectra of urine samples were opti-
mized, and excitation pulse calibrated based on single
pulse nutation [13,14]. Spectra were acquired using the
first increment of a standard nuclear Overhauser effect
spectroscopy (NOESY) pulse sequence [15]. Experiments
were executed on a two channel 600 MHz VNMRS
spectrometer (Agilent Inc., Palo Alto, CA, USA) equipped
with a 5mm-HX dual tune probe. Spectra were acquired
at 25°C with an observation width of 12 PPM, 100-ms
mixing time, 4 second acquisition time, 4 steady state
scans, and 32 transients. Water suppression was achieved
utilizing an 80 to 90 Hz gammaB1 1H continuous wave
saturation pulse applied on the optimized water resonance
during the 0.9s presaturation period and throughout the
100-ms mixing time. All spectra were zero-filled to 131k
data points followed by apodization with a line-
broadening weighting function of 0.5 Hz.

Targeted profiling of spectra
Using Chenomx NMR Suite 7.0 software (Chenomx
Inc.), metabolites were identified and quantified using a
targeted profiling approach [16,17]. This method com-
pares the integral of a known reference signal, DSS, with
signals derived from a documented database of 297
compounds in order to determine concentrations rela-
tive to the reference signal [11]. All samples were ana-
lyzed blindly in a random fashion. A minimum of two
analysts independently analyzed the spectra and only
those compounds whose identity and concentrations
were agreed upon were included. A set of 65 metabolites



Davis et al. World Journal of Surgical Oncology 2012, 10:271 Page 3 of 12
http://www.wjso.com/content/10/1/271
was identified and quantified. Additionally, creatinine
concentrations of 12 randomly selected urine samples
were verified using non-NMR, laboratory-based colori-
metric techniques using a commercially available kit
(Arbor Assays, DetectX Urinary Creatinine Kit, Cat
K002-H5, Ann Arbour, Michigan, USA), and 95% correl-
ation was achieved.

Data analysis
Prior to further analysis, certain specific drug metabo-
lites and drug vehicle constituents were excluded
(ibuprofen, acetaminophen, salicylurate, proprionate,
propylene glycol and mannitol). A number of metabo-
lites were excluded due to low yield of detection among
both cases and controls (gluconate, glycerol, ornithine,
serine, 3-hydroxybutyrate, ethanol, uracil, adipate, and
ascorbate). Signal overlap and poor signal shape make it
more difficult to accurately detect (I do not accept this
change) and quantify metabolites present in very low
concentrations during the spectral deconvolution phase
of analysis [16]. Therefore, those metabolites detected
in less than 50% of cases and controls were excluded.
The remaining 51 metabolites were included in all sub-
sequent model developments. A complete list of all
metabolites included in model development and their
corresponding chemical shifts and multiplicities are
available (see Additional file 1).
Metabolite concentrations were log-transformed to ac-

count for non-normal distribution of metabolite data,
mean-centered to improve interpretability of the models
generated and scaled to unit variance to ensure all meta-
bolites, both high range and low range, were given equal
weight in analysis. Creatinine normalization was attempted
and made no significant difference to the predictive ac-
curacies of all generated models. As such, raw, non-
normalized data were used in concordance with several
recent studies [12,18,19]. Patient characteristics were
compared using Welch’s two-sample t-test for continuous
variables and exact methods for categorical variables. Me-
tabolite differences between groups were compared using
Mann–Whitney non-parametric statistical analysis. Statis-
tical significance was set at P <0.05. GraphPad Prism Ver-
sion 5.0c was used for all descriptive statistics (GraphPad
Software, San Diego, CA, USA).
Unsupervised (principal component analysis, PCA) and

supervised (orthogonal partial least-squares discriminant
analysis, OPLS-DA) multivariate pattern recognition
techniques were applied to pre-processed metabolite
concentration data to discriminate between sample spec-
tra of cases and controls using SIMCA-P+ (version 12,
Umetrics, Umeå, Sweden). By reducing the dimensionality
of a set of measured variables, PCA provides a crude data-
set overview and is used for initial exploratory analysis.
For class discrimination, OPLS-DA with an integrated
orthogonal signal correction (OSC) filter was applied. Par-
titioning of predictor variables improves both model trans-
parency and interpretability [20,21].
Cross validation and permutation testing were applied

for internal validation [22-24]. Predictive accuracy of the
OPLS-DA models was summarized in terms of sensitivity
and specificity using receiver operating characteristics
(ROC) curves generated from cross-validated Y-predicted
values (SIMCA-P+ software, Y-predcv, predictive Y). Area
under the ROC curve (AUROC) was calculated using
STATA/SE 10.1 (Stata, College Station, TX, USA). The
variable importance on projection (VIP)-parameter was
generated for a weighted, quantitative measure of discrim-
inatory power of the metabolites; represented by a unitless
number, the higher the value, the greater the discrimin-
atory power of the metabolite. VIP scores >1 generally
represent those metabolites carrying the most class dis-
criminating information [24].

Results
Patient characteristics
Relevant patient and tumor characteristics are outlined in
Table 1. There were no differences in age and gender
when comparing patients with esophageal cancer (n = 44)
and BE (n = 31) with healthy controls (n = 44, n = 31,
respectively), as patients were matched based on these cri-
teria. All cases of BE and esophageal cancer were con-
firmed histologically. The vast majority of cancers were
EAC (72.7%). The majority of patients had stage I-IIIa
disease (54.5%), involving the lower esophagus or esopha-
gogastric junction. Sixty-one percent of cases had sur-
gically resectable disease. A significant proportion of
patients (68.2%) reported weight loss at the time of diag-
nosis (≥5% over 6 to 12 months). The majority of patients
with BE had short segment disease (77.4%) and only one
patient had low-grade dysplasia. The average time from
initial diagnosis in this cohort of patients was 2.3 years.
Demographic data associated with pancreatic cancer
cases is published separately (in press, Annals of Surgical
Oncology 2012).

Metabolomic profile associated with esophageal
carcinoma
Metabolite concentration data of stage I-III esophageal
cancer patients were analyzed using both unsupervised
(PCA) and supervised (OPLS-DA) multivariate pattern
recognition methods. Even at the exploratory, unsuper-
vised phase of analysis, suggestion of group clustering
based on disease status (cancer versus healthy) was
observed (see Additional file 2). Supervised pattern rec-
ognition techniques were then applied using OPLS-DA
to compare the metabolite expression profiles of patients
with esophageal cancer and healthy controls. The out-
come demonstrated clear separation of patients with



Table 1 Clinical features of study subjects and tumor characteristics

Number of subjects (n) Esophageal Ca (44) Controls (44) p Barrett's (31) Controls (31) p

Age [median (range)] 63 (40-86) 62 (41-84) 0.824 64.5 (38-81) 64.5 (36-80) 1.000

Gender (male/female) 32/12 32/12 1.000 19/12 19/12 1.000

TNM Stage

Ia/b 3/44 (6.8%) - - - - -

IIa/b 11/44 (25%) - - - - -

IIIa 10/44 (22.7%) - - - - -

IIIb 6/44 (13.6%)

IIIc 6/44 (13.6%)

Unknown 8/44 (18.2%) - - - - -

Histologic Type - -

Esophageal Adenocarcinoma 32/44 (72.7%) - - - - -

Squamous Cell Carcinoma 11/44 (25%) - - - - -

Poorly Differentiated 11/44 (2.3%)

Histologic Grade - -

1 4/44 (9.1%) - - - - -

2 17/44 (38.6%) - - - - -

3 17/44 (38.6%) - - - - -

Unavailable 6/44 (13.6%) - - - - -

Location - -

Cervical 1/44 (2.3%) - - - - -

Upper Thoracic 1/44 (2.3%) - - - - -

Middle Thoracic 8/44 (18.2%)

Lower Thoracic/EGJ 35/44 (79.5%)

Resectable 27/44 (61.4%) - - - - -

Unresectable 17/44 (38.6%) - - - - -

Barrett's Esophagus

Short segment (<3cm) 24/31 (77.4%)

Long segment (≥3cm) 8/31 (25.8%)

Dysplasia

Low grade 1/31 (3.2%)

High grade 0/31 (0%)

Average time from initial diagnosis (yr) 2.3

Weight Loss (≥5%) - -

Yes 30/44 (68.2%) - - - - -

No 6/44 (13.6%) - - - - -

Unavailable 8/44 (18.2%) - - - - -

Ca, carcinoma.
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cancer from controls (Figure 1A). Corresponding loading
plots for the above (Figure 1B) and all subsequent mod-
els are also available (see Additional files 3, 4, and 5).
Furthermore, a sample 1H-NMR spectrum of esophageal
cancer demonstrating several characteristic metabolites
is also demonstrated (Figure 2).
Mann–Whitney statistical analysis was used to com-

pare the individual metabolite concentrations between
patients with esophageal cancers and controls. Nine
metabolites had significantly different levels of expres-
sion (P value range for nine significant metabolites =
P <0.0001 to 0.0426). Metabolites exhibiting significant
concentration differences and those contributing the
most class discriminating information based on the VIP
are listed in Figure 3, together with the results of fold
change calculations. It is apparent that simultaneous
perturbations in multiple metabolic pathways contribute
to the observed class separation.



Figure 1 OPLS-DA score plot of metabolite profiles derived from esophageal carcinoma and healthy controls with corresponding
loading plot. A) Supervised OPLS-DA score plot. Two-component model based on 53 measured urinary metabolites. Esophageal cancers are
represented by red triangles and blue circles depict controls. B) OPLS-DA loading plot of urinary metabolite profiles derived from esophageal
carcinoma and healthy controls. OPLS-DA, orthogonal partial least squares discriminant analysis.
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Key metabolites involved in OPLS-DA model accord-
ing to VIP- parameter and P-value significance. Only
those metabolites with significant concentration differ-
ences or a VIP-parameter ≥1 are displayed. P-values
were obtained using Mann–Whitney nonparametric
statistical analysis. *P <0.05, **P <0.01, ***P <0.0001. Fold
change was calculated by dividing the median metabolite
concentration in cancers by controls.
A sub-analysis was also carried out excluding exogenous

metabolites in order to minimize dietary or environmental
influences on model generation. These included sucrose,
1,6-anhydro-D-beta-glucose, adipate, 2-hyroxyisobutyrate,
ascorbate, ethanol and xylose. Methanol (a microbial
metabolite) was also excluded in the secondary analysis. A
more detailed description of these compounds is also
Figure 2 Representative urine 1H-NMR spectrum of esophageal cance
shift relative to internal standard, DSS-d6, Y-axis = peak amplitude relative to D
with labeled metabolites. Black line represents 1H-NMR spectrum, blue line re
line represents compound signature corresponding to pantothenate. DSS-d6,
available (see Additional file 6). The OPLS-DA model
achieved comparable class separation, with similar pre-
dictive accuracy (AUROC = 0.9619, results not shown).
These results suggest that exogenous metabolites did
not contribute significantly to class discrimination. The
identity and sequence of key discriminating metabolites
based on VIP-analysis was unaltered following the exclu-
sion of the exogenous metabolites with the exception of
the inclusion of 1-methylnicotinamide (precursor mol-
ecule to coenzymes nicotinamide-adenine dinucleotide
(NAD+) and nicotinamdie-adenine dinucleotide phosphate
(NADP+), metabolites involved in energy metabolism),
4-hydroxyphenylacetate (amino acid derivative) and isoleu-
cine (amino acid). These metabolites were not predomin-
ant, however, with VIP-values very close or equal to 1.0.
r. Urinary 1H-NMR spectrum of esophageal cancer. X-axis = chemical
SS-d6. A) Full 1H-NMR spectrum. B) Representative region of spectrum

presents compound signature corresponding to 2-aminobutyrate, red
sodium 2,2-dimethyl-2-silapentane-5-sulfonate-d6.



Figure 3 Key metabolite differences between esophageal cancer and healthy controls.
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Metabolomic profile associated with Barrett’s esophagus
Metabolite concentration data of patients with BE and
healthy controls were also compared using multivariate
pattern recognition techniques in order to determine if
the metabolite expression profile of this pre-malignant
lesion was distinct from that of healthy controls. While
group clustering based on disease status was not
observed at the unsupervised phase of analysis, clear
class separation was achieved when supervised methods
were applied (see Additional file 7). These results sug-
gest the presence of detectable metabolic disturbances
even at the pre-invasive stage of esophageal cancer pro-
gression. Eight metabolites were differentially expressed
when comparing patients with BE to healthy controls
using Mann Whitney statistical analysis (P value range
for eight significant metabolites = P <0.05 to 0.01). Key
Figure 4 Key metabolite differences between Barrett’s esophagus and
metabolites most responsible for class separation based
on the VIP-parameter and significant concentration
differences are listed in Figure 4, together with their re-
spective fold change.
Key metabolites involved in the OPLS-DA model

according to VIP-parameter and P-value significance.
Only those metabolites with significant concentration dif-
ferences or a VIP-parameter ≥1 are displayed. P-values
were obtained using Mann–Whitney nonparametric stat-
istical analysis. Fold change was calculated by dividing the
median metabolite concentration in BE by controls.
Finally, concentration data of patients with early stage/

locally advanced esophageal cancer and BE were com-
pared using similar methods of analysis. In this model,
esophageal cancer patients with squamous cell carcin-
oma on histology were excluded. While group clustering
healthy controls.



Figure 5 Permutation analysis of OPLS-DA model derived from
esophageal carcinoma versus healthy controls. Statistical
validation of the OPLS-DA model by permutation analysis using 100
different model permutations. The goodness of fit (R2) and predictive
capability (Q2) of the original model are indicated on the far right and
remain higher than those of the 100 permuted models to the left.
OPLS-DA, orthogonal partial least squares discriminant analysis.
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was not achieved at the unsupervised phase of analysis
when supervised methods were applied, class separation
became clearly apparent when comparing the metabolite
expression profiles of patients with EAC and BE (see
Additional file 8). As anticipated, a degree of overlap not
present when comparing esophageal cancer patients to
healthy controls was evident. This overlap was entirely
expected based on the known and histologically proven
background BE in these patients developing EAC.
Unique patterns of metabolite expression were

observed when comparing metabolite concentration
data from patients with EAC and BE. Mann Whitney
analysis revealed 10 metabolites with significant con-
centration differences (P value range for 10 significant
metabolites = P <0.043 to 0.0003). As expected, while
there were similarities in the metabolite expression
patterns when comparing these results to the model
discriminating esophageal carcinoma from healthy con-
trols, a number of unique metabolite differences were
observed.

Model validation and prediction accuracy
Permutation testing and cross validation, two established
methods of internal validation, were used to confirm
model validity. Permutation tests involve the random
assignment of class labels to cases and controls. Permuta-
tion testing using 100 random permutations demonstrates
that the goodness of fit and predictive ability (R2/Q2) of
the original models discriminating esophageal cancers
(Figure 5) and BE from controls was higher than those of
the permuted models. This was also confirmed in the
model comparing EAC to BE.
OPLS-DA model generation employed a seven-fold

cross validation step. This involves omitting a portion of
the data from model development, developing parallel
models from the reduced data, predicting the omitted data
from the different models, and then comparing predicted
with actual values, providing an estimate of overall pre-
dictive power. Using cross-validated Y-predicted values,
model sensitivity and specificity were summarized using
ROC curves for the models distinguishing esophageal can-
cer (AUROC = 0.9810) and BE (AUROC = 0.9627) from
healthy controls (Figure 6 and Additional file 7, respect-
ively). Results were indicative of strong predictive power.
Predictive accuracy of the model distinguishing EAC from
BE was less pronounced, as expected, with an AUROC =
0.9430 (see Additional file 8).

Cancer-specific metabolomic profile
In order to determine whether the patterns of altered
metabolite expression observed in esophageal carcinoma
were reflective of metabolic changes common to all ma-
lignancies or whether these disturbances were specific to
esophageal carcinoma, we compared the metabolomic
profiles of two disparate malignancies. When comparing
metabolite concentration data of patients with esopha-
geal cancer (n = 44) and pancreatic cancer (n = 32)
using supervised methods (OPLS-DA), class separation
was evident, indicating that the metabolic perturbations
observed were likely reflective of metabolic alterations
specific to esophageal cancer while areas of overlap were
likely representative of shared common final pathways of
tumorigenesis (see Additional file 9, AUROC = 0.8954).

Discussion
Esophageal cancer is an aggressive malignancy with poor
prognosis, in part due to delayed diagnosis. Nearly 50%
of patients do not present until they are at an advanced,
incurable stage; however, current surgical and adjuvant
therapies offer high cure rates in early stage disease [5].
For most of the twentieth century, squamous cell carcin-
oma accounted for the vast majority of esophageal can-
cers. In the past three decades, however, the overall
incidence of EAC has increased at an alarming rate, and
this has been accompanied by dramatic increases in
mortality [5]. While reasons for this steady progression
in incidence remain largely unknown, they are thought
to be secondary to increased rates of obesity and GERD.
BE, affecting up to 20% of patients with GERD, is a well-
recognized precursor lesion of EAC and carries a 30- to
125-fold increased risk of cancer development when
compared with the general population [25].
Despite the presence of a known, stepwise, metaplasia-

dysplasia-carcinoma sequence of cancer progression
providing the opportunity for early detection, screening
and treatment, there is little evidence that current



Figure 6 Predictive accuracy of the OPLS-DA model
discriminating esophageal carcinoma and healthy controls
summarized using ROC curve analysis. The ROC curve of the
OPLS-DA model discriminating esophageal cancers and controls
generated using cross-validated predicted-Y values of the OPLS-DA
model. AUROC = 0.9810. Statistical validation of the OPLS-DA model
by permutation analysis using 100 different model permutations.
The goodness of fit (R2) and predictive capability (Q2) of the original
model are indicated on the far right and remain higher than those
of the 100 permuted models to the left. AUROC, area under the
receiver operating curve; OPLS-DA, orthogonal partial least squares
discriminant analysis; ROC, receiver operating curve.

Davis et al. World Journal of Surgical Oncology 2012, 10:271 Page 8 of 12
http://www.wjso.com/content/10/1/271
surveillance strategies have prevented deaths resulting
from EAC [25]. Traditionally, screening and surveillance
strategies for EAC among patients with BE involve endo-
scopic detection with histopathologic confirmation of
Barrett's metaplasia-dysplasia. Challenges impeding the
effectiveness of current strategies aimed at early detec-
tion include the large number of patients with silent
reflux harboring BE, the discontinuous nature of meta-
plastic and dysplastic epithelium when using a technique
of random endoscopic biopsy and the absence of a well-
validated risk stratification model capable of accurately
and reliably identifying those individuals truly at risk of
progression along the metaplasia-carcinoma sequence
[26]. Moreover, there exists a subset of patients who pro-
gress to high-grade dysplasia and cancer with no evidence
of dysplasia on previous recent surveillance endoscopies,
representing a cohort of patients who may, therefore,
evade detection using current screening strategies [26,27].
Urinary metabolomics offers a novel and sensitive ap-

proach to simultaneously evaluating tumor-associated
perturbations of multiple metabolic pathways and their
downstream functional significance prior to the sur-
facing of gross phenotypic change. Application of meta-
bolomic tools could therefore provide an opportunity for
screening and early detection, molecularly-guided and
personalized therapeutics as well as further interrogation
of the molecular pathogenesis of esophageal cancer
progression.
There remains a dearth of research examining the role
of metabolomics as a potential diagnostic or screening
tool in esophageal cancer and its precursor lesion, BE.
The majority of studies have been serum- or tissue-
based, limited in sample size and inclusive of patients
with metastatic disease. As a biofluid, urine has a num-
ber of distinct advantages, namely related to ease of
sample collection, storage, processing and reproducibil-
ity. Furthermore, urinary metabolomics avoids the issue
of degraded spectral resolution resulting from high lipid
and protein content, often a complicating feature in the
analysis phase of serum studies.
Djukoivc et al. used a targeted metabolite approach to

investigate the potential role of nucleosides as cancer
biomarkers in EAC [28]. They uncovered a number of
differences in nucleoside expression when comparing
cancer patients to healthy controls. Using a serum-NMR
based approach, Zhang et al. were able to discriminate
patients with EAC from healthy controls, in congruence
with results of other serum studies of smaller sample
size [29-31]. They also found that patients with BE and
high-grade dysplasia appeared to overlap with both can-
cers and controls; however, this analysis was limited to
five patients. Moreover, patients with stage IV disease
were included and, while a subgroup analysis was done,
potential confounding effects of age and gender were
not taken into account at the primary stage of analysis.
Using a representative sample of patients with early

stage or locally advanced disease, we have identified a
discrete and specific urinary metabolomic signature of
esophageal cancer which is clearly distinguishable from
healthy controls and exhibits strong predictive accuracy.
Moreover, even at the pre-invasive stage of disease,
metabolomic profiling accurately distinguishes patients
with BE. Esophageal cancer is a highly curable malig-
nancy when treated in its early stages. A non-invasive,
highly predictive screening tool capable of early disease
detection could, therefore, have significant impact on
the management of esophageal cancer with the potential
to drastically alter outcomes.
Biochemical interpretation of the altered patterns of

metabolite expression when comparing esophageal can-
cers with controls must be made with caution since it is
likely that the overall metabolite expression profile
results from a convergence of changes occurring at the
tumor microenvironment level and disturbances in over-
all global metabolism. We suspect that cancer-specific
elevations of 2-aminobutyrate (a key intermediate in the
biosynthesis of opthalmate which is a tripeptide
analogue of glutathione) may be reflective of increased
oxidative stress [32,33]. Cancer cells both in vitro and
in vivo are thought to be under continuous oxidative
stress, in part resulting from outgrowth of blood supply
occurring with tumor proliferation [34]. Esophageal
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cancers grow and spread rapidly, with lymph node me-
tastases in nearly 20% of T1 lesions and 60% of T2
lesions [5]. Likewise, cancer-specific elevations of hypo-
xanthine may represent an underlying enhanced capacity
for DNA synthesis in association with tumor growth.
Our findings of cancer-specific decreases of pantothen-
ate, a precursor of coenzyme A and elevations of cis-
aconitate, a tricarboxylic acid cycle intermediate, were in
agreement with observations of Ikeda et al. and may be
a result of aggressive tumor growth with resulting
increased energy demands [29]. It is possible that ele-
vated levels of fucose among cancer patients may be
associated with subclinical hepatocellular injury from
early metastatic disease, as this metabolite is often
secreted in association with liver damage [33].
Cachexia is present in up to 80% of patients with malig-

nancies of the upper gastrointestinal tract and is a compli-
cating feature in a significant proportion of patients with
esophageal cancer [35]. Significant elevations of pi-
methylhistidine were observed among cancer patients and
may be reflective of cachexia-induced skeletal muscle pro-
tein breakdown. Trends towards significance were observed
with regard to cancer-specific elevation of a number of
amino acid and amino acid derivatives (tyrosine, trypto-
phan, threonine, trigonelline, 4-hydroxyphenylacetate and
isoleucine), possibly resulting from muscle wasting in these
patients. In the early stages of malignancy, cachexia-
associated muscle wasting is often an occult phenomenon
[12,36]. A noninvasive means of detecting early muscle
wasting in patients harboring occult or early malignancy
could have significant clinical utility.
As expected, there was a larger degree of overlap when

comparing the metabolite expression profiles of patients
with EAC and BE compared to those of healthy controls.
Barrett’s metaplasia was noted in over 50% of final surgi-
cal specimens resected in the setting of EAC. Accord-
ingly, several key metabolites were common to the
models discriminating esophageal cancers from healthy
controls and BE. Metabolite differences observed when
comparing patients with BE to healthy controls may in
part be reflective of the hyperproliferative state known
to characterize Barrett’s epithelium [1,26]. Relative
decreases in the concentration in a number of metabo-
lites among patients with BE (succinate, pantothenate,
acetate, formate) may be reflective of this hyperprolifera-
tive state and a resultant overall increased cellular en-
ergy demand. Additionally, preferential use of branch
chain amino acids, specifically leucine, is characteristic
of stress states. Lower levels seen among patients with
BE may have been reflective of the metabolic stress asso-
ciated with low grade, chronic inflammation [33]. At this
stage, however these postulations remain speculative and
further experimental in vivo modeling is required to
confirm their relevance. Of note, disease chronicity, extent
and severity appeared to be well correlated with degree of
metabolic derangement. The metabolic profiles of those
patients with a longstanding history of BE (mean four
years), those with long segment BE or those with low
grade dysplasia (one patient) showed the greatest degree
of discrimination from that of normal controls.
In an effort to explore whether the metabolic distur-

bances observed were, in fact, specific to esophageal
cancer or reflective of common final pathways of global
metabolic change associated with malignancy, the
metabolomic profiles of patients with esophageal and
pancreatic cancer were compared. Key discriminatory
metabolites identified through VIP-analysis revealed sev-
eral distinguishing patterns of metabolic expression.
Acetone (an end-product of ketogenesis) and glucose,
two key discriminatory metabolites elevated among
patients with pancreatic cancer, are perhaps reflective of
underlying diabetogenic disturbances associated with
this malignancy. Hyperinsulinemia and peripheral insu-
lin resistance are metabolic perturbations frequently
observed in pancreatic cancer [37,38]. Elevated levels of
3-indoxylsulfate, another key discriminatory metabolite,
were observed among patients with esophageal cancer.
This may perhaps be reflective of the prominent role of
oxidative damage in the malignant transformation of
esophageal cancer as 3-indoxylsulfate acts to propagate
oxidative stress by strongly decreasing circulating levels
of glutathione, a key cellular antioxidant [39,40].
While the metabolite expression profiles of patients

with esophageal and pancreatic cancer were clearly dis-
tinguishable, a region of overlap was evident. This area
of overlap could be reflective of metabolic changes asso-
ciated with shared common pathways of tumorigenesis
including increased energy expenditure associated with
tumor cell proliferation and growth, other molecular
commonalities involved in tumor angiogenesis, invasion
and distant spread as well as cachexia-associated muscle
wasting. The metabolites most contributory to the over-
lapping region were related to energy metabolism and cel-
lular proliferation (1-methylhistidine, o-acetylcarnitine) as
well as those reflective of muscle wasting, including pi-
methylhistidine, creatinine, and a number of amino acids
and amino acid derivatives (leucine, tyrosine, isoleucine,
valine, tryptophan and 4-hydroxyphenylacetate).
While these preliminary results are encouraging, a num-

ber of limitations must be acknowledged including small
sample size. Future studies will include an external valid-
ation step to further confirm model validity using an inde-
pendent cohort of patients not involved in model
development. The predictive accuracy of reduced models
containing only those key discriminatory metabolites
identified here (metabolites with significant concentration
differences or a VIP-parameter ≥1) will also be tested at
this stage.
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While the potential confounding effects of chemora-
diation treatments were controlled for by collecting sam-
ples prior to any therapeutic intervention, one limitation
of this study could be the potential confounding effect of
medication. It was impossible, however, in a study of this
size and design to control for this potential confounder
given the wide range of medications being prescribed
among enrolled patients. We suspect, however, that any
effect was likely small and not relevant as considerable
differences in the medication profiles were not apparent
on initial analysis. Furthermore, while drug metabolites
and drug vehicle constituents were excluded from ana-
lysis, it was not possible for us to control for the poten-
tial downstream effects of these medications on the
expression of other metabolites. While this could be a
potential confounder, we believe the effect is small and
likely reasonably balanced between groups.
An additional limitation of this study could have

resulted from a lack of control for dietary factors. How-
ever, when a number of exogenous metabolites were
excluded from analysis, predictive accuracy was main-
tained. While dietary factors were not directly controlled
for, we have no clear reason to believe there would be
any major systematic dietary differences between these
patients given that a large proportion of the patients
with esophageal cancers were early stage and the
patients with BE were otherwise medically fit. Further-
more, given that all cases and all controls were not con-
suming identical diets, it is more likely that any dietary
effects were responsible for creating background noise,
potentially obscuring further important, biological pat-
terns. This issue could be addressed further in future
studies, however, through the use of dietary records to
account for any gross dietary differences.
Future studies should also integrate results from

both serum and urine analysis, while using diverse ana-
lytical platforms such as gas-chromatography or liquid
chromatography-mass spectrometry in order to gain a
more complete assessment of the metabolic milieu
associated with esophageal cancer and its precursor
lesion, BE.

Conclusions
Using NMR and multivariate statistical techniques, we
identified a discrete urinary metabolic signature associated
with early and locally advanced esophageal cancer. The
metabolic profile of esophageal cancer was distinct from
that of healthy controls and demonstrated strong predict-
ive power. We also identified a highly accurate, metabolic
signature of the precursor lesion, BE. Identification of a
highly sensitive and specific non-invasive tool capable
of early disease detection could allow for improved
population-based screening of high-risk populations,
allowing for early intervention at the pre-invasive or early
stage of disease when cure rates are high. Furthermore,
greater understanding of the molecular pathogenesis of
BE and esophageal cancer carcinogenesis could reveal
new molecular targets to further optimize and personalize
current adjuvant therapies.
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