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Abstract

Background: Papillary thyroid carcinoma (PTC) is the most common malignancy in thyroid tissue, and the number
of patients with PTC has been increasing in recent years. Discovering the mechanism of PTC genesis and progression
and finding new potential diagnostic biomarkers/therapeutic target genes of PTC are of great significance.

Methods: In this work, the datasets GSE3467 and GSE3678 were downloaded from the Gene Expression Omnibus
(GEO) database. Differentially expressed genes (DEGs) were identified with the limma package in R. GO function
and KEGG pathway enrichment were conducted with DAVID tool. The interaction network of the DEGs and other
genes was performed with Cytoscape plugin BisoGenet, while clustering analysis was performed with Cytoscape
plugin ClusterOne.

Results: A total of 1800 overlapped DEGs were detected in two datasets. Enrichment analysis of the DEGs found
that the top three enriched GO terms in three ontologies and four significantly enriched KEGG pathways were
mainly concerned with intercellular junction and extracellular matrix components. Interaction network analysis
found that transcription factor hepatocyte nuclear factor 4, alpha (HNF4A) and DEG JUN had higher connection
degrees. Clustering analysis indicated that two function modules, in which JUN was playing a central role, were
highly relevant to PTC genesis and progression.

Conclusions: JUN may be used as a specific diagnostic biomarker/therapeutic molecular target of PTC. However, further
experiments are still needed to confirm our results.
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Background
The thyroid cancer incidence has been increasing world-
wide in recent years, and more cases of thyroid cancer
are diagnosed every year [1]. Papillary thyroid carcinoma
(PTC) is the most common malignancy in the thyroid
and accounts for almost 80% of all thyroid cancers [2]. It
is characterized by distinctive nuclear alterations includ-
ing pseudoinclusions, grooves, and chromatin clearing
[3]. Most patients with PTC have an excellent prognosis,
but a small number of patients remain suffering with
aggressive PTC which can develop invasive tumors and/
or distant metastases [4]. Undoubtedly, PTC places an
enormous economic burden on society and personality
and greatly lowers the quality of one’s life. It is of great

significance to study the mechanism of PTC genesis and
explore new avenues to prevent PTC formation.
Previous study indicated that a number of different

genetic changes were related to PTC, particularly the
chimeric oncogenes formed by a fusion of a membrane
receptor protein tyrosine kinase domain with another
gene’s 5-prime terminal region. Oncogenic gene rear-
rangements involving the RET and NTRK1 have been
found in PTC tissues [5, 6]. BRAF and RAS mutations
are also observed in PTC cases, and the constitutive ac-
tivation of effectors along the RET/PTC-RAS-BRAF sig-
naling pathway contributed to the transformation of the
thyroid cell to PTC [7–9]. For the diagnosis and progno-
sis of PTC, several methods and markers are used. Im-
munohistochemical markers have been evaluated and
tested in PTC tissues, such as CK19, HBME-1, RET,
galectin-3, and CITED1. However, they are helpful only
in some cases, for all of them have their limits and may
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bring some error diagnostics [10–13]. Molecular studies
also conferred some useful information for the diagnosis
and therapy of PTC. Liu et al. have reported that CXCR7
gene involves in regulating proliferation and metastasis
of PTC cell and provides a potential target for thera-
peutic interventions in PTC [14]. Minna et al. found that
miR-199a-3p could act as a tumor suppressor in PTC
[15]. Despite those researches on PCT, there are still so
many mechanisms underlining PTC genesis and pro-
gression that needed further investigation, especially in
the gene expression profile level.
In this study, we aimed to identify the differentially

expressed genes (DEGs) in PTC tissues compared with
normal thyroid tissue adjacent to PTC tumors. A series
of bioinformatics analyses including DEGs identification,
function enrichment, and interaction network construc-
tion were conducted to gain more insights into the
molecular mechanisms of PTC genesis and progression.
Our aim is to explore the pathogenesis of PTC and find
potential diagnostic biomarkers/therapeutically targets of
PTC by bioinformatic methods.

Methods
Affymetrix microarray data
Gene expression profiles of GSE3467 and GSE3678 were
downloaded from the Gene Expression Omnibus (GEO)
database (http://www.ncbi.nlm.nih.gov/geo/), which is se-
quenced on the GPL570 (Affymetrix Human Genome
U133 Plus 2.0 Array) platform. A total of 32 chips were
used for the analysis, including 18 samples in GSE3467 (9
PTC samples and 9 matched normal tissue samples [16])
and 14 samples in GSE3678 (7 PTC samples and 7 paired
normal thyroid tissue samples). Total RNA was extracted
from paired tumor and normal thyroid tissues from the
PTC patients. The downloaded raw data in CEL files were
converted into expression measures and performed back-
ground correction and quartile data normalization using
the robust multichip average (RMA) algorithm [17] in Affy
package manufactured by Affymetrix [18].

DEGs analysis
Both aforementioned datasets were divided into the PTC
group and the normal group. The limma method [19] was
used to identify DEGs in both datasets. The threshold of
DEGs was set as |log2FC| > 0.5 with false discovery rate
(FDR) <0.01. The BH method was used to adjust the raw
p value into FDR to circumvent the multi-test problem
which might induce too many false positive results [20].
Subsequently, two sets of DEGs were obtained after the
above process. Venn diagram package [21] was used to
perform Venn diagram to get the overlapped DEGs in
both datasets. To further study the overlapped DEGs, heat
maps of the overlapped DEGs were depicted in both data-
sets using R package “pheatmap” function [22]. We could

inspect the different expression patterns of these genes
between the PTC group and the normal group through
the heat maps. Besides, the correlation analysis between
the logFC values of the DEGs in GSE3467 and GSE3678
was also processed to verify whether the gene expression
trends in both datasets were the same or not [23]. The
Pearson’s correlation coefficient was used to assess the
associations. All p values <0.05 were considered to be
statistically significant.

Enrichment analysis
Firstly, the probes were converted to the official gene
symbol according to Da et al. [24] using DAVID. Then,
both Gene Ontology (GO) enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis were processed to complete the func-
tional enrichment analysis, and DAVID was utilized to
select online biological classification. GO provides three
structured networks of defined terms (biological process,
molecular function, and cellular compartment) to describe
gene product attributes [25]. We performed GO enrich-
ment analysis in these three ontologies to functionally
classify the DEGs. KEGG pathway is a collection of manu-
ally drawn metabolic pathway map which represents our
knowledge on the molecular interaction and reaction net-
works [26]. The count number ≥5 and the p value <0.01
were chosen as the cutoff for defined GO terms and
KEGG pathways.

Interaction network construction
Cytoscape [27] is a free software project for integrating
biomolecule interaction networks with high-throughput
expression data and other molecular states into a unified
conceptual framework. BisoGenet [28] is a new plugin of
Cytoscape for gene network construction, visualization,
and analysis. A trait of Bisogenet is the availability to
include coding relations to distinguish between genes
and their products. In the present study, BisoGenet was
used to get the interaction networks of the DEGs
based on Biomolecular Interaction Network Database
(BIND) [29], a database designed to store full descrip-
tions of interactions, molecular complexes, and pathways,
to search the all known interactions. The interaction
patterns with a degree ≥0.8 were selected. Besides,
the clustering analyses of the genes were also per-
formed with the Cytoscape plugin ClusterOne [30]
under default parameters to obtain the important
function modules, and the p values of hypergeometric
distribution were defined <0.05.

Results
DEGs analysis
Totally, 4237 DEGs were identified in GSE3467, and
2990 DEGs were identified in GSE3678. What's more,
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there were 1800 overlapped DEGs observed in both
datasets. Among them, 1083 genes were significantly
downregulated while 717 genes were significantly
upregulated.
The hierarchical clustering analysis of the 1800 over-

lapped genes in the two datasets is shown in Fig. 1. As the
heat maps have shown, in both datasets, the expression
patterns of these genes were significantly different
between the PTC group and the control group, and there
was an obvious boundary line between them. Besides,
correlation analysis between the logFC values of the DEGs
in GSE3467 and GSE3678 also showed that they were
highly positively correlated as the correlation coefficient

reached 0.94 and the p value <2.2e − 16 (Fig. 2). This
result indicated that the expression patterns of the DEGs
in the two datasets were highly consistent, and the 1800
overlapped DEGs may be truly differentially expressed in
the PTC group compared with those in the control group.

Fig. 1 Bidirectional hierarchical clustering analysis of the 1800 overlapped DEGs between PTC and control groups in dataset GSE3467 (a) and GSE3678 (b)

Fig. 2 Correlation scatter plot of the 1800 DEGs’ logFC values in dataset
GSE3467 and that in dataset GSE3678

Table 1 The top five enriched GO terms in three categories and
all enriched KEGG pathways in PTC

Category Term P value

GOTERM_BP_FAT GO:0007155~cell adhesion 8.71E-08

GOTERM_BP_FAT GO:0022610~biological adhesion 9.42E-08

GOTERM_BP_FAT GO:0009611~response to wounding 1.53E-06

GOTERM_BP_FAT GO:0007242~intracellular signaling
cascade

1.92E-06

GOTERM_BP_FAT GO:0008637~apoptotic mitochondrial
changes

2.35E-06

GOTERM_CC_FAT GO:0031012~extracellular matrix 4.21E-07

GOTERM_CC_FAT GO:0044459~plasma membrane part 7.73E-06

GOTERM_CC_FAT GO:0005578~proteinaceous extracellular
matrix

7.77E-06

GOTERM_CC_FAT GO:0044421~extracellular region part 1.17E-05

GOTERM_CC_FAT GO:0000267~cell fraction 3.87E-05

GOTERM_MF_FAT GO:0030247~polysaccharide binding 1.49E-05

GOTERM_MF_FAT GO:0001871~pattern binding 1.49E-05

GOTERM_MF_FAT GO:0042802~identical protein binding 5.24E-05

GOTERM_MF_FAT GO:0008092~cytoskeletal protein binding 5.74E-05

GOTERM_MF_FAT GO:0005539~glycosaminoglycan binding 7.06E-05

KEGG_PATHWAY hsa04512:ECM-receptor interaction 1.05E-04

KEGG_PATHWAY hsa05200:Pathways in cancer 1.20E-04

KEGG_PATHWAY hsa05210:Colorectal cancer 3.07E-03

KEGG_PATHWAY hsa04510:Focal adhesion 3.28E-03
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Function enrichment analysis
A total of 179 significantly enriched GO terms in the
aforementioned three ontologies and four significantly
enriched KEGG pathways were obtained. The top three
enriched GO terms in the three ontologies and the four
enriched KEGG pathways are listed in Table 1. Taken
together, the intercellular junction and extracellular matrix
components may be related with the PCT genesis.

Interaction network analysis
The interaction network of the DEGs was created to
deeply understand how these DEGs are related and
how the different pathways crosslink to each other
(Fig. 3). As the result had shown, transcription factor
(TF) hepatocyte nuclear factor 4, alpha (HNF4A),
regulated the expression of many DEGs, while the
DEG PGR could be regulated by many transcription
factors. The DEG JUN was connected with many

other genes, which implied that its encoding product
could interact with many target proteins, and be
involved in many pathways. Six function clusters of
the DEGs were obtained using the plugin ClusterOne
including cluster 1 with the DEGs JUN and HLF (Fig. 4a),
cluster 2 with the DEGs HBA2 and HBB (Fig. 4b),
cluster 3 with the DEG LRRC7 (Fig. 4c), cluster 4
with the DEG PRKCQ (Fig. 4d), cluster 5 with the
DEGs JUN, FOS, and MAFB (Fig. 4e), and cluster 6
with the DEG ITGA3 (Fig. 4f ). These six significant
clusters mainly function in protein dimerization,
hemoglobin complex, cytoplasmic vesicle, regulation
of molecular function, sequence-specific DNA binding,
and integrin complex. The detailed genes involved in
these clusters and the top significant GO term of
these genes were listed in Table 2. What was notice-
able was that the gene JUN appeared in two clusters
(cluster 1 and cluster 5), suggesting its important role
in PTC genesis.

Fig. 3 DEGs interaction network construction in PTC. The red squares stand for DEGs and the blue squares stand for target proteins. The blue lines
stand for the interaction between two proteins and the blue lines with arrows stand for the interaction between DNA and protein
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Discussion
The incidence of PTC has increased worldwide over the
past 15 to 20 years, especially in developed countries
[31, 32]. To manage the increasing PTC patients effect-
ively, a better understanding of the molecular mechanism
involved in PTC is necessary. We applied bioinformatics
techniques to investigate the DEGs in PTC and deeper
explore the molecular mechanism underlying PTC genesis
in this study. A total of 1800 overlapped DEGs were
detected in two datasets. Enrichment analysis found the
top five enriched GO terms in three ontologies and four
significant enriched KEGG pathways were mainly con-
cerned with regulation of pigmentation, cellular homeo-
stasis, extracellular matrix, and intercellular junction. By
constructing interactive network of the DEGs, we found
that transcription factor HNF4A and DEG JUN had higher

connection degrees in the network. By employing plugin
ClusterOne, we got six subnetworks and DEG JUN
appeared in two subnetworks.
In the constructed interaction network, we observed

that the transcription factor HNF4A was connected with
many other DEGs. However, its own expression has not
changed in PTC. HNF4A regulates expression of genes
involved in glucose metabolism and homeostasis [33]. It
may play important roles in the occurrence and progres-
sion of PTC by interfering other genes’ normal expression
and further disturbing cellular homeostasis. Nevertheless,
further studies are still needed to illustrate its specific role
in PTC genesis. We also discovered that the DEG gene
JUN could interact with many other target proteins,
implying its important role in PTC genesis. JUN is a
proto-oncogene, and its encoding product is the first

Fig. 4 Significant clusters in PTC. The interaction networks in cluster 1 (a), cluster 2 (b), cluster 3 (c), cluster 4 (d), cluster 5 (e), and cluster 6 (f)

Table 2 The detailed information of the significant enriched function modules

Nodes P value Genes Top significant GO term

Cluster 1 16 0.0000143 ATF2, ATF3, ATF4, BATF, CEBPE, HLF, DBP, TEF, JUN,
CEBPB, BATF3, DDIT3, JUNB, CEBPG, FOSL1, ATF7

GO:0046983~protein dimerization activity

Cluster 2 5 0.005 HBZ, HBB, HBA1, HBA2, AHSP GO:0005833~hemoglobin complex

Cluster 3 3 0.026 CAMK2A, ACTN4, LRRC7 GO:0044433~cytoplasmic vesicle part

Cluster 4 4 0.027 IKBKB, IKBKG, PRKCQ, PDPK1, GO:0044093~positive regulation of molecular function

Cluster 5 13 0.032 ATF2, ATF3, NFATC2, MAFB, JUN, FOSL2, BATF3,
DDIT3, JUNB, CEBPG, FOS, FOSL1, ATF7

GO:0043565~sequence-specific DNA binding

Cluster 6 4 0.05 CD9, ITGA3, ITGB1, TIMP2 GO:0008305~integrin complex
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discovered oncogenic transcription factor [34]. Previous
study demonstrated that it could promote tumor forma-
tion and maintain tumor cell survival between the initi-
ation and progression stages [35]. The activation of JUN
was also involved in the progress of breast cancer, gastric
cancer, and colorectal carcinomas [36–38]. But the role of
JUN in PTC has not been studied, and here, we observed
its significant different expression in PTC tissues and
noticed its interaction with so many other proteins in the
created interaction network. We deduced that the JUN
may also play an important role in PTC genesis and
progression and can be a possible potential diagnostic
biomarker/therapeutical target gene of PTC.
Our deduction get further conferred by the cluster

analysis, as the JUN appeared again in cluster 1 and clus-
ter 5 (Fig. 4a, e). GO enrichment analysis manifested that
cluster 1 was mainly concerned with “protein dimerization
activity.” There were only two DEGs in cluster 1, namely
JUN and HLF. The rest were all unchanged target pro-
teins, and most of them were transcription factors, such
as ATF2, ATF3, ATF4, ATF7, DDIT3, and FOSL1. HLF is
a proto-oncogene whose expression product is a subset of
the bZIP transcription factors and can cause abnormal
transcriptional regulations of target genes which is related
to leukemia development [39]. ATF2 binds with JUN to
form a heterodimer and participates in reducing the
amount of tumor necrosis factor (TNF) transcription
through competitive binding [40]. The co-expressing JUN
and ATF3 in two neuronal-like cell lines significantly
enhanced JUN-mediated neurite sprouting [41]. The inter-
actions of JUN with the aforementioned other transcrip-
tion factors in regulation certain gene expression have
also been reported [41, 42]. We presumed that the acti-
vated JUN might interact with some transcription factors
and further induce abnormal gene expressions which lead
to carcinogenesis.
The top significant GO term of function cluster 5 was

“sequence-specific DNA binding.” Many transcription
factors, such as ATF2, ATF3, ATF4, and ATF7, were also
clustered to this module. What is noteworthy is the gene
FOS, another proto-oncogene playing an important role
in tumourigenesis and carcinogenesis [43], which chan-
ged its expression either in this module. The expression
product of FOS can dimerize with JUN and form Activa-
tor Protein-1 (AP-1) complex. AP-1 binds to target
genes at AP-1-specific sites at the promoter/enhancer
regions and converts extracellular signals into changes
of gene expression [44]. Some studies found that the
JUN/FOS dimer, namely AP-1 complex, was involved in
certain cancer genesis, and it can be the potential
targeted therapeutic genes for certain cancer therapy.
Magrisso et al. state that the expression of JUN and/or
FOS are important events in colorectal tumorigenesis
[45]. Wong et al. reported that the cyclooxygenase-2

inhibitor (SC-236) functioned the antitumor effects via
inhibiting JNK-c-Jun/AP-1 activation, and the inhibition
of JNK activation may have a therapeutic benefit
against gastric cancer [37]. Zhang demonstrated that
geldanamycin is a highly potent inhibitor of the AP-1
transcription factor and affects the activation of JNK
in hypoxic HT29 human colon adenocarcinoma cells
[36]. We supposed that the JUN/FOS dimer might
also act as a promoter in PTC genesis. Design drugs
targeting at this complex is potentially effective in PTC
therapy. Even though, further immunohistochemical
studies are still needed to confirm our results.

Conclusions
In conclusion, we had analyzed the gene expression pro-
files of PTC using bioinformaticanalysis. Interaction net-
work analysis indicated that the gene JUN was closely
connected with PTC genesis. It might be used as specific
therapeutic molecular target in order to benefit the cure
of PTC patients. However, further experiments are still
needed to confirm our results.
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