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Abstract

Background: Hepatocellular carcinoma (HCC) is the most common liver malignancy worldwide. However, present
studies of its multiple gene interaction and cellular pathways still could not explain the initiation and development
of HCC perfectly. To find the key genes and miRNAs as well as their potential molecular mechanisms in HCC,
microarray data GSE22058, GSE25097, and GSE57958 were analyzed.

Methods: The microarray datasets GSE22058, GSE25097, and GSE57958, including mRNA and miRNA profiles,
were downloaded from the GEO database and were analyzed using GEO2R. Functional and pathway enrichment
analyses were performed using the DAVID database, and the protein—protein interaction (PPI) network was constructed
using the Cytoscape software. Finally, miRDB was applied to predict the targets of the differentially expressed
miRNAs (DEMs).

Results: A total of 115 differentially expressed genes (DEGs) were found in HCC, including 52 up-regulated
genes and 63 down-regulated genes. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses from DAVID showed that up-regulated genes were significantly enriched
in chromosome segregation and cell division, while the down-regulated genes were mainly involved in complement
activation, protein activation cascades, carboxylic acid metabolic processes, oxoacid metabolic processes, and the
immune response. From the PPl network, the 18 nodes with the highest degree were screened as hub genes. Among
them, ESR1 was found to have close interactions with FOXO1, CXCL12, and GNAQOT1. In addition, a total of 64 DEMs
were identified, which included 58 up-regulated miRNAs and 6 down-regulated miRNAs. ESRT was potentially targeted

by five miRNAs, including hsa-mir-18a and hsa-mir-221.

Conclusions: The roles of DEMs like hsa-mir-221 in HCC through interactions with DEGs such as ESR1 and CXCL12
may provide new clues for the diagnosis and treatment of HCC patients.
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Background

HCC is the most common primary liver malignancy and
is one of the leading causes of cancer-related deaths
around the world. In Asia, there are more than 580,000
new cases expected every year [1]. As well as other
carcinomas, gene aberrations, cellular context, and
environmental influences are believed to be the reason
of the occurrence, progression, and metastasis of HCC.
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Although the study of the multiple genes and cellular
pathways that take part in the initiation and development
of HCC has been discussed for many years, the therapy
for HCC accurately still remains scarcely. Accordingly, it
is crucial to investigate the molecular mechanisms
involved in the proliferation, apoptosis, and invasion
of HCC for the improvement of diagnostic and thera-
peutic strategies.

In recent years, the microarray, a high-throughput
platform for analysis of gene expression, has been exten-
sively conducted as an efficient tool for the identification
of general genetic alteration during tumorigenesis [2].
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While studies of DEGs and DEMs of HCC have been
performed in the past decades and some of their functions
in different pathways, biological processes, or molecular
functions have been reported, there remain questions about
how the DEGs and microRNAs interact through molecular
pathways because of limitations on the comparative analysis
of the DEGs in independent studies. Currently, due to
bioinformatics methods, we can finally deal with the
data generated by microarray technology and find the
interactions among DEGs and microRNAs, especially
the pathways in the interaction network, to conclude
their potential mechanisms in HCC.

In this study, we chose three gene expression profiles
(GSE22058, GSE25097, and GSE57958), which were down
loaded from the GEO database (https://www.ncbi.nlm.nih.
gov/geo/), to obtain DEGs and DEMs between liver cancer
tissues and normal tissue samples. Then, functional enrich-
ment and network analyses were applied to identify the
DEGs, which were combined with mRNA-microRNA
interaction analysis, to describe the key genes and miRNAs
as well as their potential molecular mechanisms in HCC.

Methods

Collection and inclusion criteria of studies

We searched the GEO database (https://www.ncbi.nlm.
nih.gov/geo/) for publicly available studies from January 1,
2010 to October 30, 2016 using the following keywords:
“hepatocellular carcinoma” (study keyword), “Homo
sapiens” (organism), “Expression profiling by array”
(study type), “70 to 3000” (sample count) and “tissue”
(attribute name). After a systematic review, 13 GSE
studies were retrieved. The inclusion criteria for studies
were as follows: (1) samples diagnosed with HCC tissue
samples and normal tissue samples, (2) gene expression
profiling of mRNA, (3) sample count of each group are
more than 35, and (4) sufficient information to perform the
analysis. Then, three gene expression profiles (GSE22058,
GSE25097, and GSE57958) were collected for analysis.

Microarray data

Three gene expression profiles (GSE22058, GSE25097,
and GSE57958) were downloaded from the GEO database.
The array data for GSE25097 included 268 HCC tissue
samples and 243 normal tissue samples [3]. The array data
for GSE57958 consisted of 39 HCC tissue samples and 39
normal tissue samples [4]. The array data for GSE22058
consisted of one mRNA expression profile (including 100
HCC tissue samples and 97 normal tissue samples) and a
miRNA expression profile (including 96 HCC tissue sam-
ples and 96 normal tissue samples) [5].

Data processing
GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/) is an
interactive web tool for comparing two groups of data
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that can analyze any GEO series [6]. GEO2R was applied
to screen differentially expressed mRNAs and miRNAs
between HCC and normal tissue samples. The adjusted
P values (adj. P) using Benjamini and Hochberg (BH)
false discovery rate (FDR) method by default were applied to
correct for the occurrence of false positive results. An
adj. P<0.05 and a |logFC| =1 were set as the cut-off
criteria. Heat map of DEGs was generated using the on-
line tool Morpheus (https://software.broadinstitute.org/
morpheus/).

Functional and pathway enrichment analysis

Gene ontology (GO) is a common method for annotating
genes, gene products and sequences to underlying bio-
logical phenomena [7, 8]; the Kyoto Encyclopedia of
Genes and Genomes (KEGG) is an integrated database
resource for biological interpretation of genome sequences
and other high-throughput data [9]. Both analyses were
available in the DAVID database (https://david.ncifcrf.gov/),
which is a bioinformatics data resource composed of an
integrated biology knowledge base and analysis tools to ex-
tract meaningful biological information from large quan-
tities of genes and protein collections [10]. GO and KEGG
analyses were performed using the DAVID database to
identify DEGs. A P value <0.05 was set as the cut-off
criterion.

PPI network construction and analysis of modules

The STRING database (http://string-db.org/) is an on-
line software that aims to provide a critical assessment
and integration of protein—protein interactions, including
direct (physical) and indirect (functional) associations [11].
Cytoscape is a popular open-source software tool for the
visual exploration of biomolecule interaction networks
composed of protein, gene, and other types of interactions
[12]. The DEGs were mapped to STRING to evaluate the
PPI information and then visualized with Cytoscape. A
combined score >0.15 was set as the cut-off criterion. To
screen the hub genes, node degree >10 was set as the
cut-off criterion. Then, the Molecular Complex Detec-
tion (MCODE) plug-in was used to screen modules of
hub genes from the PPI network with degree cut-off =
10, haircut on, node score cut-off = 0.2, k-core = 2, and
max. depth =100. Moreover, the functional and path-
way enrichment analyses of DEGs in each module were
performed by DAVID. A P value <0.05 was set as the
cut-off criterion.

Prediction of miRNA targets

The target genes of the DEMs from GSE22058 were pre-
dicted with miRDB (http://mirdb.org/miRDB/), which is
an online database for predicting microRNA targets [13].
The target genes were aligned with the DEGs to obtain an
intersection for further analysis.
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Results

Identification of DEGs

A total of 2021, 1097, and 409 DEGs were identified after
the analyses of the GSE22058, GSE25097, and GSE57958
datasets, respectively (Additional files 1, 2, and 3). Among
them, 116 genes were found in all three datasets (Fig. 1). Of
these, 115 gene expressions were matched, including 52
up-regulated genes and 63 down-regulated genes in HCC
tissue samples compared with normal liver tissue samples.

Functional and pathway enrichment analyses

To further understand the function and mechanism of
the identified DEGs, functional and pathway enrichment
analyses, including GO and KEGG, were performed
using DAVID. The GO term enrichment analysis showed
that in the biological processes-associated category, the up-
regulated genes were significantly enriched in chromosome
segregation and cell division, while the down-regulated
genes were mainly involved in complement activation,
protein activation cascades, carboxylic acid metabolic
processes, oxoacid metabolic processes, and the immune
response (Table 1). In addition, cell component analysis
showed that the up-regulated genes were enriched in the
chromosome, cytosol, proteinaceous extracellular matrix,
and basement membrane collagen trimer, and that the
down-regulated genes were mainly found in the collagen
trimer, blood microparticles, membrane attack complexes,
membrane-bounded vesicles, and the extracellular region
part (Table 1). Moreover, for molecular function, the
up-regulated genes were enriched in histone deacetylase
binding, and the down-regulated genes were enriched in
steroid binding, aromatase activity, oxidoreductase activity,
monooxygenase activity, and serine-type endopeptidase
activity (Table 1). Furthermore, the KEGG pathway analysis
showed that the up-regulated genes were significantly
enriched in ECM-receptor interaction, while four pathways

GSE25097 GSE57958

GSE22058

Fig. 1 Identification of differentially expressed genes (DEGs) in mRNA
expression profiling datasets GSE22058, GSE25097, and GSE57958
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were overrepresented in the down-regulated genes:
chemical carcinogenesis, steroid hormone biosynthesis,
retinol metabolism, and drug metabolism—cytochrome
P450 (Table 1).

PPI network construction and analysis of modules
Ninety-seven nodes and 319 edges were mapped in the
PPI network of identified DEGs, including 43 up-regulated
genes and 54 down-regulated genes (Fig. 2a). The 18 nodes
with the higher degrees were screened as hub genes, in-
cluding TOP2A, FOS, TK1, CDC20, ESR1, CCNB2,
CXCL12, FOXO1, HMMR, VWE ACSM3, COL4Al,
ZIC2, RFC4, TXNRDI1, GNAO1, CYP3A4, and RAP2A
(Table 2). Hub genes expression heat map in GSE25097
is shown in Fig. 2c. Among these, ESR1 was found to
have close interactions with FOS, FOXO1, CXCL12,
and GNAOI1; CDC20 had interactions with CCNB2,
CDCAS5, CENPM, and GMNN (combined score > 0.90).
A significant module including 16 nodes and 58 edges
was obtained using MCODE (Fig. 2b). GO term enrich-
ment analysis showed that in biological processes, the
genes in this module were mainly associated with the
cell cycle and responses to oxidation reactions and ster-
oid hormones (Table 3). The genes were significantly
enriched in the nucleoplasm, cytosol, and chromosome
by cell component analysis (Table 3). The molecular
function analysis showed that the genes were mainly in-
volved in the binding of macromolecular complexes,
chromatin, enzymes, RNA polymerases, and carbohy-
drate derivatives (Table 3). The KEGG analysis showed
that the genes were mainly enriched in ECM-receptor
interactions (Table 3).

miRNA-DEG pairs

A total number of 64 DEMs between HCC tissue sam-
ples and normal tissue samples were identified after
the analyses of the GSE22058 datasets (Additional file
4), including 58 up-regulated miRNAs and 6 down-
regulated miRNAs (Fig. 3). The miRDB database was
used to predict target genes of the identified DEMs
(Table 4). By comparing the target gene to the DEGs,
we screened the genes with a consistent expression
trend for further analysis. miRNA-221, one of the most
significantly up-regulated miRNAs, was found to target
ESR1, FOS, and CXCL12. In addition, miRNA-142-5p,
one of the main down-regulated miRNAs, potentially
targeted ANKRD29, IGF2BP3, and IGSF3. Moreover,
we found that ESR1 was potentially targeted by five
miRNAs, including hsa-mir-148b, hsa-mir-181b, hsa-
mir-18a, hsa-mir-19a, and hsa-mir-221 (Table 2). In
addition, FOXO1 was the potential target of hsa-mir-
135b, hsa-mir-324, and hsa-mir-369.



Mou et al. World Journal of Surgical Oncology (2017) 15:63

Page 4 of 9

Table 1 Functional and pathway enrichment analysis of up-regulated and down-regulated genes in hepatocellular carcinoma (HCC) tissue

Category Term Count % P Value
Up-regulated
GOTERM_BP_FAT GO:0007059 ~ chromosome segregation 9 176 2.66E-06
GOTERM_BP_FAT GO:0098813 ~ nuclear chromosome segregation 8 15.7 1.06E-05
GOTERM_BP_FAT GO:0000819 ~ sister chromatid segregation 7 13.7 2.91E-05
GOTERM_BP_FAT GO:0051301 ~ cell division 9 17.6 1.31E-04
GOTERM_BP_FAT GO:0007067 ~ mitotic nuclear division 8 15.7 1.44E-04
GOTERM_CC_FAT GO:0000793 ~ condensed chromosome 5 98 2.14E-03
GOTERM_CC_FAT GO:0005829 ~ cytosol 18 353 3.98E-03
GOTERM_CC_FAT GO:0005578 ~ proteinaceous extracellular matrix 5 9.8 1.51E-02
GOTERM_CC_FAT GO:0098651 ~ basement membrane collagen trimer 2 39 2.08E-02
GOTERM_CC_FAT GO:0005694 ~ chromosome 7 13.7 3.38E-02
GOTERM_MF_FAT GO:0042826 ~ histone deacetylase binding 3 59 3.03E-02
KEGG_PATHWAY hsa04512:ECM-receptor interaction 3 59 1.68E-02
Down-regulated
GOTERM_BP_FAT GO:0006956 ~ complement activation 6 10.0 1.83E-05
GOTERM_BP_FAT GO:0072376 ~ protein activation cascade 6 10.0 6.43E-05
GOTERM_BP_FAT GO:0019752 ~ carboxylic acid metabolic process 12 200 821E-05
GOTERM_BP_FAT GO:0043436 ~ oxoacid metabolic process 12 200 8.66E-05
GOTERM_BP_FAT GO:0006955 ~immune response 16 26.7 1.23E-04
GOTERM_CC_FAT GO:0005581 ~ collagen trimer 4 6.7 7.15E-03
GOTERM_CC_FAT GO:0072562 ~ blood microparticle 4 6.7 1.91E-02
GOTERM_CC_FAT GO:0005579 ~ membrane attack complex 2 33 2.67E-02
GOTERM_CC_FAT GO:0031988 ~ membrane-bounded vesicle 21 35.0 460E-02
GOTERM_CC_FAT GO:0044421 ~ extracellular region part 22 36.7 5.00E-02
GOTERM_MF_FAT GO:0005496 ~ steroid binding 4 6.7 347E-03
GOTERM_MF_FAT GO:0070330 ~ aromatase activity 3 5.0 3.57E-03
GOTERM_MF_FAT GO:0016712 ~ oxidoreductase activity, 3 50 4.11E-03
acting on paired donors, with incorporation
or reduction of molecular oxygen, reduced
flavin or flavoprotein as one donor, and
incorporation of one atom of oxygen
GOTERM_MF_FAT GO:0004497 ~ monooxygenase activity 4 6.7 4.77E-03
GOTERM_MF_FAT GO:0004252 ~ serine-type endopeptidase activity 5 83 7.38E-03
KEGG_PATHWAY hsa05204:Chemical carcinogenesis 6 10.0 453E-05
KEGG_PATHWAY hsa00140:Steroid hormone biosynthesis 4 6.7 3.04E-03
KEGG_PATHWAY hsa00830:Retinol metabolism 4 6.7 4.19E-03
KEGG_PATHWAY hsa00982:Drug metabolism - cytochrome P450 4 6.7 4.76E-03

Count: the number of enriched genes in each term

If there were more than five terms enriched in this category, the top five terms were selected per the P value

Discussion

Although people have continuously studied HCC, the early
diagnosis and treatment of HCC is still a large problem due
to the lack of understanding of the molecular mechanisms
that drive the occurrence and development of HCC. There-
fore, in-depth research into the factors and mechanisms of
HCC progression are necessary for HCC diagnosis and
treatment. Due to well-developed microarray technology, it

is easier to determine the general genetic alterations in the
progression of diseases, which can allow for the identifica-
tion of gene targets for diagnosis, therapy, and prognosis of
tumors.

In our study, a total of 115 DEGs were screened, includ-
ing 52 up-regulated genes and 63 down-regulated genes.
The up-regulated genes were enriched in chromosome
segregation and cell division, while the down-regulated
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genes were mainly involved in complement activation,
protein activation cascades, carboxylic acid metabolic pro-
cesses, oxoacid metabolic processes, and the immune re-
sponse. Moreover, by constructing the PPI, we identified
high degree genes including ESR1, which was found to
have close interactions with FOXO1, FOS, CXCL12, and
GNAOL.

ESR1 could encode the transcription factor that enhances
the response to various stimuli such as estrogen and growth
factors in different kinds of tissue types [14]. Some re-
searchers noticed that it may play a potential tumor sup-
pressor features in HCC with its novel associations among
the hepatocyte-specific pathways [15]. Moreover, there are
also some reports claiming that ESR1 could suppress the

inflammatory process mediated by interleukin-6 and reduce
hepatic injury and the compensatory proliferation of hepa-
tocytes [16]. Recent research has shown that cancers such
as non-small cell lung cancer (NSCLC) also have very low-
expression level of ESR1 [17]. FOXO, which has four mem-
bers including FOXO1, is one of the 19 kinds of forkhead
box transcription factors and is mainly express in mammals
[18, 19]. Reports showed that the overexpression of FOXO
could inhibit the growth and size of tumors [18, 20]. Some
research on breast cancer also claimed that when FOXO
proteins accumulate in the nucleus, they could suspend cell
cycle progression and promote apoptosis [20, 21]. Recent
research on FOXO proteins provides a new viewpoint that
they may possess antitumor properties in HCC, inducing
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Table 2 Hub genes and their related DEMs

Gene symbol Node degree Related DEMs

TOP2A 30 none

FOS 27 hsa-miR-221

TK1 24 none

CDC20 23 none

ESR1 21 hsa-miR-148b, hsa-miR-221,
hsa-miR-18a, hsa-miR-181b,
hsa-miR-19a

CCNB2 18 none

CXCL12 17 hsa-miR-221

FOXO1 16 hsa-miR-135b, hsa-miR-324-3p,
hsa-miR-369-3p

HMMR 15 none

VWF 15 none

ACSM3 14 none

COL4A1 14 none

ZIC2 14 none

RFC4 13 none

TXNRD1 13 none

GNAO1 12 hsa-miR-193a

CYP3A4 10 none

RAP2A 10 none

Only top 18 DEGs with higher node degrees were showed in this table. Node
degree: the number of edges incident to the node; Related miRNAs: miRNAs
may potentially target the gene
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the expression of pro-apoptotic genes and interfering with
signaling cascades, such as the Wnt/p-catenin, PI3K/AKT/
mTOR, or MAPK pathways that are commonly changed in
HCC [21, 22]. Meanwhile, FOS is reported as an oncogene
in several kinds of cancers such as bladder cancer and
HCC [23, 24]. There is also a recent research that shows
that FOS has a high expression in HCC cell lines [25]. Yet
in this work, we found it as a low-expression hub gene
through the Microarray data analysis. Therefore it may
need a further test in the future experiments and is ex-
cluded from the work this time. However, the molecular
mechanism of ESR1 for HCC and the relationship of ESR1
and FOXO1 were rarely explored. In our study, we found
that ESR1 and FOXO1 both had low-expression levels and
had an interaction, indicating a joint function in HCC.
Stromal-derived factor 1 alpha, also known as CXCL12, is
a specific ligand for CXCR4 and CXCR7. These three
proteins together drive the migration of progenitor cells
in embryonic development. Some invasion-related or
metastasis-related pathways, such as cytokine-cytokine
receptor interaction and axon guidance, contain CXCL12
as an important role in the regulation of themselves [26].
Several studies have shown that CXCL12 has a lower ex-
pression level in HCC tissue than in normal liver tissue
[27]. There is also a study showing that CXCL12 and
CXR4 may play significant roles in the metastasis of HCC
by promoting the migration of tumor cells [28]. GNAO1
is a member of the subunit family of Ga proteins. As a
molecular switch that controls signal transduction, the
deregulation of GNAO1 can facilitate oncogenesis [29].
Kan et al. found that the role of mutant GNAOL1 in onco-
genesis might be to act as a tumor suppressor gene [30].
Jia et al. combined an integrated CNA (chromosomal copy

Table 3 Functional and pathway enrichment analysis of the genes in the module

Category Term Count % P Value

GOTERM_BP_FAT GO:0000302 ~ response to reactive oxygen species 4 26.7 8.25E-04
GOTERM_BP_FAT GO:1901700 ~ response to oxygen-containing compound 7 46.7 1.06E-03
GOTERM_BP_FAT GO:0006979 ~ response to oxidative stress 4 26.7 4 .59E-03
GOTERM_BP_FAT GO:0048545 ~ response to steroid hormone 4 26.7 4.78E-03
GOTERM_BP_FAT GO0:1903047 ~ mitotic cell cycle process 5 333 5.21E-03
GOTERM_CC_FAT GO:0005654 ~ nucleoplasm 9 60.0 1.54E-03
GOTERM_CC_FAT G0:0005829 ~ cytosol 8 533 1.94E-02
GOTERM_CC_FAT GO:0005694 ~ chromosome 4 26.7 4.75E-02
GOTERM_MF_FAT GO0:0044877 ~ macromolecular complex binding 9 60.0 4.65E-06
GOTERM_MF_FAT GO:0003682 ~ chromatin binding 6 40.0 5.72E-05
GOTERM_MF_FAT G0:0019899 ~ enzyme binding 6 40.0 1.67E-02
GOTERM_MF_FAT GO:0000982 ~ transcription factor activity, RNA polymer 3 20.0 3.72E-02
GOTERM_MF_FAT GO:0097367 ~ carbohydrate derivative binding 6 400 4.13E-02
KEGG_PATHWAY hsa04512:ECM-receptor interaction 3 200 9.53E-03

Count: the number of enriched genes in each term

If there were more than five terms enriched in this category, the top five terms were selected per the P value
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Table 4 DEMs in HCC tissue and their potential target genes

miRNA Adj. P logFC Target genes

hsa-mir-106b 1.94E-41 149 ANKRD29, ILTRAP, ADARBT, ARID4B, EPHA4, FBXL5, PDCD1LG2, PKD2, PTPN4, SLC40A1
hsa-mir-148b 9.59E-22 137 ESR1, ABCB7, BAGALT6, CDK19, LDLR, MXD1, NPTN, RPS6KAS, SOS2, SZRD1
hsa-mir-151 261E-21 1.14 AGO2, ZFANDS, CLK1, AQP4, CASD1, RPS6KAS, FAM104A, NAA15, YTHDF3, HIFTA
hsa-mir-221 737E-21 1.66 ESR1, FOS, CXCL12, CDKN1B, GABRAT, PANKS3, TCF12, HECTD2, RFX7, TMCC1
hsa-mir-18a 2.16E-20 248 ESR1, NEDDS9, BBX, INADL, MAP7D1, PHF19, RORA, ZBTB47, CDK19, DICER1
hsa-mir-200b 4.50E-17 -3.15 MAGEC2, ESM1, TCEBT, TRIM33, LHFP, PTPN21, ARHGAP6, VASH2, HIPK3, NR5A2
hsa-mir-224 4.85E-15 —-71.38 NRCAM, CPNE8, ZNF207, ACSL4, RNF144B, SH3KBP1, RNF38, SLC4A4, GPR158, GGNBP2
hsa-mir-200a 5.03E-14 -2.29 COL15A1, MYBL1, ZEB2, ATP8A1, DCP2, TMEM170B, ZBTB34, DUSP3, TRHDE, RSAD2
hsa-mir-182 141E-06 —2.69 NRCAM, ABHD13, MFAP3, PCNX, NADK2, CAMSAP2, SLC39A9, NCALD, ANK3, HOXA9
hsa-mir-142-5p 6.59E-06 -149 ANKRD29, IGF2BP3, IGSF3, ZFP36, ZFPM2, BAI3, AFF4, DIAPH2, AHR, ARID4B

Adj. P: adjusted P value, FC: fold change
Positive logFC values denote up-regulated miRNAs, while negative logFC values denote down-regulated miRNAs. If there were more than ten genes predicted by
miRDB, only ten genes were listed in the table
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number alteration) analysis with gene expression data
to demonstrate that GNAO1 may play a key role in the
pathogenesis of HCC [31]. Meanwhile, some research
has shown that GNAOL also plays a significant role in
breast cancer and hepatocellular carcinoma [32]. Above
all, these results suggest that ESR1, FOXO1, CXCL12,
and GNAOLI are involved in the pathogenesis of carcin-
oma by affecting cell division, complement activation,
and protein activation cascades, which support our
findings.

Increasing evidence has shown that the dysregulation
of miRNAs is an important part of the pathogenesis of
multiple cancer types, including HCC. In our study, we
identified 64 DEMs, including 58 up-regulated and 6
down-regulated miRNAs in HCC. miR-221 is one of the
most significantly up-regulated miRNAs and was found
to target ESR1, FOS, and CXCL12. Additionally, miRNA-
142-5p is the main down-regulated miRNA and potentially
targets ANKRD29, IGF2BP3, and IGSF3. A recent report
shows that miRNA-142-5p could regulate the expression of
IGF2BP3, which is strongly associated with an advanced
tumor stage and is a predictor of poor prognosis among
patients with HCC, as with IGF2BP1 [33]. miR-221, which
is one of the most frequently and consistently up-regulated
microRNAs (miRNAs) in human cancer, has been sug-
gested to act as a tumor promoter. A recent study presents
that miR-221 overexpression could accelerate hepatocyte
proliferation and contribute to liver tumorigenesis [34].
Additionally, miR-221 also had a higher expression level in
NSCLC [35]. Further researches give a conclusion that
through the stimulation from staphylococcal nuclease
domain-containing 1 (SND1), miR-221 could result in
the overexpression of angiogenic factors like angiogenin
and CXCL16 [36]. By using parallel measurement, a
change in CDKNI1B, CDKNIC, paralemmin-2, and
CXCL12 levels was suggested as consistent with in-
creased miR-221 activity in the same group. Meanwhile,
Yau et al. found that miR-221 and miR-18a levels were
also significantly higher in colorectal carcinoma tissues
compared with their respective adjacent normal tissues
[37]. miR-18a and miR-19a, regulated by E2F-MYC sig-
naling pathways, are reported playing a crucial role in
inducing cell proliferation [38]. As we found that ESR1
was potentially targeted by hsa-mir-148b, hsa-mir-181b,
hsa-mir-18a, hsa-mir-19a, and hsa-mir-221, it indicates
that these miRNAs may play a key role in HCC by me-
diating ESR1.

Conclusions

In conclusion, our study tried to identify DEGs using
comprehensive bioinformatics analyses and found poten-
tial biomarkers to predict the progression of diseases.
After analysis, a total of 115 DEGs and 64 DEMs were
screened including ESR1, FOXO1, CXCL12, GNAOI,
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and several miRNAs such as miR-221 and miR-142-5p.
Significantly, the roles of hsa-mir-148b, hsa-mir-181b,
hsa-mir-18a, hsa-mir-19a, and hsa-mir-221 in HCC
through interactions with ESR1 and CXCL12 may pro-
vide new clues for the diagnosis and treatment of HCC
patients. However, lacking of experimental verification is
a limitation of this study. In the future, these predicted
results obtained from bioinformatics analysis can be
verified by further experimental researches, such as
qRT-PCR and Western Blot.
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