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Abstract 

Background  The application of machine learning (ML) for identifying early gastric cancer (EGC) has drawn increasing 
attention. However, there lacks evidence-based support for its specific diagnostic performance. Hence, this systematic 
review and meta-analysis was implemented to assess the performance of image-based ML in EGC diagnosis.

Methods  We performed a comprehensive electronic search in PubMed, Embase, Cochrane Library, and Web 
of Science up to September 25, 2022. QUADAS-2 was selected to judge the risk of bias of included articles. We did 
the meta-analysis using a bivariant mixed-effect model. Sensitivity analysis and heterogeneity test were performed.

Results  Twenty-one articles were enrolled. The sensitivity (SEN), specificity (SPE), and SROC of ML-based models 
were 0.91 (95% CI: 0.87–0.94), 0.85 (95% CI: 0.81–0.89), and 0.94 (95% CI: 0.39–1.00) in the training set and 0.90 (95% 
CI: 0.86–0.93), 0.90 (95% CI: 0.86–0.92), and 0.96 (95% CI: 0.19–1.00) in the validation set. The SEN, SPE, and SROC 
of EGC diagnosis by non-specialist clinicians were 0.64 (95% CI: 0.56–0.71), 0.84 (95% CI: 0.77–0.89), and 0.80 (95% CI: 
0.29–0.97), and those by specialist clinicians were 0.80 (95% CI: 0.74–0.85), 0.88 (95% CI: 0.85–0.91), and 0.91 (95% CI: 
0.37–0.99). With the assistance of ML models, the SEN of non-specialist physicians in the diagnosis of EGC was signifi-
cantly improved (0.76 vs 0.64).

Conclusion  ML-based diagnostic models have greater performance in the identification of EGC. The diagnostic 
accuracy of non-specialist clinicians can be improved to the level of the specialists with the assistance of ML models. 
The results suggest that ML models can better assist less experienced clinicians in diagnosing EGC under endoscopy 
and have broad clinical application value.
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Background
Gastric cancer (GC) is among the most prevailing gas-
trointestinal malignancies. Global Cancer Statistics [1] 
indicated that in 2020, there were 1,089,103 newly diag-
nosed GC patients and 768,793 GC-caused deaths, with 
morbidity ranking 5th and mortality ranking 4th among 
all types of cancer. This makes it a great hazard to pub-
lic health worldwide [2]. The popularity of endoscopic 
screening, the improvements in comprehensive treat-
ment strategies and surgical modalities, and the effec-
tive treatment of Helicobacter pylori (HP) infection in 
recent years have reduced the morbidity of GC, while the 
patients still have poor 5-year survival [3]. The median 
survival differs between the patients at an early stage 
and those at an advanced stage. Endoscopic therapy is 
recommended for GC patients staged T1 by the AJCC-
TNM system. The 5-year survival rate of these patients 
can reach more than 95%, and some of them can achieve 
a complete recovery [3, 4]. In contrast, the median sur-
vival of those at an advanced stage (stage-IV) is less 
than 12 months despite systematic treatment [5]. Hence, 
timely identification of early gastric cancer (EGC) is of 
essence to the prognosis of the patients.

Endoscopy is a prevalently used approach in clinical 
screening for gastrointestinal malignancies, and the iden-
tification of EGC depends greatly on endoscopic biopsy. 
Despite its high sensitivity and capability of identify-
ing most of the cases, there is still a considerable omis-
sion diagnostic rate [6]. It is reported that the omission 
diagnostic rate of upper gastrointestinal malignancies 
reaches 15% in Western populations, which can be over 
25% in Eastern countries such as Japan [7–9]. Endos-
copy-based diagnosis relies largely on the image quality 
and endoscopists’ skill level of skill. An obscure image 
could easily misguide endoscopists to take the mucosal 
lesions of EGC for chronic atrophic gastritis [10] and the 
skill of endoscopists requires training and practicing for a 
long time [8]. In China, due to the large population base, 
severe imbalance of regional medical development, and 
uneven levels of doctors, the detection rate of EGC is not 
ideal. According to reports [11, 12], the detection rate of 
EGC in China is less than 5%, and the rate of missed diag-
nose under endoscopy is about 10%, which is obviously 
unfavorable to the prognosis of patients. In addition, the 
identification of EGC in gastroscopy mainly relies on 
the visual diagnosis and empirical judgment of doctors, 
which also poses a huge challenge to the accurate detec-
tion of EGC. Thus, there is an urgent need for effective 
approaches that can assist clinicians in endoscopic diag-
nosis and improve the diagnostic rate of EGC.

Machine learning (ML)-based endoscopy for EGC 
diagnosis has currently attracted extensive attention in 
clinical settings [13–15]. Deep learning (DL) methods 

based on convolutional neural network (CNN) exhibits 
great advantages in image recognition, segmentation, and 
feature extraction. Several studies have confirmed that it 
can be an auxiliary way to improve the accuracy of can-
cer diagnosis [16, 17]. However, it has diverse algorithms, 
and there is significant heterogeneity among different ML 
models. Even for the same ML model combined with dif-
ferent predictors, the diagnostic effect may vary. There-
fore, ML can be a potential tool assisting in the diagnosis 
of EGC, while its performance lacks evidence-based sup-
port. Thereby, this systematic review and meta-analysis 
was performed to appraise the performance of ML-based 
endoscopy for EGC diagnosis, to provide evidence to 
update artificial intelligence (AI) tools in this field.

Methods
We conduct this study in strict accordance with the 
PRISMA 2020 statement [18]. The protocol of this study 
has been registered on PROSPERO (registration No. 
CRD42022374248).

Selection criteria
Inclusion criteria

–	 Types of participants: Adult EGC patients whose 
baseline characteristics and image information were 
recorded

–	 Types of study: Randomized controlled trial (RCT), 
case–control study, cohort study, nested case–con-
trol study, and case-cohort study

–	 Constructed a completed ML-based model for EGC 
diagnosis

–	 With or without the process of external validation. 
In ML research, it is difficult to conduct independ-
ent external validation due to limited conditions, so 
validation methods such as K-fold cross-validation or 
leave-one-out method are utilized. However, we can-
not ignore the contributions that these studies have 
made, as we need to consider overfitting from the 
perspective of evidence-based medicine. Therefore, 
these articles were also included

–	 Studies using different ML models based on a same 
data set. In certain publicly authoritative datasets, 
different ML models have been developed, which 
were also included

–	 Reported and published in English

Exclusion criteria

–	 Other types of study, such as meta-analysis, review, 
guideline, and expert comments
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–	 Only performed analysis for the risk factors, with no 
ML-based model completely constructed

–	 Lacked the following outcome measures: sensitivity 
(SEN), specificity (SPE), receiver operator character-
istic curve (ROC), calibration curve, c-index, accu-
racy, precision rate, recovery rate, confusion matrix, 
diagnostic fourfold table, and F1 score

–	 Assessed the accuracy using univariate analysis

Search strategy
A comprehensive electronic search was implemented up 
to September 25, 2022, in PubMed, Embase, Cochrane 
Library, and Web of Science. The strategy was designed 
based on Medical Subject Headings (MeSH) and free 
words. No restrictions were set to region and language.

Study screening and data extraction
We used Endnote X9 for the management of the retrieved 
papers. Following the duplicate-checking, potentially eli-
gible articles were screened by browsing the titles and 
abstracts, and we downloaded the full texts of potentially 
eligible articles. Studies that met the pre-set eligibility 
criteria were included after reading the full texts. A pre-
designed form was adopted for extracting the data, which 
contained the following: title, author, publication date, 
nationality, study type, EGC cases, total cases, images of 
EGC, total images, EGC cases in training set, total cases 
in training set, images of EGC in training set, total images 
in training set, EGC cases in validation set, total cases 
in validation set, images of EGC in validation set, total 
images in validation set, model type, variables for model 
construction, and comparisons with clinicians. The above 
processes were completed independently by two review-
ers (SYH and MB), and their results were cross-checked. 
Ant disagreements among them were addressed by a 
third reviewer (FSJ).

Quality assessment
Quality Assessment of Diagnostic Accuracy Studies-2 
(QUADAS-2) [19] was applied for the evaluation of the 
risk of bias. QUADAS-2 contains the following 4 aspects: 
patient selection, index test, reference standard, and flow 
and timing. Each domain includes several items that 
could be filled as “yes,” “no,” or “uncertain,” correspond-
ing “low,” “high,” and “unclear” risk of bias, respectively. If 
all items in a domain are filled as “yes,” this domain would 
be graded as “low” risk of bias. If one item in a domain is 
filled as “no,” there would be potential bias, and the risk 
should be assessed according to the established guideline. 
“Unclear” refers to no detailed information provided in 
the study, which makes it difficult for reviewers to assess 
its risk of bias. The above processes were completed 

independently by the same two reviewers, and their 
results were cross-checked. Any disagreements among 
them were addressed by a third reviewer (FSJ).

Statistical analysis
We used a bivariant mixed-effect model for meta-
analysis. The model takes into account both fixed- and 
random-effects models and better handles heterogene-
ity across studies and the correlation between SEN and 
SPE, making the results more robust and reliable [20, 21]. 
The number of true positive (TP), false positive (FP), true 
negative (TN), and false negative (FN) cases in original 
studies were needed, while we could only obtain the SEN 
and SPE from several studies instead of the above infor-
mation. Given this situation, we used the SEN and SPE 
in combination with EGC cases and total cases to cal-
culate TP, FP, FN, and TN. Some studies only provided 
the ROC. In this case, we adopted Origin based on the 
optimal Youden index to extract the SEN and SPE from 
the ROC and subsequently calculated TP, FP, TN, and 
FN. The outcome variables in the bivariant mixed-effect 
model contained the SEN and SPE as well as the negative 
likelihood ratio (NLR), positive likelihood ratio (PLR), 
diagnostic odds ratio (DOR), and 95% confidence inter-
vals (95%CI). Summarized ROC was produced and the 
area under the curve was computed. Deek’s funnel plot 
was utilized for publication bias assessment.

Subgroup analysis was processed based on the data sets 
(training set and validation set) and modeling variables 
(fixed images and dynamic videos). Moreover, we sum-
marized the results of non-specialist clinicians/specialist 
clinicians, non-specialist clinicians/specialist clinicians 
with the assistance of ML, and video validation.

All the data analyses were done on Stata 15.0, and 
p < 0.05 implied statistical significance.

Results
Study selection
There were 8758 articles retrieved through the literature 
search, of which 1394 were from PubMed, 3866 from 
Embase, 138 from Cochrane Library, and 3360 from Web 
of Science, and 4683 ineligible articles were removed 
due to duplication and other reasons. We screened the 
remaining 4075 articles through browsing their titles and 
abstracts, and 39 articles preliminarily met the inclusion 
criteria. Among these 39 articles, the full texts of 1 study 
could not be obtained, and full texts of the other 38 were 
read. After excluding conference summaries, reviews, 
studies with the full texts unavailable, and studies for 
which the diagnostic performance of the ML models 
could not be assessed, 21 articles were finally included. 
The flow diagram of study selection is presented in Fig. 1, 
and the detailed search strategies are shown in Table S1.
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Characteristics of the included articles
Twenty-one studies were included [13, 22–41], of which 
14 studies [13, 22, 24, 26–35, 41] were conducted in 
China and 7 studies [23, 25, 36–40] were in Japan. There 
were 9 multi-centric studies [22, 24, 27–30, 34, 35, 41] 
and 4 prospective studies [13, 27, 30, 34]. There were 
16,074 participants involved, and 454,528 endoscopic 
images were obtained, of which 97,950 images involved 
EGC. Among the included studies, 7 studies [13, 24, 30, 
33–35, 39] performed real-time training or validation 
for ML-based models in videos, and 11 studies [24, 27, 
29, 30, 32–38] provided comparisons for the diagnostic 
performance of the ML-based models with that of clini-
cians. We roughly divided those clinicians into specialists 
and non-specialists according to their working experi-
ence and the number of times of performing endos-
copy yearly. The involving ML models were as follows: 
VGG-16, ResNet50, VGG-19, SVM, PLS-DA, ResNet34, 

DeepLabv3, GoogLeNet, EfficientDet, Darknet-53, 
ResNet101, and SSD. Detailed study characteristics are 
presented in Table S2.

Quality assessment
By using QUADAS-2, the included studies were generally 
graded as high quality. Detailed results of the risk of bis 
assessment are exhibited in Fig. 2.

Results of meta‑analysis
Diagnostic performance of ML models in the image training 
set
There were 7 studies [24, 26–30, 35] that trained endo-
scopic image-based ML models for EGC diagnosis. The 
pooled AUC, SEN, and SPE were 0.94 (95% CI: 0.39–
1.00), 0.91 (95% CI, 0.87–0.94), and 0.85 (95% CI: 0.81–
0.89) (Fig. 3A, B). The PLR, NLR, and DOR were 6.2 (95% 
CI: 4.6–8.2), 0.11 (95% CI: 0.07–0.16), and 58 (95% CI: 

Fig. 1  PRISMA 2020 flow diagram of the study selection process
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29–114), respectively. No evident publication bias was 
found (p = 0.51). More details are provided in Supple-
mentary Fig. 1.

Diagnostic performance of ML models in the image 
validation set
There were 17 studies [13, 22–24, 26, 29–40] that vali-
dated the performance of the ML models for diagnosing 

EGC, and 6 of them [22, 24, 26, 29, 30, 35] had included 
more than 1 set of data. The pooled AUC, SEN, and SPE 
were 0.96 (95% CI: 0.19–1.00), 0.90 (95% CI: 0.86–0.93), 
and 0.90 (95% CI: 0.86–0.92) (Fig.  4A, B). The PLR, 
NLR, and DOR were 8.7 (95% CI: 6.6–11.4), 0.11 (95% 
CI: 0.08–0.15), and 80 (95% CI: 47–138), respectively. 
No evident publication bias was noted (p = 0.84). More 
details are provided in Supplementary Fig. 2.

Fig. 2  Risk of bias and clinical applicability assessment of included studies by QUADAS-2
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Diagnostic performance of clinicians
We divided those clinicians into specialists and non-
specialists according to their working experience and the 
number of times of endoscopy performed. There were 72 
non-specialist clinicians, and the pooled AUC, SEN, and 
SPE were 0.80 (95% CI: 0.29–0.97), 0.64 (95% CI: 0.56–
0.71), and 0.84 (95% CI: 0.77–0.89) (Fig. 5A, B). The PLR, 
NLR, and DOR were 4 (95% CI: 2.9–5.3), 0.44 (95% CI: 
0.37–0.52), and 9 (95% CI: 6–13), respectively. No evi-
dent publication bias was noticed (p = 0.94). There were 
76 specialist clinicians, and the pooled AUC, SEN, and 

SPE were 0.91(95% CI: 0.37–0.99), 0.80 (95% CI: 0.74–
0.85), and 0.88 (95% CI: 0.85–0.91) (Fig. 6A, B). The PLR, 
NLR, and DOR were 6.7 (95% CI: 5.4–8.4), 0.23 (95% CI: 
0.18–0.30), and 29 (95% CI: 21–41), respectively. No evi-
dent publication bias existed (p = 0.27). More details are 
provided in Supplementary Figs. 3 and 4.

Diagnostic performance of clinicians with the assistance 
of ML models
There were 6 studies [13, 24, 29, 30, 35, 41] report-
ing the performance of clinicians in diagnosing EGC 

Fig. 3  Diagnostic performance of the ML models in image training set. A SROC; B forest plot of pooled SEN and SPE

Fig. 4  Diagnostic performance of the ML models in image validation set. A SROC; B forest plot of pooled SEN and SPE
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with the assistance of ML models. We also divided 
these clinicians into specialist clinicians and non-
specialist clinicians. There were 16 specialist cli-
nicians and 12 non-specialist clinicians. With the 
assistance of the ML models, the pooled AUC, SEN, 
and SPE of non-specialist clinicians were 0.90 (95% 
CI: 0.36–0.99), 0.76 (95% CI: 0.68–0.83), and 0.87 (95% 
CI: 0.83–0.90), (Fig. 7A, B). The PLR, NLR, and DOR 
were 6 (95% CI: 4.1–8.3), 0.27 (95% CI: 0.19–0.38), 

and 21 (95% CI:11–43). No evident publication bias 
was existed (p = 0.10). With the assistance of the ML 
models, the pooled AUC, SEN, and SPE of specialist 
clinicians were 0.93 (95% CI: 0.38–1.00), 0.89 (95% CI: 
0.82–0.93), and 0.86 (95% CI: 0.81–0.90), respectively 
(Fig. 8A, B). The PLR, NLR, and DOR were 6 (95% CI: 
4.6–8.6), 0.13 (95% CI: 0.08–0.21), and 48 (95% CI: 
26–87), respectively. No evident publication bias was 
noticed (p = 0.22). More details are provided in Sup-
plementary Figs. 5 and 6.

Fig. 5  Diagnostic performance of non-specialist clinicians in the diagnosis of EGC through endoscopic images. A SROC; B forest plot of pooled SEN 
and SPE

Fig. 6  Diagnostic performance of specialist clinicians in the diagnosis of EGC by endoscopic images. A SROC; B forest plot of pooled SEN and SPE
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Diagnostic performance of ML models in the video validation 
set
There were 4 studies [13, 24, 30, 39] that validated the 
diagnostic performance of ML models in real-time vid-
eos. The pooled AUC, SEN, and SPE were 0.94 (95% CI: 
0.39–1.00), 0.91 (95% CI: 0.82–0.96), and 0.86 (95% CI: 
0.75–0.93) (Fig. 9A, B). The PLR, NLR, and DOR were 6 
(95% CI: 3.5–12.1), 0.11 (95%CI: 0.05–0.22), and 60 (95% 
CI: 20–176), respectively. No evident publication bias 

existed (p = 0.08). More details are provided in Supple-
mentary Fig. 7.

Diagnostic performance of clinicians in the video validation 
set
There were 3 studies [13, 30, 39] that validated the per-
formance of clinicians (n = 20) in the diagnosis of EGC in 
real-time videos. The pooled AUC, SEN, and SPE were 
0.90 (95% CI: 0.58–0.98), 0.83 (95% CI: 0.77–0.88), and 

Fig. 7  Diagnostic performance of non-specialist clinicians with assistance of the machine learning models in the diagnosis of EGC by endoscopic 
images. A SROC; B forest plot of pooled SEN and SPE

Fig. 8  Diagnostic performance of specialist clinicians with assistance of the machine learning models in the diagnosis of EGC by endoscopic 
images. A SROC; B forest plot of pooled SEN and SPE
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0.85 (95% CI: 0.77–0.90) (Fig.  10A, B). The PLR, NLR, 
and DOR were 5 (95% CI: 3.6–8.2), 0.20 (95% CI: 0.15–
0.27), and 27 (95% CI: 17–44), respectively. No evident 
publication bias was noticed (p = 0.51). More details are 
provided in Supplementary Fig. 8.

Discussion
In this study, we systematically searched articles regard-
ing the application of ML for the diagnosis of EGC, 
assessed the application value of image-based ML mod-
els for EGC diagnosis, and compared the performance 

of these models with clinicians of different skill levels. 
Moreover, we assessed the diagnostic performance of ML 
models in real-time videos. The analysis results revealed 
that ML models would be of greater performance in 
diagnosing endoscopic images than clinicians (including 
specialists and non-specialists), and the diagnostic per-
formance of non-specialist clinicians could be improved 
to the level of the specialists with the assistance of ML 
models. ML models presented a remarkable performance 
in real-time video diagnosis, and the sensitivity and spec-
ificity were all higher than those of clinicians.

Fig. 9  Performance of ML models in the diagnosis of EGC in video validation set. A SROC; B forest plot of pooled SEN and SPE

Fig. 10  Performance of clinicians in the diagnosis of EGC in video validation set. A SROC; B forest plot of pooled SEN and SPE
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ML is a crucial part of artificial intelligence. It is com-
posed of multiple disciplines and can learn and prac-
tice with a large amount of historical data to construct 
algorithm models that provide accurate prediction and 
assessment for the new data [42, 43], which refers to a 
process from experience summarizing to flexible use. ML 
technique has been extensively employed in screening 
gastrointestinal malignancies, mainly in assisting endo-
scopic diagnosis, automatic pathological examination, 
and tumor invasion depth detection, and has produced 
desired results. [44] Chang et al. [45] reviewed the diag-
nostic performance of endoscopic image-based ML for 
early esophageal cancer. The AUC, SEN, and SPE were 
0.97 (95% CI 0.95–0.99), 0.94 (95% CI, 0.89–0.96), and 
0.88 (95% CI, 0.76–0.94). Jiang et al. [46] included 16 arti-
cles and found that the AUC, SEN, and SPE of AI-assisted 
EGC diagnosis were 0.96 (95% CI: 0.94–0.97), 86% (95% 
CI: 77–92%), and 93% (95% CI: 89–96%). However, Luo 
et  al. [47] included 15 articles and reported the pooled 
AUC, SEN, and SPE of endoscopic images-based AI in 
the detection of EGC were 0.94, 0.87 (95% CI: 0.87–0.88), 
and 0.88 (95% CI: 0.87–0.88). Variances in the diagnos-
tic performance of ML models among different studies 
indicate significant heterogeneity among different mod-
els. ML models can have overfitting or underfitting prob-
lems when dealing with specific datasets, which can limit 
their application and generalization [48, 49]. Thereby, we 
strictly differentiated between the results of the train-
ing set and validation set, which could help us to analyze 
whether ML models are at risk of overfitting and under-
fitting and to reflect whether there are any challenges in 
the goodness-of-fit of the existing ML models from an 
evidence-based medicine perspective. Fortunately, our 
results were not overfitting or underfitting. Additionally, 
validating the model performance in different datasets 
with adequate external validation is necessary to improve 
the model and increase its reliability and application [50]. 
There is a current lack of articles comparing the per-
formance of ML-based models with clinicians of differ-
ent skill levels and clinicians with the assistance of ML 
models in EGC diagnosis as well as studies validating the 
diagnostic performance of ML models in real-time vid-
eos. Our study has filled the gap.

According to our study, the mainstream ML method 
is CNN. CNN is among the most typical DL models, 
which includes multiple algorithm models such as VGG, 
GoogleNet, ResNet, and DenseNet [51]. It is of excellent 
image recognition and classification ability and has been 
widely applied in endoscopic image-based diagnosis [27, 
52]. Fang et al. [53] revealed the AUC, SEN, and SPE of 
CNN in the endoscopic image-based GC diagnosis were 
0.89, 0.83, and 0.94. Md Mohaimenul Islam et  al. [54] 
revealed that the SROC and SEN of the CNN model in 

EGC diagnosis were 0.95 and 0.89, respectively. Among 
the articles included, only 2 articles [25, 26] used con-
ventional ML methods (SVM). Miyaki, R et al. [25] dis-
covered the mean SVM output-value of the cancer lesion 
was 0.846 ± 0.220, which was evidently higher than that 
of the reddened lesions (0.381 ± 0.349) and surrounding 
tissues (0.219 ± 0.277). Yuanpeng Li et  al. [26] elicited 
the SEN, SPE, and accuracy of SVM in diagnosing EGC 
were all over 90%, indicating its good application value. 
However, conventional ML methods such as SVM have 
more limitations compared to DL models. The former 
relies on experienced experts to manually design the 
image features, requires multiple calculations to obtain 
the best truncation value, and yields poor performance in 
processing large-scale data sets [44, 55, 56]. All of these 
problems impede the further development of conven-
tional ML methods.

We observed, in this study, that ML-based mod-
els had a higher diagnostic sensitivity than clinicians. 
These models showed diagnostic performance as good 
as clinical specialists in both the images and videos. 
With the assistance of ML, the diagnostic sensitiv-
ity of non-specialists and specialists for EGC was sig-
nificantly improved, while such an improvement was 
not observed in the specificity, and the specificity of 
ML-assisted specialists was slightly lower than the 
ML models. This indicated that the assistance of ML 
increased the specialists` misdiagnosis rate. Misdiag-
nosis caused by ML models in the process of image 
recognition is often attributed to the poor endoscopic 
image resolution leading to an abnormal mucosal 
background color, which could be induced by residual 
foam, blood, and food residues in the lesion site, and 
confusing tissue structures such as atrophic gastritis, 
intestinal metaplasia, and ulcers [29, 30]. ML mod-
els could interfere with clinical experts` judgment 
by presenting them with misidentified information, 
as reported by Tang et  al. [24] In addition, in video 
diagnosis, the SROC, SEN, and SPE of ML models 
for EGC were 0.94 (95% CI: 0.39–1.00), 0.91 (95% CI: 
0.82–0.96), and 0.86 (95% CI: 0.75–0.93), greater than 
that of clinicians: the SROC, SEN, and SPE were 0.90 
(95% CI: 0.58–0.98), 0.83 (95% CI: 0.77–0.88), and 0.85 
(95% CI: 0.77–0.90). By comparing the performance 
between ML models in EGC diagnosis in images and 
real-time videos, we found that video slightly outper-
formed image on SEN, with image vs. video at 0.90 vs. 
0.91. And image slightly outperformed video on SROC 
(0.96 vs. 0.94) and SPE (0.9 vs. 0.86). However, this is 
not enough to clarify whose performance of ML mod-
els is better in images and real-time videos. Because 
only 4 papers validated the detection performance of 
ML models in real-time videos, with a significantly 
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smaller sample size than images. Thus, more original 
studies are still needed to validate the diagnostic per-
formance of ML models in real-time videos to better 
compare their performance. Indeed, video diagnostics 
also presents unique challenges [57, 58]. First, com-
pared to images, videos contain dynamic and time-
dependent information, which makes processing and 
analysis more difficult. Second, the training and infer-
ence of ML models usually require high-performance 
computers and many computational resources. Videos 
contain much frame and pixel information and thus 
require higher computation and equipment require-
ments. Finally, due to the specificity of the medical 
field, the use of ML models for cancer diagnosis may 
involve many complex regulatory and ethical issues. 
However, it is undeniable that ML-based models can 
serve as an adjuvant diagnostic approach for EGC, 
bringing effective help to clinicians in clinical prac-
tice, especially for non-specialists. It could improve 
their diagnostic performance to the level of special-
ists while reducing costs. The study demonstrates the 
feasibility of ML methods for EGC diagnosis, which 
facilitates the development of AI tools to provide diag-
nostic assistance to inexperienced clinicians and in 
areas where medical resources are scarce.

This study also has limitations. Firstly, most included 
articles were retrospective-design, and only few arti-
cles performed prospective validation for the con-
structed ML models. Retrospective studies may suffer 
from incomplete data collection, poor quality, and bias, 
which affect the generalizability of the findings [49, 50]. 
Therefore, the performance of ML models in EGC diag-
nosis needs to be validated by more prospective studies. 
Secondly, most included articles had excluded manu-
ally images of poor quality during the image selection 
process, which might cause an overestimated diagnos-
tic performance of these models. The included images 
were also less likely to include all types of GC lesions 
that could be used as controls to EGC, making it dif-
ficult to conduct comprehensive training of the models, 
and their application was subsequently limited. In addi-
tion, ML models in most of the included studies were 
constructed with DL, and subgroup analysis for dif-
ferent types of ML (e.g., VGG-16, ResNet50, VGG-19) 
could not be performed owing to the limited included 
articles. Due to the limited number of ML methods, we 
also failed to conduct a more detailed subgroup analy-
sis of different ML models (e.g., CNN, SVM). Lastly, the 
model construction in the included articles was mostly 
based on static endoscopic images, which is different 
from the real-time clinical operation scenarios. More 
original articles are needed to further validate the diag-
nostic performance of ML models in real-time videos.

Conclusion
This meta-analysis demonstrates that ML-based diag-
nostic models have great performance in EGC diagno-
sis, with the sensitivity and specificity all higher than 
those of clinical specialists. It has great application 
prospects and can be used as an adjuvant approach to 
help clinicians make more accurate diagnoses.
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