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Abstract 

Background Cervical cancer (CC) is a common malignancy of the female reproductive tract, and preoperative 
prediction of lymph node metastasis (LNM) is essential. This study aims to design and validate a magnetic resonance 
imaging (MRI) radiomics‑based predictive model capable of detecting LNM in patients diagnosed with CC.

Methods This retrospective analysis incorporated 86 and 38 CC patients into the training and testing groups, respec‑
tively. Radiomics features were extracted from MRI T2WI, T2WI‑SPAIR, and axial apparent diffusion coefficient (ADC) 
sequences. Selected features identified in the training group were then used to construct a radiomics scoring model, 
with relevant LNM‑related risk factors having been identified through univariate and multivariate logistic regression 
analyses. The resultant predictive model was then validated in the testing cohort.

Results In total, 16 features were selected for the construction of a radiomics scoring model. LNM‑related risk factors 
included worse differentiation (P < 0.001), more advanced International Federation of Gynecology and Obstetrics 
(FIGO) stages (P = 0.03), and a higher radiomics score from the combined MRI sequences (P = 0.01). The equation 
for the predictive model was as follows: −0.0493–2.1410 × differentiation level + 7.7203 × radiomics score of com‑
bined sequences + 1.6752 × FIGO stage. The respective area under the curve (AUC) values for the T2WI radiomics 
score, T2WI‑SPAIR radiomics score, ADC radiomics score, combined sequence radiomics score, and predictive model 
were 0.656, 0.664, 0.658, 0.835, and 0.923 in the training cohort, while these corresponding AUC values were 0.643, 
0.525, 0.513, 0.826, and 0.82 in the testing cohort.

Conclusions This MRI radiomics‑based model exhibited favorable accuracy when used to predict LNM in patients 
with CC. Relative to the use of any individual MRI sequence‑based radiomics score, this predictive model yielded 
superior diagnostic accuracy.
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Introduction
Cervical cancer (CC) is a common malignancy of the 
female reproductive tract [1]. In CC patients, disease 
progression is closely related to pelvic lymph node 
(LN) metastasis (LNM) status [2–4], as early-stage CC 
patients with and without pelvic LNM exhibit respective 
5-year survival rates of 65% and 90% [5]. Postoperative 
radiotherapy is the most common recommendation for 
treating CC patients whose postoperative pathological 
findings reveal evidence of pelvic LNM [6], underscor-
ing the need to accurately judge the pelvic LNM status 
of these patients so that staging can be performed accu-
rately, prognostic estimates can be generated, and treat-
ment strategies can be planned [7]. Currently, clinical 
efforts to diagnose pelvic LNM are primarily based on 
LN morphological characteristics derived from magnetic 
resonance imaging (MRI), with LN short-axial diameter 
measurements being the most frequently used in this 
context [8]. However, this strategy yields relatively low 
sensitivity rates of 30.3–72.9% when attempting to dif-
ferentiate between metastatic and non-metastatic LNs 
[9, 10]. When the biopsy of sentinel LNs can yield a high 
degree of accuracy and sensitivity, it is an invasive strat-
egy, and the resultant data can be impacted by the skill 
level of the clinician [11]. It thus remains highly challeng-
ing to effectively predict LNM status in CC patients prior 
to surgery.

Radiomics methods entail the extraction of high-
dimensional quantitative data from clinical images, pro-
viding a means of characterizing microscopic features 
in tumors or other tissues not visible to the naked eye 
[12]. Radiomics strategies have increasingly been used to 
enhance diagnostic accuracy and prognostic predictive 
efforts for a range of tumor types [13–15]. Several reports 
have also demonstrated the utility of radiomics-based 
methods as a means of enhancing the accuracy of efforts 
to predict LNM [16–18]. However, there remains a lack 
of any MRI radiomics-based studies specifically focused 
on predicting the pelvin LNm status of CC patients.

The present study was thus developed with the goal of 
establishing and validating an MRI radiomics-based pre-
dictive model capable of assessing the LNM status of CC 
patients.

Materials and methods
Study design and patients
The present retrospective analysis received approval from 
the hospital Institutional Review Board, which waived the 
requirement for informed consent. This study included a 
training cohort composed of 86 consecutive CC patients 
who were evaluated from June 2016 to June 2021, and a 
testing cohort composed of 38 consecutive CC patients 
who were evaluated from July 2021 to October 2022.

Patients eligible for inclusion were as follows: (a) CC 
patients that had hysteroscope-confirmed diagnoses 
prior to surgery;, (b) CC patients who underwent con-
ventional MRI and diffusion-weighted imaging (DWI) 
tests within 7 days prior to surgery, and (c) patients 
who had undergone pelvic LN dissection. Patients were 
excluded if they are as follows: (a) exhibited incomplete 
clinical data or (b) had undergone radiotherapy or chem-
otherapy prior to surgery. The patients in training and 
test cohorts were included using the same inclusion and 
exclusion criteria.

For all study participants, the baseline data and MRI-
based radiomics data were collected. The baseline data 
included age, body mass index (BMI), tumor differentia-
tion, depth of tumor invasion, clinical staging according 
to the 2018 International Federation of Gynecology and 
Obstetrics (FIGO) criteria, and serum levels of tumor 
biomarkers including squamous cell carcinoma antigen 
(SCC), carbohydrate antigen 199 (CA199), alpha-feto-
protein (AFP), and carcinoembryonic antigen (CEA). The 
MRI-based radiomics data were extracted from T2WI, 
fat suppression T2WI, and apparent diffusion coefficient 
(ADC) sequences.

MRI scanning
A 1.5T MRI instrument (Philips) with a body array coil 
(Ingenia) was used for all MRI analyses. The scanning 
sequence for each participant included axial T2WI, axial 
fat suppression T2WI, axial DWI (b-values: 0 and 800 s/
mm2), sagittal T1WI, and sagittal T2WI. Fat suppression 
was achieved through a spectral attenuated inversion 
recovery (SPAIR) sequence. On the axial T2-weighted 
image, the radiologists delineated regions of interest at all 
levels of the lesion, and then the software automatically 
generated the volume of interest (VOIs) and copied them 
to the ADC map. For detailed information regarding each 
scanning sequence, see Table 1.

Tumor segmentation and feature extraction
Analyses of the sagittal T2WI, axial T2WI-SPAIR, and 
axial ADC images were conducted, using the 3D Slicer 
software (v 5.03) to manually draw tumor boundaries 
to define VOIs. Two radiologists with 5 and 10 years of 
experience delineated these VOIs while blinded to the 
pathological results for these patients. For the resultant 
MRI segmentation, see Fig. 1. The 3D Slicer program was 
additionally used for feature extraction, and intra- and 
inter-class coefficient (ICC) values were used to assess 
observer consistency. MRI images from 20 patients 
selected at random from the training cohort were inde-
pendently segmented by the two radiologists for the 
independent segmentation of target lesions. Reader 1 
additionally segmented the tumors from the same 20 
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patients after a 1-week interval. Only those features 
exhibiting an ICC ≥ 0.9 were regarded as being highly 
repeatable such that they were retained for further anal-
ysis. Reader 1 was then responsible for segmenting all 
remaining images.

Feature selection
Feature selection was conducted using a three-step pro-
cess. Initially, the variance threshold method was used to 
identify all features with a variance > 0.8 for inclusion in 
the subsequent step. Then the SelecKBest method was 
implemented, and all features exhibiting a P-value > 0.05 
were included in the next step. Lastly, LNM-associated 
features were selected with a least absolute shrinkage 
and selection operator (LASSO) regression model. The 
selected features were used to construct a radiomics sig-
nature such that radiomics scores were calculated for all 
CC patients.

MRI radiomics‑based model establishment and validation
The outcome in this study was LNM status, and the MRI 
radiomics-based model was established to predict the 
LNM(+). The LNM status was assessed according to the 
postoperative pathological results. Univariate and mul-
tivariate logistic regression analyses were then used to 
identify LNM-related risk factors in the training cohort 
to facilitate the combination of radiomics scores, clini-
cal features, and serum biomarker data. A predictive 
nomogram was then constructed according to the LNM-
related risk factors. Area under the receiver operator 
characteristic (ROC) curve (AUC) was assessed the accu-
racy of the predictive model. The data in the test cohort 
were put into the MRI radiomics-based model to validate 
the accuracy of the predictive model.

Benefits of clinical application of predictive model
To assess the clinical utility of the predictive model, deci-
sion curve analysis was utilized to evaluate the net benefit 
of the predictive model in both training and test cohorts.

Statistical analyses
SPSS 25.0 and R 4.1.2 were used to analyze all data. 
Categorical data were compared with the χ2 test of 
Fisher’s exact test. Continuous data were compared 
with independent sample t-tests and Mann-Whitney 
U-tests when normally and non-normally distributed, 
respectively. LNM-related risk factors were identified 
with univariate and multivariate logistic regression 
analyses. AUC values of the ROC were compared with 
the DeLong test.

Results
Characteristics of the training cohort
The training cohort included 86 CC patients (Table 2), 
including 64 (74.4%) and 22 (25.6%) without and with 
LNM, respectively. No significant differences in age, 
BMI, cancer type, or serum cancer biomarker levels 
were observed when comparing LNM(−) and LNM(+) 
patients. However, significant differences between 
these groups were observed with respect to tumor dif-
ferentiation, tumor invasion depth, and FIGO staging. 
Specifically, significantly higher proportions of LNM(+) 
patients were exhibiting poor tumor differentiation 
(40.1% vs. 6.2%, P < 0.001), cervical stromal invasion 
depth ≥ 1/2 (68.2% vs. 35.9%, P = 0.017), and FIGO 
stage 3 cancer (9.1% vs. 1.6%, P < 0.001) as compared to 
LNM(−) patients.

Feature selection and radiomics score calculation
In total, 851 radiomics features were extracted per scan 
sequence (T2WI, T2WI-SPAIR, and ADC). A step-by-
step process was then used to select features for these 
sequences and for a combination of these three scan 
sequences to facilitate the establishment of a radiomics 
signature. In total, 16 features were ultimately selected 
for use when calculating radiomics scores (Supplemen-
tary Table 1). Coefficient values for each feature and the 
mean square error for the combined sequences are pre-
sented in Supplementary Figure 1.

Table 1 The parameters of the MRI

DWI Diffused-weight imaging, FOV Field of view, NSA Number of excites, TE Echo time, TR Repetition time

TR/TE (ms) FOV (mm) Acquisition matrix Slice thickness 
(mm)

Slice gap (mm) NSA

Sagittal T2WI 3935/80 260 × 300 288 × 250 6 1 2

Axial T2WI‑SPAIR 1450/100 210 × 210 252 × 200 3 1 2

Axial DWI 3040/65 375 × 300 124 × 101 6 1 7

Sagittal T1WI 400/10 210 × 210 210 × 165 3 1 1

Axial T2WI 5780/120 200 × 200 250 × 190 5 1 2
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Fig. 1 The figures of MRI segmentation on the sequences of a T2WI, b T2WI‑SPAIR, and c ADC
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Predictive model establishment
Univariate analyses revealed that worse differentiation 
(P < 0.001), cervical stromal invasion depth ≥ 1/2 (P = 
0.01), more advanced FIGO stage (P < 0.001), and higher 
combined sequence-based radiomics scores (P < 0.001) 
were all related to CC patient LNM status. In a multivari-
ate analysis, LNM-related risk factors included worse dif-
ferentiation (P < 0.001), more advanced FIGO stage (P = 
0.03), and higher combined sequence-based radiomics 
scores (P = 0.01, Table 3).

These results were next used to construct a predic-
tive model, the nomogram for which is presented in 
Fig. 2. The formula used to compute nomogram scores 
for this model was as follows: score = −0.0493–2.1410 
× differentiation level (0: poor; 1: moderate; 2: well) + 
7.7203 × combined sequence radiomics score + 1.6752 

× FIGO stage (0: I; 1: II; 2: III). To maximize sensitivity 
and specificity, we selected a cut-off score of 0.662 (sen-
sitivity = 81.8%, specificity = 85.9%). If the score was 
greater than or equal to 0.662, the patient was consid-
ered to be LNM(+). If the score was less than 0.662, the 
patient was considered to be LNM(−).

The AUC values for the T2WI, T2WI-SPAIR, ADC, 
and combined sequence radiomics scores, as well as the 
combined predictive model, were 0.656, 0.664, 0.658, 
0.835, and 0.923, respectively (Fig.  3A, Table  4). The 
AUC for the radiomics score based on the combination 
of three sequences was significantly larger than the cor-
responding AUC values for radiomics scores computed 
based upon the T2WI (P = 0.005), T2WI-SPAIR (P 
= 0.008), and ADC (P = 0.01) models. The predictive 

Table 2 Baseline data of the patients in the training group

AFP α-fetoprotein, BMI body mass index, CEA carcinoembryonic antigen, FIGO International Federation of Gynecology and Obstetrics, SCC squamous cell carcinoma 
antigen. *P-values between training and test groups

Training (n = 86) Test (n = 38) p‑value*

LNM (−) LNM (+) p‑value LNM (−) LNM (+) p‑value

Patients’ number 64 22 ‑ 23 15 ‑ ‑

Age (y) 56 (Q1: 48; Q3: 60) 56 (Q1: 50; Q3: 60) 0.905 58.6 ± 11.3 52.7 ± 8.6 0.075 0.41

BMI 22.5 ± 2.8 22.8 ± 2.8 0.671 22.9 ± 2.4 21.8 ± 2.2 0.147 0.729

Differentiation 0.001 0.059 0.066

 Poor 4 (6.3%) 9 (40.9%) 4 (17.4%) 7 (46.7%)

 Moderate 25 (39.0%) 11 (50%) 11 (47.8%) 7 (47.7%)

 Well 35 (54.7%) 2 (9.1%) 8 (34.8%) 1 (6.6%)

Cervical stromal invasion depth 0.017 0.335 0.138

 < 1/2 41 (64.1%) 7 (31.8%) 11 (47.8%) 4 (26.7%)

 ≥ 1/2 23 (35.9%) 15 (68.2%) 12 (52.2%) 11 (73.3%)

SCC 0.186 0.294 0.782

 < 2.5 μg/L 20 (31.3%) 11 (50%) 9 (39.1%) 3 (20%)

 ≥ 2.5 μg/L 44 (68.7%) 11 (50%) 14 (60.9%) 12 (80%)

Ca199 0.748 0.138 0.574

 < 37 U/L 54 (84.4%) 18 (81.8%) 19 (82.6%) 15 (100%)

 ≥ 37 U/L 10 (15.6%) 4 (18.2%) 4 (17.4%) 0 (0%)

AFP 0.101 0.063 1.000

 < 7 μg/L 50 (78.1%) 21 (95.5%) 17 (73.9%) 15 (100%)

 ≥ 7 μg/L 14 (21.9%) 1 (4.5%) 6 (26.1%) 0 (0%)

CEA 0.759 0.223 1.000

 < 5 μg/L 52 (81.3%) 17 (77.3%) 20 (87.0%) 10 (66.7%)

 ≥ 5 μg/L 12 (18.7%) 5 (22.7%) 3 (13.0%) 5 (33.3%)

FIGO stage 0.001 0.591 1.000

 I 38 (59.4%) 4 (18.2%) 11 (47.8%) 7 (46.7%)

 II 23 (39.1%) 16 (72.7%) 12 (52.2%) 7 (46.7%)

 III 1 (1.5%) 2 (9.1%) 0 (0%) 1 (6.6%)

Cancer types 0.843 0.114 0.561

 Adenocarcinoma 17 (26.6%) 7 (31.8%) 7 (30.4%) 1 (6.6%)

 Others 47 (74.4%) 15 (68.2%) 16 (69.6%) 14 (93.4)
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Table 3 Risk factors of the LNM

AFP α-fetoprotein, BMI body mass index, CEA carcinoembryonic antigen, FIGO International Federation of Gynecology and Obstetrics, LNM lymph node metastasis, 
SCC squamous cell carcinoma antigen

Univariate analysis Multivariate analysis

OR 95% CI p‑value OR 95% CI p‑value

Age 1 0.96–1.05 0.87

BMI 1.04 0.87–1.24 0.66

Differentiation 0.16 0.07–0.4 < 0.001 0.13 0.04–0.42 < 0.001

Cervical stromal inva‑
sion depth

3.82 1.36–10.72 0.01 1.68 0.35–7.99 0.51

SCC 0.45 0.17–1.22 0.12

Ca199 1.2 0.33–4.3 0.78

AFP 0.17 0.02–1.38 0.1

CEA 1.27 0.39–4.14 0.69

FIGO stage 5.31 1.89–14.88 < 0.001 5.59 1.23–25.54 0.03

Cancer types 0.78 0.27–2.23 0.64

Radiomics score 
of combined sequences

9398.37 83.65–1055,939.57 < 0.001 1387.69 4.43–434,225.89 0.01

Fig. 2 The nomogram of predictive model

Fig. 3 The ROC curves of radiomics score of T2WI, radiomics score of T2WI‑SPAIR, radiomics score of ADC, radiomics score of combined sequences, 
and the predictive model in the a training and b test groups
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model exhibited a significantly higher AUC value as 
compared to the combined sequence-based radiomics 
score (P = 0.04).

Model validation
The testing group included 38 patients (Table 2), includ-
ing 23 (72.2%) and 15 (27.8%) without and with LNM, 
respectively. No significant differences in baseline data 
were observed when comparing the training and test-
ing cohorts (Table  2). The AUC values for the T2WI, 
T2WI-SPAIR, ADC, and combined sequence radiomics 
scores, as well as the combined predictive model, were 
0.643, 0.525, 0.513, 0.826, and 0.82, respectively (Fig. 3B, 
Table 4). The AUC for the radiomics score based on the 
combination of three sequences was significantly larger 
than the corresponding AUC values for radiomics scores 
computed based upon the T2WI (P = 0.04), T2WI-SPAIR 
(P = 0.003), and ADC (P = 0.002), respectively. The AUC 
value for the predictive model was similar to that for the 

radiomics score based on the combined sequences (P = 
0.94).

Potential clinical benefits of the predictive model
Calibration curves revealed a high degree of consistency 
between predicted and actual LNM status when using the 
predictive model in both the training and testing cohorts 
(Fig. 4A). Decision curves generated for this nomogram 
additionally revealed that this predictive model was asso-
ciated with net benefits in both patient cohorts, with a 
risk threshold greater than 0 (Fig. 4B).

Discussion
In patients with CC, the ability to detect LNM prior to 
surgery is vital for effective treatment planning. Here, 
MRI-based radiomics score values, FIGO staging, and 
tumor differentiation were all identified as significant 
predictors of the LNM status of CC patients. When 
these factors were combined to develop a predictive 

Table 4 Diagnostic performance of each parameter

ADC apparent diffusion coefficient, AUC  area under the curve

Training group Test group

Sensitivity Specificity AUC Sensitivity Specificity AUC 

Radiomics score of T2WI 68.2% 59.4% 0.656 53.3% 56.5% 0.643

Radiomics score of T2WI‑SPAIR 45.5% 64.1% 0.664 33.3% 60.9% 0.525

Radiomics score of ADC 50% 82.8% 0.658 33.3% 78.3% 0.513

Radiomics score of combined sequences 68.2% 78.1% 0.835 60% 87% 0.826

Predictive model in this study 81.8% 85.9% 0.923 66.7% 78.3% 0.82

Fig. 4 The a calibration curves and b decision curve analysis of nomograms of predictive model
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model, we can calculate the risk score for each patient. 
For one, we can compare the patients’ risk score to the 
cut-off score of the predictive model and predict the 
probability of the LNM. In addition, we can get the 
prediction probability directly by referring the nomo-
gram of predictive model according to the patients’ risk 
score.

Conventional MRI-based approaches to assessing LNM 
status primarily center on LN sizing, with metastatic LNs 
being defined as nodes exhibiting a short-axis diameter > 
10 mm in most cases [19]. However, this approach yields 
low sensitivity levels (30–73%) when attempting to dif-
ferentiate between patients with and without LNM [9, 
10]. This is consistent with the observations of Williams 
et  al. [9], who determined that the short-axis diameter 
of 54.4% of metastatic LNs was less than 10 mm. While 
Koh et  al. [20] suggested respective short-axis diameter 
thresholds of > 8 mm and > 10 mm when assessing the 
metastatic status of pelvic and retroperitoneal LNs as a 
means of improving diagnostic performance, LNs har-
boring micro-metastases can be normally sized such 
that they will not be detected through conventional MRI 
scans.

DWI offers a means of potentially detecting malig-
nancies and metastatic LNs [19]. In their analyses of CC 
patients, Zhang et al. [19] determined that  ADCmean and 
 ADCmin were respectively associated with the highest lev-
els of diagnostic accuracy when evaluating enlarged LNs 
and normally sized LNs, but the corresponding AUC val-
ues for these two parameters were just 0.644 and 0.758. 
This highlights the potential importance of extracting 
additional information from images in an effort to bet-
ter assess tumor heterogeneity and to improve diagnostic 
performance.

For the present analysis, radiomics features were 
extracted from the T2WI, T2WI-SPAIR, and ADC 
sequences, all of which are frequently employed when 
assessing and analyzing CC and LN status. DWI can 
provide effective insight into tissue movement at the 
molecular level, yielding information regarding tumor 
cell infiltration and diffusion. T2WI sequences can high-
light tumor morphology and anatomical structures, 
enabling the quantification of dimensional and morpho-
logical parameters that can enable the detection of rela-
tively subtle tumor invasivity. Radiomics scores based on 
the combined sequence exhibited good predictive per-
formance in both the training and testing cohorts, with 
respective AUCs of 0.835 and 0.826, both of which were 
higher than the AUCs associated with radiomics scores 
derived from individual T2WI, T2WI-SPAIR, and ADC 
sequences. This suggests that multiple features should 
be used when extracting radiomics features in order to 
improve the predictive performance of these features.

In addition to radiomics scores, poorer tumor differen-
tiation and more advanced FIGO staging were both asso-
ciated with LNM in CC patients. Both of these factors are 
indicative of higher-grade malignancies, consistent with 
greater LNM risk. In line with these results, Huang et al. 
[21] previously reported that worse differentiation was 
associated with an increase in the risk of LNM in patients 
with gastric cancer. Similarly, FIGO stage was also found 
to be strongly linked to the prognosis of the CC patients 
[22].

The predictive model developed herein exhibited 
respective AUC values of 0.923 and 0.82 in the training 
and validation cohorts. Both of these were higher than 
the respective AUC values of 0.754 and 0.727 reported 
in a prior study focused on designing a predictive MRI 
radiomics-based model for LNM diagnosis in CC 
patients published by Li et al. [23]. While MRI radiomics 
scores were implemented in both the present study and 
this past analysis, Li et  al. only included red blood cell 
counts when assessing clinical risk factors [23], whereas 
tumor differentiation and FIGO staging were both risk 
factors that were incorporated into the present analyses. 
This suggests that differentiation and FIGO staging may 
offer more representative information regarding a target 
tumor as compared to red blood cell counts.

In the training cohort, the AUC for the predictive 
model was significantly higher than that for the com-
bined sequence-based radiomics score alone (0.923 vs. 
0.835, P = 0.04). This suggests that the incorporation of 
clinical data may further improve the diagnostic utility of 
radiomics scores. However, AUC values did not differ sig-
nificantly in the testing cohort (0.82 vs. 0.826, P = 0.94). 
This is likely because there were no significant differ-
ences in tumor differentiation and FIGO staging between 
patients in this cohort with and without LNM.

There are some limitations to these analyses. For one, 
the retrospective nature of these analyses renders them 
highly susceptible to potential bias. In addition, this was 
a single-center study. Additional prospective multicenter 
validation will thus be essential. Moreover, measurement 
errors cannot be entirely avoided when manually defin-
ing lesion boundaries, and factors such as edema, hemor-
rhage, necrosis, and degeneration can contribute to such 
errors. Third, radiomics strategies are often limited in 
their reproducibility and amenability to standardization, 
potentially restricting their utility [24].

Conclusions
In summary, the MRI radiomics-based model devel-
oped herein exhibited great promise as an accurate tool 
for predicting the LNM status of patients with CC. Rela-
tive to the use of radiomics scores based on any one MRI 
sequence, the combined predictive model established in 
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this study was associated with significant improvements 
in overall diagnostic accuracy.
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