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Abstract 

Background TMPRSS2‑ERG (T2E) fusion is highly related to aggressive clinical features in prostate cancer (PC), which 
guides individual therapy. However, current fusion prediction tools lacked enough accuracy and biomarkers were 
unable to be applied to individuals across different platforms due to their quantitative nature. This study aims to iden‑
tify a transcriptome signature to detect the T2E fusion status of PC at the individual level.

Methods Based on 272 high‑throughput mRNA expression profiles from the Sboner dataset, we developed a rank‑
based algorithm to identify a qualitative signature to detect T2E fusion in PC. The signature was validated in 1223 
samples from three external datasets (Setlur, Clarissa, and TCGA).

Results A signature, composed of five mRNAs coupled to ERG (five ERG‑mRNA pairs, 5‑ERG‑mRPs), was developed 
to distinguish T2E fusion status in PC. 5‑ERG‑mRPs reached 84.56% accuracy in Sboner dataset, which was verified 
in Setlur dataset (n = 455, accuracy = 82.20%) and Clarissa dataset (n = 118, accuracy = 81.36%). Besides, for 495 samples 
from TCGA, two subtypes classified by 5‑ERG‑mRPs showed a higher level of significance in various T2E fusion features 
than subtypes obtained through current fusion prediction tools, such as STAR‑Fusion.

Conclusions Overall, 5‑ERG‑mRPs can robustly detect T2E fusion in PC at the individual level, which can be used 
on any gene measurement platform without specific normalization procedures. Hence, 5‑ERG‑mRPs may serve 
as an auxiliary tool for PC patient management.
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Introduction
Prostate cancer (PC) is the major public health challenge 
for men, with an estimated 288,300 new cases diagnosed 
and 34,700 deaths in 2023 from the disease in the USA 
[1]. Due to the high death rate of PC, many studies have 
been conducted to improve the prognosis of PC. For 
instance, Montazersaheb et  al. have proved for the first 
time that betanin, when used in combination with radio-
therapy, contributes to cytotoxic and apoptotic effects on 
PC cells [2]. Identifying potential drugs to disease and 
exploring ways to increase sensitivity to drug therapy 
were also effective strategy for extending the survival 
time of cancer patients [3–5]. Besides, genomic events 
impact patient outcomes. Tomlin et al. reported the most 
common form of PC-specific fusion with more than 50% 
occurrence frequency, which is TMPRSS2-ERG (T2E) 
fusion [6]. T2E fusion is mainly produced by intermedi-
ate deletion and balanced chromosome translocation. 
The former refers to the deletion in the middle part of 
the chromosome arm, and the latter refers to the posi-
tion change after the breakage of two chromosomes [7]. 
This event caused the oncogenic effects of aberrant tran-
scription factors, specifically the overexpression of ERG, 
which plays a critical role in the regulation of cell growth, 
differentiation, and apoptosis [8]. Thus, T2E fusion is 
associated with a more aggressive clinical presentation of 
PC. Besides, a recent discovery indicated that T2E fusion 
is an early event in PC and could provide support for PC 
diagnosis [9].

Gene fusions driven by chromosomal translocations 
are highly correlated with patient clinical outcomes [10]. 
Numerous studies have demonstrated that T2E fusion 
is a risk factor in PC [11–13]. Therefore, the detection 
of T2E fusion has implications for prognosis prediction 
and postoperative management of PC patients. Currently, 
there are three primary approaches for determining the 
T2E fusion status in PC, involving methods based on 
fluorescence in situ hybridization (FISH) or immunohis-
tochemistry (IHC), high-throughput sequencing tech-
nology, and transcriptional signatures. Despite the high 
sensitivity (> 80%) of FISH and IHC, sample fixation tech-
niques, reference settings, and reagent batches all have an 
impact on the results [14, 15]. Besides, semi-quantitative 
and subjective positive interpretation criteria also lead to 
poor reproducibility of detection results between labora-
tories. Based on RNA sequencing data, researchers had 
developed many tools for identifying gene fusion, but the 
criteria for screening candidate fusion genes and filter-
ing out false positive reports are different among tools. 
The detection accuracy of these tools is highly sensitive 
to the length of reads, with a 40–90% area under the 
curve (AUC) [15]. Many transcriptional signatures were 
also identified for the detection of T2E fusion [16–18]. 

However, the application of these signatures depends on 
the conversion score of the absolute expression measure-
ments of signature genes, which are affected by system-
atic measurement bias induced by experimental batch 
effects [19]. In contrast, relative expression orderings 
(REOs) of gene pairs can overcome these limitations 
and be applied to individual samples without a complex 
scoring process. Besides, our previous study showed that 
REO-based biomarkers are relatively robust against poor 
sample quality [20–22].

In this study, using gene quantitative expression of PC 
from Gene Expression Omnibus (GEO) and The Cancer 
Genome Atlas (TCGA) database, we identified a qualita-
tive REO-based signature composed of five gene pairs for 
the detection of T2E fusion status of PC. The signature 
was tested in three independent datasets and compared 
with four fusion prediction tools based on several T2E 
fusion-related features.

Materials and methods
Bulk data and preprocessing
We conducted an electronic search without limita-
tions on publication date in PubMed and GEO (Gene 
Expression Omnibus) to find all articles and collecting 
gene expression datasets reporting on signature and/
or biomarker in PC related to T2E fusion. Four PC-
related gene expression datasets were then used in this 
study, which were downloaded on December 6, 2022, 
from the GEO (http:// www. ncbi. nlm. nih. gov/ geo/), 
TCGA (http:// cance rgeno me. nih. gov/), and Cbioportal 
(http:// www. cbiop ortal. org/). As described briefly in 
Table 1, the Sboner dataset was considered the training 
dataset for extracting the rank-based T2E fusion signa-
ture. Three testing datasets included 455 samples (Set-
lur dataset) generated by Human 6 k Transcriptionally 
Informative Gene Panel for DASL, 495 samples (TCGA 
dataset) generated by Illumina Hiseq RNAseqV2, and 
118 samples (Clarissa dataset) generated by RNA-seq, 
respectively.

For the Sboner and Setlur datasets derived from GEO, 
the transcriptome expression profile was extracted from 
“series.txt” files. The same preprocessing was performed, 

Table 1 The datasets analyzed in this study

TFP, T2E fusion-positive, TFN, T2E fusion-negative

Dataset Accession TFP TFN Platform

Sboner, 2010 GSE16560 46 226 Human 6 K for DASL

Setlur, 2008 GSE8402 103 352 Human 6 K for DASL

TCGA TCGA – – Illumina RNA‑seqV2

Clarissa, 2018 DKFZ 86 32 RNA‑seq

http://www.ncbi.nlm.nih.gov/geo/
http://cancergenome.nih.gov/
http://www.cbioportal.org/
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wherein the probe-set identifiers (IDs) were mapped to 
Entrez gene IDs using the corresponding platform files. 
For each sample, the expression measurements of multi-
ple probe-set mapped to the same Entrez gene ID were 
averaged to obtain a single measurement, and probe-sets 
that did not map any gene ID or mapped multiple gene 
IDs were deleted. For dataset TCGA, the mRNA-seq 
profiles of level 3 Fragments Per Kilobase Million were 
extracted. The mRNA expression (RNA seq RPKM) was 
used as the gene expression measurements of the Clar-
issa dataset.

Single‑cell data quality control and analysis
Single-cell data of six PRAD tumor samples, the Dong 
dataset, were obtained from Dong et al. [23]. R package 
“seurat” (V4.0.5) was performed for data preprocess-
ing and subsequent analysis [24]. All functions were run 
with default parameters. To filter low-quality cells, only 
cells that have unique feature counts less than 2500, or 
over 200, and that have < 5% mitochondrial counts were 
included in the following analysis. Identification of cell 
population was performed using marker genes achieved 
from a recent publication [25] and summarized in Table 
S1. The cells were predicted as tumor cells by Copycat 
method and whose cell types were annotated as epi-
thelial cells or endothelial cells were regarded as tumor 
cells [26]. For N tumor cells from sample s, we extracted 
randomly n cells without replacement (n = 1, 2, …, N), 
and N bulk tissues were obtained. For one sampling, the 
mean expression level of these n cells represents the gene 
expression profile of this bulk tissue. Then, based on the 
binomial distribution test, sample s was classified into 
T2E fusion-positive (TFP) or T2E fusion-negative (TFN) 
group if significantly more bulk tissues were classified 
into TFP or TFN group by our signature.

Identification of ERG paired genes.
Based on the F-statistic from the one-way ANOVA 

test, Shannon’s entropy, coefficient of variation (CV), the 
outlier sum statistic, and the median absolute deviation 
(MAD) of the expression of genes, we calculated five met-
rics of variability for genes in the training dataset. F-sta-
tistic was used to assess the differences in gene expression 
between TFP and TFN tumors. Shannon’s entropy, con-
sidered as a measure of information content for the quan-
titative expression of genes, was computed using entropy 
R package. CV was computed as CV = σ

µ
 , where σ is the 

overall standard deviation of the expression level of a 
gene in all samples and µ is the average expression level. 
The outlier sum statistic, a variability for identifying the 
presence of outliers, was calculated by the sum of abso-
lute value from median-centered outliers. Here, outliers 
were detected by IQR (interquartile range) method that 

the quantitative expression measurements of genes fall 
outside Q1 − IQR or Q3 + IQR. MAD was calculated as 
MAD = median(|Ei −median(Ei)|) , where Ei represents 
the expression values of gene i. The smaller each vari-
able, the more stable the expression level of gene between 
TFP and TFN tumors. Further, the stingscore method was 
used to integrate these five variabilities [27]. The genes 
with scores in the top quartile (unstable) and bottom 
quartile (stable) were defined as ERG-paired genes.

Development of the T2E signature
Firstly, we computed the reverse degree of the combi-
nation of ERG and reference genes, which is defined as 
follows:

where RERG[Ni] and RRef [Ni] represented the rank of gene 
expression measurements of ERG and reference genes 
in TFN samples, respectively ( i = 1…m . m is the sam-
ple size of TFN samples). Similarly, RERG[Pj] and RRef [Pj] 
represented the rank of ERG and reference genes in TFP 
samples ( j = 1…n . n is the sample size of TFP samples), 
respectively. Then, gene pairs with the top 20% R(ERG,Ref ) 
were defined as gene pairs with high reversion degree. 
Secondly, the quantitative expression of ERG and refer-
ence genes were transformed into the within-sample 
REOs of gene pairs (EERG > Ereference or EERG < Ereference). 
Samples were classified into the TFN or TFP groups for 
each ERG-reference gene pair according to their within-
sample REO pattern. Then, the F-1 values for each gene 
pair were evaluated by computing the sample size of cor-
rect classifications, which was calculated as follows:

Gene pairs with the top 20% F-1 value were termed as 
gene pairs with high discrimination degree. Finally, the 
top 10 gene pairs from gene pairs with high reversion 
degree or high discrimination degree and the overlapped 
between them were defined as candidate gene pairs. 
Finally, from these candidate gene pairs, we performed 
a forward selection procedure to discovery T2E signa-
ture that achieved the largest F-1 value based on the pre-
defined classification rule: a sample was classified into 
the TFP subtype if at least half of the gene pairs within 
this sample vote for TFP; otherwise, the TFN subtype. 
Among the results derived from the seeds with top 10 F-1 
values, a set of gene pairs with the highest F-1 value was 
chosen as the T2E signature.

R(ERG,Ref ) =
|

i
1 RERG[Ni ] − RRef [Ni ] |

m
×

|
j
1

RERG[Pj ] − RRef [Pj ] |

n

F− 1 =
2× (Sen(ERG,Ref ) × Spe(ERG,Ref ))

Sen(ERG,Ref ) + Spe(ERG,Ref )
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ssGSEA scores of oncogenic, metabolism pathways 
and immune cell infiltration
The ssGSEA method was used to quantify the fifty onco-
genic pathways activity (http:// www. broad insti tute. org/ 
msigdb, h.all.v7.4.entrez.gmt) [28]. Further, the immune 
infiltration of 28 immune cell types was also evaluated 
by ssGSEA method, whose signature genes were derived 
from literature [29]. The fraction of M1 macrophage 
and M2 macrophage, the immune score, and stromal 
score of 435 PC samples in TCGA by xCell method were 
downloaded from the TCGA immune-related database 
(http:// timer. cistr ome. org/). The immune score and 
stromal score of these samples also computed by the 
Estimate method using R package “estimate.” Besides, 
cytolytic (CYT) score of these PC samples was derived 
from a recent research [30]. The one-sided Wilcoxon 
rank-sum test was used to compare the immunity fea-
tures mentioned above and the ssGSEA score of path-
ways between the two groups.

Survival analysis
The overall survival (OS) was termed as the time from 
the date of initial surgical resection to death or last con-
tact (censored). The survival status of patients beyond 
10  years was transformed to dead; OS was changed to 
10 years. Survival curves of OS were estimated using the 
Kaplan–Meier method and were compared using the log-
rank test [31]. The multivariate Cox proportional-hazards 
regression model was introduced to evaluate the inde-
pendent prognostic value of the signature after adjust-
ing for clinical factors including Gleason score, age, PSA 
level, and stage.

L1000 drug connectivity analysis
Limma was performed to determine differential abun-
dance of genes between TFP and TFN tumors. Genes 
with FDR < 0.01 were considered as differentially 
expressed. With a dysregulation frequency cutoff of 80%, 
the universal differentially expressed genes (DEGs) were 
detected by RankComp V1 at least in one of TCGA and 
PRAD_DKFZ datasets [32]. Using Spearman’s rank cor-
relation (|r|> 0.6, FDR < 0.01), the universal DEGs that 
were associated with the ssGSEA score of one of fifty 
oncogenic pathways were then used as inputs in the 
subsequent analysis. Input genes were measured in the 
L1000 gene panel and then were processed using con-
nectivity map (cMAP) tool (https:// clue. io/). The result-
ing drug connectivities were aggregated to the compound 
level using the raw connectivity score in cMAP. Target 
annotations for the ranked compounds were extracted 
from cMAP. The directionality of the connectivity score 
(positive or negative) represented the effects of drugs 
(antagonistic effects or synergistic effects).

Statistical analysis
Since evidence has demonstrated that T2E fusion is a 
risk factor for PC [11–13], the samples in our study pos-
sessing the attribute of T2E fusion-positive are called the 
“case,” and those without it are the “control.” All statistical 
analyses in this study were carried out using R software 
version 4.0.2 (http:// www.r- proje ct. org/).

Result
Identifying and validation of T2E fusion qualitative 
signature
The reference genes were denoted as stably expressed 
genes (SEGs) or unstable expressed genes (USEGs) 
between TFP and TFN tumors. Then, based on the evi-
dence that the elevated expression of ERG would be 
caused by T2E fusion, the REO pattern of pairwise ERG-
SEGs or ERG-USEGs might be reversed in TFP tumors 
compared with TFN tumors. Therefore, a procedure of 
identifying T2E fusion signature was constructed (Fig. 1). 
Firstly, according to gene expression variation between 
tumors with different T2E fusion statuses in the train-
ing dataset (n = 272), 3050 genes ranked top or bottom 
quartiles were identified as the reference genes by a rank 
fusion method with five indexes (Fig.  1A). Figure S1 
shows distributions of these measurements in the Sboner 
dataset. Secondly, from the 3050 ERG-reference pairs, 
55 gene pairs with a high reverse degree and/or high 
discrimination degree were retained according to a fil-
tering rule in “Materials and methods” (Fig. 1B). Finally, 
based on the 55 candidate gene pairs, a set of five gene 
pairs with the highest reverse degree and discrimina-
tion degree (F-1 value = 0.8377) were selected as the T2E 
fusion signature by using greedy method, denoted as 5 
ERG-mRNA pairs (5-ERG-mRPs) (Fig.  1C). With the 
majority voting rule, 38 of 46 TFP samples and 192 of 226 
TFN samples in the training dataset were correctly classi-
fied. The accuracy and AUC of 5-ERG-mRPs were 84.56% 
and 84.60% (95% CI: 77.80–91.30%, Fig. 2A). Besides, as 
shown in Fig. S2A, when stratifying patients based on 
the median expression value of ERG, though the AUC 
reached 82.50% (95% CI: 74.90–90.10%), the accuracy of 
ERG was only 66.18%.

Then, 5-ERG-mRPs was applied in two independ-
ent datasets. For the 455 samples in the Setlur dataset, 
5-ERG-mRPs resulted in a diagnosis of T2E fusion sta-
tus with an 80.58% sensitivity (83/103), 81.53% specific-
ity (291/352), 82.20% accuracy (374/455), and 83.70% 
AUC (95% CI: 79.00–88.30%, Fig. 2B). For the 118 sam-
ples in the Clarissa dataset, 65 of 86 TFP samples and 31 
of 32 TFN samples were correctly classified by 5-ERG-
mRPs; the AUC reached 94.70% (95% CI: 91.10–98.40%, 
Fig. 2C). We validated the performance of the ERG in the 
two datasets; the accuracy was decreased to 63.74% and 

http://www.broadinstitute.org/msigdb
http://www.broadinstitute.org/msigdb
http://timer.cistrome.org/
https://clue.io/
http://www.r-project.org/
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77.12% in the Setlur and Clarissa datasets, respectively 
(Fig. S2B, C).

The classification performance of 5‑ERG‑mRPs is better 
than fusion prediction tools
Comparison analysis was then conducted in the data-
set TCGA between 5-ERG-mRPs and current fusion 
prediction tools, including PRADA (TumorFusion), 
Tophat-Fusion, STAR-Fusion, and TCGA FAWG. For 495 
samples in TCGA, 179 and 316 samples were classified 
by 5-ERG-mRPs into TFP and TFN groups, respectively. 
The results of fusion prediction tools were obtained for 
dataset TCGA from ChimerDB [33]. As shown in Fig. S3, 
435 samples were predicted consistently by signature and 
fusion prediction tools, denoted as reference samples with 
reliable T2E fusion status. Sixty inconsistent samples were 
used as testing samples for classification performance 
between 5-ERG-mRPs and fusion prediction tools.

Previous study has shown that T2E expression is 
associated with estrogen receptor (ER) signaling path-
way and the expression of ER-alpha protein [17]. By 
calculating the activity score of HALLMARK pathway 
“ER response early” and “ER response late” of 435 ref-
erence samples using ssGSEA method, we found 143 
TFP samples displayed a significantly lower activity 
score than 292 TFN samples (one-sided Wilcoxon rank-
sum test, ER response early, p = 6.01E − 6; ER response 
late, p = 1.92E − 6, Fig.  3A). For 60 testing samples, 
when using the classification result of 5-ERG-mRPs, 

we obtained similar results that 36 TFP samples 
showed a decreased ssGSEA score than 25 TFN sam-
ples (one-sided Wilcoxon rank-sum, ER response early, 
p = 2.26E − 4; ER response late, p = 6.63E − 4, Fig.  3B). 
For the expression of ER-alpha, a significant result 
was also observed that the TFP group in reference 
samples was greater than the TFN group with a clear 
trend (one-sided Wilcoxon rank-sum, ESR1|ER-alpha, 
p = 0.15; ESR1|ER-alpha_pS118, p = 0.05, Fig.  3C). 
Similar results were also obtained when 5-ERG-mRPs 
was applied in testing samples (one-sided Wilcoxon 
rank-sum, ESR1|ER-alpha, p = 8.44E − 3; ESR1|ER-
alpha_pS118, p = 0.11, Fig.  3D). Besides, recent works 
have reported that the overexpression of ERG and the 
downregulation of ANO7 were induced by T2E fusion 
[8, 34]. As expected, for reference samples, TFP sam-
ples displayed a significantly decreased ANO7 expres-
sion and elevated ERG expression than TFN samples 
(one-sided Wilcoxon rank-sum, ANO7, p = 3.02E − 5; 
ERG, p < 2.20E − 16, Fig.  3E). According to the classifi-
cation results of 5-ERG-mRPs for testing samples, TFP 
samples also showed a significantly lower expression 
level of ANO7 and a higher expression of ERG than 
TFN samples (one-sided Wilcoxon rank-sum, ANO7, 
p = 1.50E − 5; ERG, p < 3.57E − 8, Fig.  3F). On the con-
trary, for these molecular features, no significant or 
consistent results were observed between the TFP and 
TFN samples based on the grouping results of fusion 
prediction tools (Fig. 3G).

Fig. 1 Workflow of this study. A Prioritizing reference genes based on five metrics of variability for genes by stingscore method. B Identifying 
signature candidate gene pairs combined with ERG based on reverse and discrimination degrees of gene pairs. C A qualitative signature consisting 
of 5 gene pairs was developed by performing a forward selection approach, denoted as 5‑ERG‑mRPs
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Fig. 2 Performance of 5‑ERG‑mRPs in the training and validation datasets. A Confusion matrix and ROC curve for the Sboner dataset 
by 5‑ERG‑mRPs. B Confusion matrix and ROC curve for the Setlur dataset by 5‑ERG‑mRPs. C Confusion matrix and ROC curve for the Clarissa dataset 
by 5‑ERG‑mRPs
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Fig. 3 The comparison of performance between 5‑ERG‑mRPs and fusion prediction tools. Raincloud plots illustrate the distribution of molecular 
features between TFP and TFN samples grouped by the combination of 5‑ERG‑mRPs and fusion prediction tools or 5‑ERG‑mRPs alone, including A, 
B the activity score of estrogen response pathway, C, D the expression of ER‑alpha protein, E, F the expression of ANO7 and ERG. G Oncoplot 
showing the difference of molecular characteristics above between TFP and TFN samples classified by fusion prediction tools. The left shows 
the label information of prediction tools and molecular features, and grouping annotations are provided at the bottom
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5‑ERG‑mRPs owing the predictive ability for overall 
survival of locally early‑stage PC
The clinical outcomes of patients with locally early-
stage PC (cT1-2, N0, M0) were highly heterogeneous. 
Here, survival analysis was conducted to test the pre-
dictive ability of 5-ERG-mRPs for the prognosis of these 
patients. Based on 5-ERG-mRPs, 72 and 200 samples 
were classified into TFP and TFN groups, respectively. 
Results showed that patients in TFP group displayed 
more aggressive than patients in TFN group, including 
a significantly worse OS (p = 8.56E − 4, HR = 1.66, 95% 
CI: 1.23 − 2.25, Fig. 4A) and a higher Gleason score (one-
sided Wilcoxon rank-sum test, p = 6.94E − 4, Fig.  4B). 
Using Fisher’s exact test, a greater proportion of TFP 
samples in the lethal subtype was observed (p = 4.61E − 5, 
Fig.  4C). Further, we extracted gene expression profile 
and OS information of 255 patients with locally early-
stage PC in dataset TCGA. The 94 patients classified 
into the TFP group by 5-ERG-mRPs had significantly 
shorter OS than the 171 patients classified into the TFN 
group (p = 0.02, HR = 5.57, 95% CI: 0.65–48.01, Fig. 4D). 
Besides, multivariate Cox analysis showed that 5-ERG-
mRPs tends to approach formal significance associated 

with OS of localized patients after adjusting for stage, 
age, PSA level, and Gleason score (p = 0.12, HR = 5.64, 
95% CI: 0.62–51.11, Fig. 4E).

TFP tumor presenting decreased anti‑tumor immune 
infiltration
It is known that tumor aggression is related to tumor 
immune microenvironments. To determine the relation 
between T2E fusion status and tumor immune microen-
vironments in PC, we composed a heatmap to visualize 
the abundance of 28 infiltrating immune cell popula-
tions of 435 reference samples using the ssGSEA method. 
Results showed that TFP tumors had a lower abundance 
of immune cell infiltration, especially cells specialized for 
anti-tumor reactivity (e.g., activated CD4 T cell, activated 
CD8 T cell, and central memory CD8 T cell, Fig.  5A). 
Besides, a positive relationship was observed between 
cells in groups anti-tumor and pro-tumor, suggesting 
a feedback mechanism that the recruitment of immune 
suppression cells may be facilitated by anti-tumor inflam-
mation (Fig. 5B).

M1 macrophage and M2 macrophage were two main 
types of macrophage, which played roles in promoting 

Fig. 4 The difference in clinicopathological characteristics between groups based on 5‑ERG‑mRPs. A Kaplan–Meier survival analysis of groups 
classified by 5‑ERG‑mRPs in the Sboner dataset. B The difference of Gleason score between the TFP and TFN samples classified by 5‑ERG‑mRPs 
in the Sboner dataset. C The proportions of TFP and TFN tumors in lethal or indolent disease. D The Kaplan–Meier curves of OS for samples 
in the TCGA dataset. E Multivariate Cox analyses for 5‑ERG‑mRPs, Gleason score, age, PSA level, and stage were performed in TCGA. Solid circles 
represent the HR of death, and the open‑ended horizontal lines represent the 95% confidence interval (CI). HR and 95% CIs were generated using 
multivariate Cox regression models
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Fig. 5 Immune infiltration analysis of TFP tumors. A Identifying the relative infiltration of immune cell populations for 435 PC of reference samples 
in TCGA using ssGSEA method. The relative infiltration of each cell type is normalized into a z‑score. B Relationship between infiltration of cell types 
executing anti‑tumor immunity and cell types executing pro‑tumor, immune suppressive functions. R coefficient and p value were calculated 
by Pearson’s correlation method. C Abundance of M1 and M2 immune cells between the TFP and TFN tumors from the TCGA dataset. D Immune 
cytolytic (CYT) score across 435 PC samples derived from TCGA sequencing data stratified by TFP (red) and TFN (blue) status. Immune score 
and stromal score computed by E estimated method and F xCell method between the TFP and TFN samples. p values in the heatmap and box plot 
were determined by one‑sided Wilcoxon test. *p < 0.05, **p < 0.01, ***p < 0.001
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and inhibiting tumor development, respectively. For 
cells delivering pro-tumor suppression, compared with 
TFP tumors, the abundance of macrophage was greater 
in TFN tumors (Fig.  5A). Furthermore, using xCell, 
we found the relative fraction of M1 macrophage in 
TFP tumors was significantly lower than TFN tumors 
(one-sided Wilcoxon rank-sum test, p < 0.001, Fig.  5C). 
However, no significant difference was obtained for the 
fraction of M2 macrophage between these two groups 
(Fig. 5C), indicating the pro-tumor dominant role of M1 
cells in TFP tumors. CYT score was an important index 
for evaluating immune infiltration in anti-tumor [35]. 
Comparison analysis showed that TFP tumors had a 
decreased CTY score than TFN tumors (one-sided Wil-
coxon rank-sum test, p = 9.11E − 4, Fig. 5D). Finally, based 
on xCell and Estimate, we found that immune score and 
stromal score were consistently lower in the TFP tumors 
than in the TFN tumors (one-sided Wilcoxon rank-sum 
test, Estimate: immune score, p < 0.001, stromal score, 
p < 0.05; xCell: immune score, p < 0.01, stromal score, 
p < 0.001, Fig. 5E, F).

Single‑cell analysis between TFP and TFN samples
We next investigate the difference in tumor microenvi-
ronment between TFP and TFN tumors by using single-
cell RNA sequencing data. After quality control, 8469 
cells from five tissue samples of PC were retained and 
annotated into seven cell types (see “Materials and meth-
ods,” Fig.  6A–E). Canonical cell markers had a distinct 
expression pattern in the cell types of different clusters 
(Fig.  6F, Table S1). As shown in Fig.  6G, cell composi-
tion presented substantial heterogeneity among differ-
ent samples. Then, epithelial cells or endothelial cells 
from four patients were annotated as tumor cells by 
Copycat method (Fig. 6H–K), and the number of various 
cells from patients was described in Table S2. By using 
a random sampling method for tumor cells described in 
the section method details, sample GSM4089153 and 
the other three samples (GSM4089151, GSM4089155, 
and GSM4089156) were divided into TFP and TFN 
groups by 5-ERG-mRPs, respectively (Fig.  6L). Corre-
spondingly, we also found that ERG was expressed only 
in sample GSM4089153 (Fig.  6M). Besides, cells from 
sample GSM4089153 did not annotate to MAST cells, 

T lymphocytes, and B lymphocytes (Fig.  6G), in which 
MAST cell is related to PC aggressive [36]. On the con-
trary, T lymphocytes and B lymphocytes from three TFN 
samples were annotated to CD8 + T cells, T helper 17, 
T follicular helper, follicular B cell, and immature B cell 
(Fig. S4A–D), which was consistent with the results in 
BULK analysis that TFN tumors had a higher anti-tumor 
immune infiltration than TFP tumors.

Therapeutic opportunities for TFP tumor
We identified 6610 and 1446 DEGs between TFP and 
TFN samples from the TCGA (435 reference samples) 
and Clarissa datasets, respectively (Limma, FDR < 0.01, 
Fig. 7A, B). The consistency of T2E fusion-related DEGs 
between the two datasets was 99.90% (993/994), indicat-
ing significantly reproducible and consistent transcrip-
tional differences between these two groups (binomial 
distribution test, p < 2.20E − 16, Fig. 7C). Then, based on 
the algorithm RankComp V1, we calculated the dysregu-
lation frequency of the 993 DEGs. Eight hundred of 993 
DEGs were considered universal DEGs, which owned 
more than 80% of dysregulation frequency in the TCGA 
or Clarissa datasets. Among them, the expression of 39 
universal DEGs was highly associated with the score of 
fifty oncogenic pathways in these two datasets (Spear-
man’s rank correlation, |r|> 0.6, FDR < 0.01). Besides, as 
shown in Fig.  7D and E, the expression level of down-
regulated genes was strongly negatively correlated with 
the ssGSEA scores of some canonical immune-related 
pathways, such as Wnt-β-catenin signaling pathway and 
TGF-β signaling pathway. On the contrary, the upregu-
lated genes were positively related to these pathways. 
And the activation of Wnt-β-catenin signaling pathway 
displayed an insufficient T cell infiltration in the tumor 
microenvironment [37], consistent with the results that 
TFP tumors presented reduced immune infiltration of 
activated CD4 T cell and CD8 T cell. The dysregulation 
frequency of these 39 universal DEGs was also shown 
in Fig. 7F and G. Finally, we calculated the connectivity 
score between these 39 DEGs with corresponding tran-
scriptional signatures (L1000 assay). Results showed that 
compounds such as ECH1, pinitol, and ATF4 have the 
potential to reverse the transcriptome change caused 
T2E fusion (Fig. 7H).

(See figure on next page.)
Fig. 6 Single‑cell analysis between TFP and TFN tumors. A–E UMAP visualization of 8469 cells among five PC samples. F Heatmap of differentially 
expressed genes (rows) between cells classified into inferred seven cell subsets. Bars on the top of the heatmap indicated the cell type 
corresponding to those of A with selected genes indicated. G Distribution of immune‑related cells subpopulations in TFP vs TFN tumors. H–K 
UMAP of tumor cells identified by the Copycat method. L Histogram showed the prediction results of PC samples by 5‑ERG‑mRPs. The row 
represented the times that a sample was diagnosed as TFP or TFN sampler by a random method. *p < 0.05, **p < 0.01, ***p < 0.001. M Violin plots 
showing expression of ERG, TNPO1, EXTL2, DPP4, and ANG in among four samples
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Fig. 6 (See legend on previous page.)
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Fig. 7 Identification of universal dysregulated genes and potential therapeutic drugs. A, B Volcano diagram of differentially expressed genes 
in TCGA and Clarissa datasets. Limma with FDR less than 0.05 was considered to be significant. C Venn map of DEGs between TCGA and Clarissa 
cohorts. D Correlation heatmap between 39 universal genes and ssGSEA scores of fifty oncogenic pathways. Red (blue) dots represented 
a negative (positive) relationship. E The dysregulated frequency of 39 genes in TCGA and Clarissa datasets. F, G The dysregulation frequency of 39 
universal DEGs in TCGA and Clarissa datasets. H Drug connectivity analysis using alteration‑specific transcriptional signatures (CLUE, L1000). Twenty 
compounds that most strongly reverse or enhance the signature are highlighted
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Discussion
In this study, we developed a transcriptional qualitative 
signature, termed as 5-ERG-mRPs, which could individ-
ually demonstrate the T2E fusion status of PC patients. 
5-ERG-mRPs was confirmed to be more accurate than 
ERG gene expression alone. Moreover, 5-ERG-mRPs 
displayed better performance than current popular 
fusion prediction tools, such as STAR-Fusion. Based on 
the prediction results of 5-ERG-mRPs, the difference in 
molecular scars between the TFP and TFN tumors was 
more distinct. Currently, the OS of locally early-stage PC 
patients remains controversial. Our results showed that 
the TFP patients had worse OS than the TFN patients, 
with a higher Gleason score and a more significant pro-
portion of the aggressive disease. It reminds us that 
5-ERG-mRPs, when coupled with other clinical informa-
tion, might improve the ability to classify patients into 
different prognostic groups of aggressive and indolent 
subtypes. It has been suggested that tumor aggression 
was related to tumor immune microenvironments. We 
found that the TFP tumors showed a decreased inhibi-
tory immune microenvironment, such as a lower abun-
dance of immune cell infiltration including activated CD4 
T cell, activated CD8 T cell, and central memory CD8 T 
cell, which might lead to the poor OS of TFP patients. 
The single-cell analysis also showed that cells from the 
TFP sample did not annotate to anti-tumor-related 
immune cells. Finally, our data indicated some com-
pounds with the potential to treat TFP tumors.

A few studies tried to identify a transcriptome signa-
ture to detect T2E fusion status in PC. Setlur et al. con-
structed a T2E fusion signature containing 87 genes 
based on support vector machine; the AUC reached 80% 
in validation dataset [17]. Similarly, Bismar et  al. devel-
oped a 10-gene signature, whose accuracy in the valida-
tion set ranged from 65 to 83% [18]. The application of 
these two signatures needs to pre-collect samples for 
standardized processing; otherwise, the classification 
results would be affected. Another 100-gene signature 
constructed by Zhou et al. was only quantitatively scor-
ing samples for T2E fusion without the ability to classify 
qualitatively [16]. In contrast, the signature we developed 
here, 5-ERG-mRPs, achieved an overall accuracy of 83%. 
Besides this, 5-ERG-mRPs have nature advantages [20, 
22]: (i) can be applied in different microarray platforms; 
(ii) can be applied to individual samples without a com-
plex scoring process; and (iii) is resistant to experimental 
and technical variations. It thus represents a solid alter-
native to PC management in clinical settings. In addition, 
green nanomaterials, due to their advantages of biocom-
patibility, effectiveness, eco-friendliness, low cost, and 
less toxicity, have been reported being a potential serve 
as cancer therapeutics or diagnostics agents [38–41].

We also noticed that not only ERG but also other 
genes involved in our classification of T2E fusion status 
showed a closed relationship with tumor development. 
For instance, TNPO1, one of the genes in 5-ERG-mRPs, 
played an important role in regulating the nuclear 
import, self-association, and monoubiquitination of 
BAP1 pertinent to oncogenesis [42]. EXTL2, a member 
of the tumor suppressor EXT gene family, shaped tumor 
cell motility and invasion [43]. As a ferroptosis-related 
gene, DPP4 was associated with tumor aggression [44]. 
CHRNA2 encoded an alpha subunit of the neuronal nic-
otinic cholinergic receptor whose overexpression pro-
motes the poor prognosis of PC patients [45].

There are a few limitations in this study. Due to the 
absence of data with PC treated by compounds identified 
by the cMAP tool, it is necessary to collect related data 
to validate the therapeutic opportunities for TFP tumors 
in the future. Besides, when comparing the performance 
between 5-ERG-mRPs and fusion prediction tools, we 
were unable to collect PC samples with T2E fusion labels 
predicted by pathological detection and fusion tools. 
However, results showed tumors predicted with TFP 
subtype by 5-ERG-mRPs displayed distinct TFP-related 
molecular characteristics, including a low activity score 
of estrogen receptor signaling pathway, a high expres-
sion level of ERα protein, ERG upregulation, and ANO7 
downregulation. Finally, for the robustness validation of 
a signature, the more samples the better. For example, 
Zhang et  al. carried out large-scale studies consisting 
of over 40,000 samples for training and verifying three 
models to predict the prognosis of PC, and these mod-
els showed good discrimination ability [46–48]. Although 
1223 samples from three external datasets were used 
for verifying the signature in this study, we will continu-
ously collect and sequence new data to perform further 
validation.

Conclusion
In summary, the identified 5-ERG-mRPs for PC patients 
could be applied to define the T2E fusion status at the 
individual level and convenient in a clinical setting. 
Therefore, 5-ERG-mRPs merits verifying in a prospective 
clinical trial, which may reduce unnecessary expenses in 
the detection of T2E fusion status.
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